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Abstract. A novel Finite Element formulation is proposed for cases involving the coupling
of mechanical and electrical waveguides. This allows using the Transfer Matrix formalism pro-
posed in the Wave Finite Element method. Electrical variables are added to the state vectors in
order to compute propagation constants for electromechanical waves. Frequency response fonc-
tions of coupled structures can also be obtained for various mechanical and electrical boundary
conditions.

1 INTRODUCTION

A Finite Element method for structures covered with piezoelectric elements was proposed by
Thomas et al. [1] who focused on thin piezoelectric patches shunted with independent electrical
circuits. The model is based on a condensation of the electrical degrees of freedom in order to re-
cast the system into a standard mechanical formulation. However, this method is not applicable
when considering interconnections of several patches through an electrical network. In this case,
an electromechanical waveguide is created and a wave can propagate simultaneously in the me-
chanical and electrical domains. Because there are electrical nodes that interconnect successive
elements, the electrical degrees of freedom cannot be condensed in the mechanical problem. For
example, this arises when considering a structure coupled to its electrical analogue for a mul-
timodal vibration damping purpose [2, 3]. Based on a periodic distribution, a Transfer Matrix
Method can be implemented but it requires the use of external electrical degrees of freedom. A
novel Wave Finite Element method dedicated to electromechanical periodic waveguides is then
required.

In this study, electric charge displacement and voltage vectors are defined by analogy with
displacement and force vectors. The equivalent of a dynamic stiffness matrix is obtained from
the constitutive equations of the electromechanical problem. The main difference with a purely
mechanical formulation [4, 5, 6, 7] or a problem involving independent piezoelectric shunts [8,
9] is that the state vectors include both mechanical and electrical variables [10]. The global
”dynamic stiffness matrix” is then rearranged to bring together the left and right variables.
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With this partitioning, the Wave Finite Element method can be applied and a Transfer Matrix
is defined after condensation of the internal mechanical degrees of freedoms. This method offers a
convenient numerical model for the analysis of wave propagation in periodic structures involving
an interconnected array of piezoelectric patches. Finally, we show the example of a rod coupled
to a line of inductors. The propagation constants are extracted from the Transfer Matrix and
we point out the different waves propagating through the electromechanical waveguide as well
as the band-gap effects.

2 FINITE ELEMENT MODEL

2.1 Piezoelectric coupling

In this paper, we consider an electromechanical waveguide such as the one in Fig. 1. An
electrical network is coupled to a mechanical structure through an array of piezoelectric elements.
Each unit cell involves a pair of piezoelectric patches connected in parallel. Other geometries or
electrical connections could be considered but we restrain the analysis to a single piezoelectric
degree of freedom per unit cell. The variables VI and q̇I represent the voltage across the pair of
piezoelectric patches and the electrical current flowing through it. A convenient finite element
model was proposed by Thomas et al. [1] for problems involving thin piezoelectric patches and
independent shunts. If qm represents the mechanical displacements and Fm corresponds to the
external forces, the coupled problem is given as[

Mm 0
0 0

] [
q̈m
V̈I

]
+

[
Km Kc

−Kc
T Cε

] [
qm
VI

]
=

[
Fm

qI

]
, (1)

where Mm, Km and Kc are respectively the mass, stiffness and coupling matrices. The constant
Cε is the piezoelectric capacitance when no motion is allowed, i.e. qm = 0. Considering a shunt
made of an impedance Z in parallel with the piezoelectric elements at angular frequency ω, the
relation VI = −jωZqI allows condensing the electrical degrees of freedom. Indeed, from Eq. (1)
we obtain

Mmq̈m +

Km +
1

Cε +
1

jωZ

KcKc
T

 qm = Fm, (2)

which represents a standard mechanical problem with an added-stiffness term due to piezoelectric
coupling [1, 11].

However, this method is not applicable when considering interconnections of successive unit
cells with an electrical network. There are electrical charges that are flowing in and out of
the unit cell. This means that there is no direct relation between the internal variables VI
and qI. In the end, the electrical variables cannot be condensed in the mechanical problem. A
novel formulation that is able to take into account external electrical degrees of freedom is thus
required.
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Figure 1: Interconnected array of piezoelectric patches and corresponding electromechanical unit
cell highlighting left and right degrees of freedom.

2.2 Electrical degrees of freedom

From the topology of the electrical network, the electric charge qI flowing through the pair
of piezoelectric patches can be defined relatively to a charge vector qe as

qI = ST qe. (3)

If we focus on a one-dimensional unit cell, the vector qe =
[
qeL qeR

]T
refer to the electrical

charges that are exchanged with the neighboring left and right unit cells. The matrix S depends
on the internal connections of the considered portion of electrical network. By analogy with

the force vector Fm, we define Fe =
[
FeL FeR

]T
that contains the voltage contributions

on both sides of the electrical part of the unit cell. In the following, we consider that the total
energy of the purely electrical problem (when qm = 0) can be written under the form

Ee =
1

2
qTe Keqe +

1

2
q̇Te Meq̇e, (4)

where Ke and Me are symmetric matrices that are the analogues of the mechanical stiffness and
mass matrices. Then, the energy in the electrical network excluding the piezoelectric capacitor

is Ee −
q2I

2Cε
. Furthermore, the electrical power flowing into the electrical network in Fig. 1 is

equal to
Pe = F T

e q̇e − VIq̇I (5)

If the electrical network is a conservative system, a power balance induces that the input power
is equal to the time derivative of the energy as

Pe =

d

(
Ee −

q2I
2Cε

)
dt

. (6)

The symmetry property of both matrices Ke and Me thus gives

F T
e q̇e − VIq̇I = qTe Keq̇e + q̇Te Meq̈e −

qI
Cε
q̇I, (7)

which is equivalent to

q̇Te

(
Fe − SVI −Keqe −Meq̈e +

1

Cε
SST qe

)
= 0 (8)
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This true for any electric current vector q̇e so

Fe = Keqe + Meq̈e + SVI −
1

Cε
SST qe. (9)

In the end, as we also know from Eq. (1) that

VI =
1

Cε
(
ST qe + Kc

T qm
)
, (10)

we get a relation between the voltage vector Fe and the displacement vectors:

Fe = Keqe + Meq̈e +
1

Cε
SKT

c qm. (11)

Note that a principle of superposition applies because Fe is a sum of two contributions. The
first one corresponds to the voltage vector when qm = 0, i.e. when no mechanical displacement
is allowed. This is a purely electrical contribution that only depends on the electrical network
and the piezoelectric capacitance. On the other hand, the second contribution, observed when
qe = 0, is directly related to piezoelectric coupling.

2.3 Electromechanical formulation

Now that all the mechanical and electrical vectors have been defined for both displacements
and forcing terms, they can be organized into a single matrix formulation. Under harmonic
excitation at angular frequency ω, Eqs. (1) and (10) lead to a force vector

Fm =

[
Km +

1

Cε
KcKc

T − ω2Mm

]
qm +

1

Cε
KcS

T qe. (12)

Similarly, Eq. (11) gives a voltage vector

Fe =
[
Ke − ω2Me

]
qe +

1

Cε
SKT

c qm (13)

This leads to the following dynamic stiffness matrix formulation involving a combination of
mechanical and electrical degrees of freedom:

 Km +
1

Cε
KcKc

T 1

Cε
KcS

T

1

Cε
SKT

c Ke

− ω2

[
Mm 0
0 Me

][ qm
qe

]
=

[
Fm

Fe

]
. (14)

The coupled problem is thus organized like any purely mechanical problem involving mass and
stiffness matrices. The only difference is that the global displacement and force vectors contain
both mechanical and electrical contributions. With such an electromechanical formulation,
classical methods such as the assembly of element matrices or Transfer Matrix methods can be
applied.
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3 WAVE FINITE ELEMENT METHOD

3.1 Transfer matrix

The dynamic stiffness matrix given in Eq. (14) is rearranged to bring together the mechanical
and electrical left and right degrees of freedom [10], as D̃LL D̃LI D̃LR

D̃IL D̃II D̃IR

D̃RL D̃RI D̃RR

 qL
qmI

qR

 =

 FL

0
FR

 (15)

where qL =
[
qmL qeL

]T
, qR =

[
qmR qeR

]T
, FL =

[
FmL FeL

]T
and FR =

[
FmR FeR

]T
.

This expression is based on the decomposition of the mechanical vectors Fm =
[
FmL 0 FmR

]T
and qm =

[
qmL qmI qmR

]T
where qmI is the mechanical displacement vector of the internal

nodes of the unit cell. With this partitioning, the procedures of the Wave Finite Element
method [4, 5, 6, 7, ?, 9, 11] can be implemented. This starts with an elimination of the internal
degrees of freedoms through

[
DLL DLR

DRL DRR

] [
qL
qR

]
=

[
FL

FR

]
, where

DLL = D̃LL − D̃LID̃
−1
II D̃IL

DLR = D̃LR − D̃LID̃
−1
II D̃IR

DRL = D̃RL − D̃RID̃
−1
II D̃IL

DRR = D̃RR − D̃RID̃
−1
II D̃IR

, (16)

and the condensed dynamic stiffness matrix is then transformed into a transfer matrix:[
qR
FR

]
=

[
−D−1

LRDLL −D−1
LR

DRL − DRRD−1
LRDLL −DRRD

−1
LR

] [
qL

−FL

]
. (17)

As both force vectors FL and FR corresponds to external forcing, the use of −FL is required in
order to ensure the continuity of the state vector [4, 5].

3.2 Propagation constants

A one-dimensional periodic structure can be defined as a series of identical unit cells. As in
Eq. (17), the relation between the mechanical states at the right and left ends of a unit cell is
described by a transfer matrix T through[

qR
FR

]
= T

[
qL
−FL

]
. (18)

The Floquet-Bloch theory induces that, for a wave propagating in the one-dimensional medium,
the state on the right of a unit cell is equal to e±µ times the state on the left [7, 12], the sign
depending on the direction of the wave. Here, µ is the propagation constant, which is usually
defined as µ = δ + jθ, where δ is the attenuation constant, j is the imaginary unit and θ is
the phase constant [8]. Alternatively, the propagation constant can be written µ = αa + jka,
where α is the attenuation rate, k is the wavenumber and a is the length of the unit cell. From
Eq. (18), if [ qL − FL ]T is an eigenvector of the transfer matrix T ,[

qR
FR

]
= e±µ

[
qL
−FL

]
. (19)
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Consequently, µ = ln(λ), where λ represents an eigenvalue of the transfer matrix T . Considering
state vectors including both mechanical and electrical variables, we obtain phase and attenuation
constants related to the propagation in an electromechanical waveguide. Generally speaking,
we can not distinguish mechanical waves from electrical waves because of the coupling between
both physical domains.

3.3 Frequency response functions

Apart from propagation constants, a transfer matrix model also allows to compute frequency
response functions [5, 6]. According to the definition of a periodic structure, each unit cell
is described by an identical transfer matrix T . Consequently, a basic solution to obtain the
mechanical state on the right of the nth unit cell consists in raising the corresponding transfer
matrix to the power of n,[

qn
Fn

]
= Tn

[
q0
−F0

]
=

[
T qq
n T qF

n

T Fq
n T FF

n

] [
q0
−F0

]
, (20)

where the subscript 0 refers to the left end of the first unit cell and the forcing vectors corre-
sponds to forces or voltages applied to the considered electromechanical structure. Then, when
considering a finite number of n unit cells, the boundary conditions need to be introduced.
For example, with a prescribed force vector F0 applied to the left end of a free-free periodic
structure, as Fn = 0, the displacement qn at the right end is defined from Eq. (20) as

qn = (T qq
n T Fq

n

−1
T FF
n − T qF

n )F0. (21)

Similar methods can be used for other boundary conditions such as free or blocked for the
mechanical part and short-cicuited or open-circuited for the electrical part. In any case, it
becomes possible to define frequency response functions between any variables at both ends of
the electromechanical structure.

3.4 Application to longitudinal propagation

The case of a rod subjected to longitudinal propagation is considered. As show in Fig. 2,
the rod is covered with an array of periodic patches which are interconnected through a line of
inductors. This build an electrical network that is the discrete analogue of a rod [2, 13]. For a

b

L L L L

hs

hp

lp

a

UL UR

L

2

L

2
q̇I

VI

b

Figure 2: Rod covered with an array of interconnected piezoelectric patches.
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VRVL

VI

Q̇L Q̇R
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L

2
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2q̇I

Figure 3: Electrical unit cell without piezoelectric coupling.

rod, the element stiffness matrix, mass matrix and coupling matrix can be defined as

Ke
m =

Y S

ae

[
1 −1
−1 1

]
, M e

m =
ρSae

6

[
2 1
1 2

]
and Ke

c = e

[
−1
1

]
, (22)

where Y is the equivalent Young’s modulus of the considered element, ρ is its density, ae is its
length, S is its cross-sectional area and e is the piezoelectric coupling coefficient [1, 2]. The
global matrices Km, Mm and Kc for the unit cell are then obtained from an assembly of the
element matrices. The corresponding displacement and force vectors are

qm =

 UL

UI

UR

 and Fm =

 −NL

0
NR

 , (23)

where the state variable U is related to longitudinal displacement, N corresponds to the normal
force and UI = qmI is the mechanical displacement vector of the internal nodes of the unit cell.
Considering the electrical part of the unit cell represented in Fig. 3, the line of inductors gives
a single degree of freedom on each side of the unit cell which leads to

qe =

[
QL

QR

]
and Fe =

[
VL
−VR

]
, (24)

where Q corresponds to electrical charge displacements and V is used for voltage variables. From
the topology of the unit cell in Fig. 3 and the inductive and capacitive contributions to the total
electrical energy, we get

qI = QL −QR and Ee =
(QL −QR)2

2Cε
+
L

4
Q̇L +

L

4
Q̇R. (25)

Then, Eqs. (3) and (4) give

S =

[
1
−1

]
, Ke =

1

Cε

[
1 −1
−1 1

]
and Me =

L

2

[
1 0
0 1

]
. (26)

In the end, the global dynamic stiffness matrix in Eq. (14) is computed and reorganized into a
transfer matrix T by considering left and right state vectors

qL =

[
UL

QL

]
, qR =

[
UR

QR

]
, FL =

[
−NL

VL

]
and FR =

[
NR

−VR

]
. (27)
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Figure 4: Attenuation constants - (−−) without network, (—) with L = 1.2 mH.

Figure 5: Phase constants - (−−) without network, (—) with L = 1.2 mH.

Figure 6: Frequency response function - (−−) without network, (—) with L = 1.2 mH.

This gives a relation between two state vectors including both mechanical and electrical variables:
UR

QR

NR

−VR

 = T


UL

QL

NL

−VL

 . (28)

Once the Transfer Matrix is obtained, its eigenvalues lead to the attenuation and phase
constants. The following numerical calculations are based on the same geometry and material
constants as in Ref. [2]. The objective is to show that propagation constants and frequency
response functions can be computed for an electromechanical waveguide. The results are given
in Figs. 4, 5 and 6. It is observed that the coupling to an electrical line strongly modify
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the propagation constants. For this specific example, the original purely mechanical band-
gap [8, 10] is replaced by an electromechanical band-gap corresponding to a larger attenuation
constant. The effect on the frequency response function of a free-free rod made of 20 unit cells is
illustrated in Fig. 6 where we see a strong reduction of vibration amplitude between 50 and 53
kHz. All of this shows that the proposed numerical model can be used for analyzing the coupling
between mechanical and electrical band-gaps when considering propagation in electromechanical
waveguides [14]. The proposed example is based on a simple geometry but there is no restriction
regarding the complexity of the mechanical structure and the number of degrees of freedom as
long as the stiffness, mass and coupling matrices have been defined.

4 CONCLUSIONS

• Considering electromechanical waveguides, energy considerations lead to the definition of
a charge displacement vector and voltage vector that can be related to each other from
the topology of the electrical network.

• The introduction of electrical degrees of freedom allows the use of a formulation based on
the equivalent of a dynamic stiffness matrix that represents the whole electromechanical
problem for a macro element which is the unit cell in the present paper.

• The Wave Finite Element method can be directly applied by considering electromechanical
state vectors instead of purely mechanical ones.

• This gives us a way to analyze the coupling between mechanical and electrical waveguides
from the computation of propagation constants and frequency response functions.

• It is shown that couplings between mechanical and electrical band-gaps occur, which can
be of interest for the control of wave propagation in periodic structures.
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