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SOME PROPERTIES OF ORBITAL VARIETIES IN EXTREMAL

NILPOTENT ORBITS

LUCAS FRESSE

Dedicated to Professor Anthony Joseph on the occasion of his 75th birthday

Abstract. The intersection between a nilpotent orbit of a simple Lie algebra
and a Borel subalgebra is always equidimensional. Its irreducible components

are called orbital varieties. Orbital varieties belonging to different nilpotent

orbits may have quite different behaviours. The orbital varieties of the sub-
regular nilpotent orbit are always smooth but they have in general infinitely

many B-orbits. At the opposite, the minimal nilpotent orbit is spherical but
its orbital varieties may have singularities. In this paper, we characterize the

orbital varieties of the subregular nilpotent orbit which have a finite number

of B-orbits and we give a smoothness criterion for the orbital varieties of the
minimal nilpotent orbit.

1. Introduction

1.1. Nilpotent orbits. Let G be a connected simple algebraic group over K (an
algebraically closed field of characteristic zero). By g we denote the Lie algebra of
G, by (g, x) 7→ g · x we denote the adjoint action. Let B ⊂ G be a Borel subgroup
and let n ⊂ g be the nilpotent radical of the Lie algebra of B.

An adjoint orbit O = G ·x := {g ·x : g ∈ G} is called nilpotent if the intersection
O ∩ n is nonempty. The set N := G · n is the nilpotent cone. It consists of a finite
number of nilpotent orbits. We emphasize four of them:

• The regular nilpotent elements form a single orbit Oreg, called the regular
nilpotent orbit, which is dense in N .
• There is a single orbit Osubreg, called the subregular nilpotent orbit, which

is dense in N \ Oreg.
• There is a single nontrivial nilpotent orbit Omin of minimal dimension,

called the minimal nilpotent orbit; it lies in the closure of every nontrivial
nilpotent orbit.
• The only closed nilpotent orbit is the trivial orbit Otriv = {0}.

1.2. Orbital varieties. Every nilpotent orbit O ⊂ N has a structure of symplec-
tic variety, in particular its dimension dimO is even. The intersection O ∩ n is
a quasi-affine variety, which is in fact equidimensional of dimension 1

2 dimO (see
[10]). The irreducible components of O ∩ n are called orbital varieties. They are
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B-stable, Lagrangian subvarieties of O. Orbital varieties arise in geometric rep-
resentation theory, in relation with associated varieties of simple highest weight
modules. We refer to the works of A. Joseph [8, 9] and references therein. In [9],
the orbital varieties of the minimal nilpotent orbit are studied with respect to their
quantization properties.

Orbital varieties may be singular and may have an infinite number of B-orbits,
and they have a complicated intersection pattern. There is no general classification
of orbital varieties with respect to their geometrical or topological properties. We
refer to [7] for some partial classifications, mainly in type A.

In this paper we study some properties of orbital varieties for an arbitrary simple
algebraic group G, but in the case of the particular nilpotent orbits mentioned
above.

There is not much to say about the trivial nilpotent orbit Otriv = {0} and its
sole orbital variety Otriv ∩ n = {0}. In the case of the regular nilpotent orbit,
the intersection Oreg ∩ n is a single B-orbit, hence a single B-homogeneous (and
therefore smooth) orbital variety. For the remaining two extremal nilpotent orbits
Omin and Osubreg, the situation is not so straightforward. We stress the following
facts:

• The minimal nilpotent orbit Omin is spherical, hence every orbital variety of
Omin has a finite number of B-orbits. Moreover Omin ∩n contains a unique
closed B-orbit, which therefore lies in every orbital variety. However the
orbital varieties of Omin may be singular.

In this paper, we characterize the singular orbital varieties of Omin.

• At the opposite, in the subregular nilpotent orbit Osubreg, every orbital va-
riety is smooth; in fact it is open in the nilradical of some minimal parabolic
subalgebra. However an orbital variety of Osubreg does not always contain
a dense B-orbit, and two orbital varieties of Osubreg rarely intersect.

In this paper, we characterize the orbital varieties of Osubreg which have
a dense B-orbit (resp. a finite number of B-orbits), and we characterize
the pairs of orbital varieties of Osubreg which intersect.

In particular, the results shown in this paper illustrate how orbital varieties
belonging to different nilpotent orbits may have different properties. Our main
results are stated in terms of roots, simple roots and biggest root: see Section 2.2.
The orbital varieties of Osubreg can indeed be parameterized by the simple roots
whereas the orbital varieties of Omin can be parameterized by the simple long roots.
These parameterizations are explained in Section 2.1.

2. Main results

2.1. Parameterization of orbital varieties. Hereafter we fix a maximal torus
T ⊂ B and let h ⊂ g denote the corresponding Cartan subalgebra. We then consider
the root system Φ = Φ(g, h), the root space decomposition

g = h⊕
⊕
α∈Φ

gα,

and the subset of positive roots Φ+ corresponding to the choice of B and n, i.e.,
such that n =

⊕
α∈Φ+ gα. Let Π ⊂ Φ+ be the set of simple roots.
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Let W = W (G,T ) be the Weyl group. By [12] there is a surjective map from
W onto the set of orbital varieties of N : for every w ∈ W , there is a unique
nilpotent orbit Ow which intersects the linear space n ∩ (w · n) densely; then, the

set Vw := B · (n ∩ (w · n)) ∩ Ow is an orbital variety, and every orbital variety is
obtained in this way. In particular Oe = Oreg, Ve = Oreg ∩ n, Vw0 = Ow0 = {0},
where e, w0 ∈W respectively stand for the neutral element and the longest element.

The orbital varieties contained in the nilpotent orbits Omin and Osubreg have an
alternative, handy parameterization, obtained as follows.

Every simple root α ∈ Π gives rise to a minimal parabolic subgroup Pα and a
nilradical nα =

⊕
γ∈Φ+\{α} gγ . By [5, §4.1], we have

n \ Oreg =
⋃
α∈Π

nα, hence Osubreg ∩ n =
⋃
α∈Π

Osubreg ∩ nα.

By [5, Theorem 7.1.1], for every α ∈ Π, the intersection Osubreg ∩ nα is Pα-
homogeneous (thus irreducible, smooth) and dense in nα. This yields:

Proposition 1. (a) The subsets Vsubreg(α) := Osubreg ∩ nα, for α ∈ Π, are
exactly the irreducible components of Osubreg ∩ n, i.e., the orbital varieties
of Osubreg.

(b) Vsubreg(α) is Pα-homogeneous (thus smooth) and its closure is the linear
space nα (thus this closure is also smooth).

(c) For α, α′ ∈ Π, the orbital varieties Vsubreg(α) and Vsubreg(α′) intersect if
and only if the roots α, α′ are not orthogonal.

(d) Vsubreg(α) = Vsα , where sα ∈ W is the simple reflection attached to the
root α.

Proof. Parts (a) and (b) follow from the previous discussion. Part (d) follows
from the definitions of Vsubreg(α) and Vsα . Let us show part (c). If the simple
roots α and α′ are orthogonal, then the intersection nα ∩ nα′ is the nilradical of a
parabolic subalgebra. By [5, Theorem 7.1.1], the maximal dimension of a nilpotent
orbit intersecting nα ∩ nα′ is 2 dim nα ∩ nα′ < 2 dim nα = dimOsubreg. Hence
Vsubreg(α) ∩ Vsubreg(α′) = Osubreg ∩ nα ∩ nα′ = ∅. We have shown that two orbital
varieties of Osubreg have an empty intersection if they correspond to simple roots
which are orthogonal, i.e., which are not connected by an edge in the Dynkin
diagram. By [10], the variety Osubreg ∩ n is connected. This implies that Vsubreg(α)
and Vsubreg(α′) must intersect if there is an edge between α and α′ in the Dynkin
diagram. �

For every root α ∈ Φ+ we fix a root vector eα ∈ gα \ {0}. In the simply laced
cases, we say that all the roots are long. In general, let Φ` (resp., Φ+

` ) stand for the
set of long roots (resp., positive long roots) and let Π` ⊂ Π be the subset of simple
long roots. Let � be the usual partial order on the root system Φ determined by
the choice of the set of positive roots Φ+. Let βmax ∈ Φ+ be the biggest root, i.e.,
the biggest element of Φ with respect to the order �. It is always a long root, and
the root vector eβmax is a representative of the minimal nilpotent orbit Omin. Note
that

B · eβmax
= gβmax

\ {0}, hence Omin = G · eβmax
=
⋃
w∈W

B · ew(βmax),
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where the last equality follows from the Bruhat decomposition G =
⊔
w∈W BwB,

whence

(1) Omin =
⋃
α∈Φ`

B · eα and Omin ∩ n =
⋃

α∈Φ+
`

B · eα

since the Weyl group W acts transitively on the set of long roots. The next state-
ment follows from [4, 8] and [3, §6.1].

Proposition 2. (a) For every α ∈ Φ+
` , we have

B · eα ∩ Omin =
⋃
γ�α

B · eγ

where the union is taken over all long roots γ ∈ Φ+
` satisfying γ � α.

(b) Thus, the subsets Vmin(α) := B · eα ∩ Omin, for α ∈ Π`, are exactly the
irreducible components of Omin∩n, i.e., the orbital varieties of Omin. Every
orbital variety contains in particular the orbit B · eβmax

.
(c) Every orbital variety Vmin(α) (for α ∈ Π`) is normal, Cohen–Macaulay,

and has rational singularities.
(d) Vmin(α) = Vsαw0 .

2.2. Statement of main results. As in Section 2.1, βmax stands for the biggest
root. It decomposes as a sum of simple roots

βmax =
∑
α∈Π

n(α)α,

where the coefficients n(α) are positive integers.
Our first main result is a smoothness criterion for the orbital varieties of the

minimal nilpotent orbit. The proof is given in Section 3.3.

Theorem 1. Let α ∈ Π` be a simple long root and let Vmin(α) = B · eα ∩ Omin be
the corresponding orbital variety of the minimal nilpotent orbit Omin. Then:

Vmin(α) is smooth if and only if n(α) = 1.

Our second main result is a criterion of finiteness of number of B-orbits / exis-
tence of dense B-orbit for the orbital varieties of the subregular nilpotent orbit. In
the result below we say that a simple root α is extremal if it belongs to only one
(possibly multiple) edge of the Dynkin diagram (i.e., there is only one simple root
which is not orthogonal to α). In types E6, E7, E8, we consider the numbering of
the simple roots determined by the following diagram (of type E8)

α2

α1 α3 α4 α5 α6 α7 α8

and its subdiagrams {α1, . . . , α7} (of type E7) and {α1, . . . , α6} (of type E6).

Theorem 2. Let α ∈ Π be a simple root and let Vsubreg(α) = Osubreg ∩ nα be the
corresponding orbital variety of the subregular nilpotent orbit Osubreg. The following
conditions are equivalent:

(i) Vsubreg(α) has a finite number of B-orbits;
(ii) Vsubreg(α) has a dense B-orbit;
(iii) One of the following conditions is satisfied:
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(1) the group G is of type A or B;
(2) the group G is of type C or D, and α is an extremal root of the Dynkin

diagram;
(3) the group G is of type G2 or F4, and α is long and extremal;
(4) the group G is of type E6 (resp., E7) and α ∈ {α1, α6} (resp., α = α7).

The proof is given in Section 4.

Corollary 1. (a) In types A and C, every orbital variety of Omin is smooth.
(b) In types G2, F4, and E8, every orbital variety of Omin is singular.
(c) In types A and B, every orbital variety of Osubreg has a finite number of

B-orbits.
(d) In type E8, every orbital variety of Osubreg has an infinite number of B-

orbits.

3. Proof of Theorem 1

3.1. Notation. Recall that the root system Φ is endowed with the partial order �
defined by letting α � β if β − α is a sum of simple roots, and βmax stands for the
biggest element of Φ relatively to this order.

Given two positive roots α, β, we write:

• αl β if β − α ∈ Φ+;
• α <lβ if β = α+ kη for some η ∈ Φ+ and some positive integer k.

Moreover we consider the set

Mmax := {α ∈ Φ+ : αl βmax}.

The following technical lemmas can be checked case by case. The first lemma is
immediate in the simply laced case (where by convention we say that all the roots
are long, i.e., there is no short root).

Lemma 1. Let γ be a short positive root such that the set

{β ∈ Φ+ long : β � γ}

is nonempty. Then, this set contains a biggest element β0 relatively to the order �,
and we have β0 <lγ.

Moreover, let us suppose that γ ∈ Mmax, so that βmax − γ ∈ Φ+. Then, the
following alternative holds:

(i) Either γ − β0 = βmax − γ,
(ii) Or, for all root β such that β0 � β ≺ γ, we have β + βmax − γ /∈ Φ.

Lemma 2. Let α be a simple long root such that n(α) ≥ 2. Then there is a couple
(γ, γ′) of positive roots such that α � γ, α � γ′, and γ + γ′ = βmax.

For every root α, we fix a morphism of algebraic groups uα : K → G such that
huα(s)h−1 = uα(α(h)s) for all h ∈ T and Im duα = gα (see [11, Lemma 7.3.3]).
Note that there is a nonzero root vector xα ∈ gα \ {0} such that

(2) Aduα(s) = exp(s adxα) for all s ∈ K

where Ad : G→ GL(g) and ad : g→ gl(g) stand for the adjoint representations.
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3.2. Tangent space of the minimal nilpotent orbit at the biggest root
vector. Recall that for each positive root α we consider a root vector eα ∈ gα\{0}.
The biggest root vector eβmax

is a representative of the minimal nilpotent orbitOmin.
By Teβmax

Omin we denote the tangent space of Omin at eβmax
.

Proposition 3. Teβmax
Omin = gβmax

⊕ [gβmax
, g−βmax

]⊕
⊕

γ∈Mmax
gγ .

Proof. We first claim that

(3) dimTeβmax
Omin = dimOmin = |Mmax|+ 2.

The first equality in (3) follows from the fact that Omin is smooth. For showing the
second equality, we compute the stabilizer zg(eβmax

) := {v ∈ g : [v, eβmax
] = 0}. Let

v ∈ g and let us write v = h +
∑
α∈Φ vα where h ∈ h and vα ∈ gα for all α ∈ Φ.

We get

[v, eβmax
] = βmax(h)eβmax

+ [v−βmax
, eβmax

] +
∑

α∈Φ\{−βmax}

[vα, eβmax
],

and the equality [v, eβmax
] = 0 holds if and only if h ∈ kerβmax, v−βmax

= 0,
and vα = 0 whenever α + βmax is a root. The last fact is equivalent to having
−α ∈Mmax. Altogether, this yields

dim zg(eβmax) = dim g− 2− |Mmax|.
Since dimOmin = dim g− dim zg(eβmax

), the verification of (3) is complete.
In view of (3), for showing the proposition, it suffices to show the inclusion

(4) gβmax
⊕ [gβmax

, g−βmax
]⊕

⊕
γ∈Mmax

gγ ⊂ Teβmax
Omin.

There is a cocharacter λ : K∗ → T such that λ(K∗) · eβmax = K∗eβmax . Hence
K∗eβmax ⊂ Omin, which yields the inclusion gβmax = Teβmax

(K∗eβmax) ⊂ Teβmax
Omin.

By (2), the inclusion

[g−βmax , gβmax ] = K[x−βmax , eβmax ] = Teβmax

(
u−βmax(K) · eβmax

)
⊂ Teβmax

Omin

holds. Similarly, for every γ ∈ Mmax, letting γ′ := βmax − γ (which is a positive
root), the inclusion

gγ = K[x−γ′ , eβmax
] = Teβmax

(
u−γ′(K) · eβmax

)
⊂ Teβmax

Omin

holds. Altogether we get (4). The proof is complete. �

3.3. Tangent space of orbital varieties of the minimal nilpotent orbit at
the biggest root vector. Theorem 1 is implied by Proposition 4 (b) below. We
need two preparatory lemmas.

Lemma 3. For every x ∈ Omin, we have K∗x ⊂ B · x.

Proof. By (1), there is a long root vector eβ and an element b ∈ B such that
x = b · eβ . For every s ∈ K∗, we can find h ∈ T such that h · eβ = seβ , whence
sx = (bh) · eβ ∈ B · eβ = B · x. �

Recall that for every positive long root α, the root vector eα belongs to the
minimal nilpotent orbit Omin and the biggest long root vector eβmax belongs to the
closure of B · eα (see Proposition 2 (a)).

Lemma 4. Let γ ∈Mmax.
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(a) Assume that the root γ is long. Then gγ ⊂ Teβmax
B · eγ .

(b) Assume that γ is short and such that the set {β ∈ Φ+ long : β � γ}
is nonempty, hence contains a biggest element β0 (see Lemma 1). Then
gγ ⊂ Teβmax

B · eβ0 .

Proof. Let γ′ := βmax − γ, which is a positive root. First we show part (a) of the
lemma. In view of (2), there is an element xγ′ ∈ gγ′ \ {0} such that

eγ + s−1[xγ′ , eγ ] = uγ′(s
−1) · eγ ∈ B · eγ

for all s ∈ K∗. Note that [xγ′ , eγ ] ∈ gβmax
\ {0} = K∗eβmax

. By Lemma 3, we get

eβmax
+ seγ ∈ B · eγ for all s ∈ K∗. Whence the inclusion gγ ⊂ Teβmax

B · eγ .
Next let us show part (b) of the lemma. First assume that condition (i) of

Lemma 1 holds, so that γ = β0 + γ′ and βmax = β0 + 2γ′. In view of (2), we have
in this case

eβ0 + s−1[xγ′ , eβ0 ] +
1

2
s−2[xγ′ , [xγ′ , eβ0 ]] = uγ′(s

−1) · eβ0 ∈ B · eβ0 for all s ∈ K∗

for some xγ′ ∈ gγ′ \ {0}. Note that [xγ′ , eβ0
] ∈ gγ \ {0} while [xγ′ , [xγ′ , eβ0

]] ∈
gβmax \ {0}, hence [xγ′ , [xγ′ , eβ0 ]] = s−1

0 eβmax for some s0 ∈ K∗. Invoking also
Lemma 3, this yields

eβmax
+ 2ss0[xγ′ , eβ0

] + 2s2s0eβ0
∈ B · eβ0

for all s ∈ K∗.

Whence the inclusion gγ = K[xγ′ , eβ0
] ⊂ Teβmax

B · eβ0
.

Finally assume that condition (ii) of Lemma 1 holds. By Lemma 1, there is a
positive root η and a positive integer k such that γ = β0 + kη. Let r ≥ k be the
integer such that γ` := β0 + `η is a root for all ` ∈ {0, 1, . . . , r} and is not a root
whenever ` > r. By (2), there are root vectors e′γ` ∈ gγ` \ {0} (for ` = 0, 1, . . . , r)
such that

uη(t) · eβ0
=

r∑
`=0

t`e′γ` for all t ∈ K.

By assumption, γ` + γ′ is a root if and only if ` = k, and γk + γ′ = γ + γ′ = βmax.
Applying again (2), we get

tks−1s−1
0 eβmax +

r∑
`=0

t`e′γ` = uγ′(s
−1)uη(t) · eβ0 for all t ∈ K, all s ∈ K∗,

for some s0 ∈ K∗. Whence (by Lemma 3)

eβmax + ss0t
−k

r∑
`=0

t`e′γ` ∈ B · eβ0 for all t ∈ K, all s ∈ K∗.

We deduce that
r∑
`=0

t`e′γ` ∈ Teβmax
B · eβ0

for all t ∈ K

and therefore

gγ ⊂
r⊕
`=0

gγ` ⊂ Teβmax
B · eβ0

.

The proof of the lemma is complete. �
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Proposition 4. Let α be a simple long root, so that Vmin(α) := B · eα ∩ Omin is
an orbital variety of Omin and B ·eβmax

is the unique closed B-orbit of Vmin(α) (see
Proposition 2).

(a) Teβmax
Vmin(α) = gβmax

⊕
⊕

γ∈Mmax, γ�α

gγ .

(b) The following conditions are equivalent:
(i) Vmin(α) is singular;
(ii) |{γ ∈Mmax : γ � α}| > 1

2 |Mmax|;
(iii) there exists a couple (γ, γ′) of positive roots such that γ � α, γ′ � α,

γ + γ′ = βmax;
(iv) n(α) ≥ 2.

Proof. First we show the inclusion ⊃ in (a). Since gβmax
\{0} = B ·eβmax

⊂ Vmin(α),
we have gβmax

⊂ Teβmax
Vmin(α). Next let γ ∈Mmax such that γ � α. If γ is a long

root, then we have B · eγ ⊂ Vmin(α) by Proposition 2, hence gγ ⊂ Teβmax
Vmin(α)

by Lemma 4 (a). Assume now that γ is a short root and let β0 be as in Lemmas 1
and 4 (b). The maximality property of β0 implies that β0 � α, whence B · eβ0

⊂
Vmin(α) (by Proposition 2). In view of Lemma 4 (b), this yields gγ ⊂ Teβmax

Vmin(α).
Altogether we get the inclusion ⊃ in (a).

In view of the inclusion Vmin(α) ⊂ B · eα ⊂
⊕

γ�α gγ and of Proposition 3, we
also have

Teβmax
Vmin(α) ⊂

(⊕
γ�α

gγ

)
∩ Teβmax

Omin = gβmax
⊕

⊕
γ∈Mmax, γ�α

gγ ,

and this completes the proof of part (a).
On the one hand, part (a) and Proposition 3 yield

dimTeβmax
Vmin(α) = 1 + |{γ ∈Mmax : γ � α}|

and

dimVmin(α) =
1

2
dimOmin = 1 +

1

2
|Mmax|

(recall from Section 1.2 that we have dimV = 1
2 dimO whenever V is an or-

bital variety of a nilpotent orbit O). On the other hand, since B · eβmax is the
unique closed B-orbit in Vmin(α), we know that Vmin(α) is singular if and only if
dimTeβmax

Vmin(α) > dimVmin(α). The equivalence between conditions (i) and (ii)
of part (b) ensues.

Since α necessarily occurs in the decomposition of βmax as a sum of simple roots,
for every γ ∈Mmax we must have γ � α or βmax−γ � α. Whence |{γ ∈Mmax : γ �
α}| ≥ 1

2 |Mmax| with strict inequality if and only if there is an element γ ∈ Mmax

such that γ � α and βmax − γ � α, which is equivalent to the existence of a couple
(γ, γ′) as in (iii). Conditions (ii) and (iii) of part (b) are therefore equivalent.

The implication (iii)⇒(iv) is immediate while the inverse implication (iv)⇒(iii)
follows from Lemma 2. The proof of part (b) of the statement is now complete. �

4. Proof of Theorem 2

As in Section 2.1, for every simple root α, we denote by Pα the corresponding
standard minimal parabolic subgroup and by nα the nilpotent radical of its Lie
algebra.
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As noted in Proposition 1 (b), the orbital variety Vsubreg(α) := Osubreg ∩ nα of
Osubreg attached to α is Pα-homogeneous. In view of well-known properties of
spherical varieties [2, 13] (see also [6, Lemma 1]), this fact already guarantees the
equivalence between parts (i) and (ii) of Theorem 2. The purpose of this section is
to prove the equivalence between parts (ii) and (iii) of Theorem 2.

4.1. Criteria of existence of dense B-orbit. For a simple root α, we also denote
by pα the Lie algebra of the minimal parabolic subgroup Pα and by Rad(pα) its
radical, i.e., the intersection of the Borel subalgebras of pα; in other words

Rad(pα) = {h ∈ h : α(h) = 0} ⊕ nα.

Proposition 5. Let α be a simple root. Let x ∈ Vsubreg(α) = Osubreg ∩ nα. The
following conditions are equivalent:

(i) Vsubreg(α) has a dense B-orbit;
(ii) {y ∈ pα : [y, x] = 0} 6⊂ Rad(pα).

Proof. The orbital variety Vsubreg(α) (which coincides with the Pα-orbit of x) has a
dense B-orbit if and only if there exists an element g ∈ Pα such that dimB ·(g ·x) =
dimVsubreg(α). By b we denote the Lie algebra of the Borel subgroup B. Note that

dimB · (g · x) = dimB − dim{y ∈ b : [y, g · x] = 0}
= dimB − dim{y ∈ g−1 · b : [y, x] = 0}

and

dimVsubreg(α) = dimPα · x = dimPα − dim{y ∈ pα : [y, x] = 0}
hence

dimVsubreg(α)−dimB ·(g·x) = 1−dim{y ∈ pα : [y, x] = 0}/{y ∈ g−1 ·b : [y, x] = 0}.

Therefore the existence of a dense B-orbit in Vsubreg(α) is equivalent to the existence
of a Borel subalgebra b′ = g−1 · b ⊂ pα such that {y ∈ pα : [y, x] = 0} 6⊂ b′. This
property is equivalent to condition (ii) of the statement. The proof is complete. �

Proposition 5 is an efficient criterion of existence of dense B-orbit once we know
a representative x of the orbital variety Vsubreg(α), i.e., an element x of the intersec-
tion Osubreg∩nα. Such an element x is called a Richardson element of the nilradical
nα. In the classical cases, due to the combinatorial classification of nilpotent orbits
in terms of Jordan forms, it is possible to construct Richardson elements for many
parabolic subalgebras; see [1]. In the classical cases, our proof of Theorem 2 relies
on Proposition 5. In particular we construct Richardson elements for nilradicals of
the form nα (the constructions made in [1] do not apply to all the nilradicals of this
form).

In the exceptional cases, out of our knowledge, there is no construction of
Richardson elements. For this reason, we cannot use Proposition 5 for proving
Theorem 2 in the exceptional cases (however, as a byproduct of our proof, we pro-
vide Richardson elements for certain nilradicals nα; see also Remark 1 below). We
rely on the construction of Chevalley bases and on the following criterion.

Proposition 6. Let α be a simple root and let Vsubreg(α) = Osubreg ∩ nα be the
corresponding orbital variety of Osubreg. Let x ∈ nα and let Mα(x) be the matrix of
the linear transformation b→ nα, y 7→ [y, x] (relatively to some bases of b and nα,
e.g., subbases of a Chevalley basis of g). Then
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(a) dimB · x = rankMα(x).
(b) Vsubreg(α) has a dense B-orbit if and only if for some x ∈ nα the rows of

Mα(x) are linearly independent.

Proof. Part (a) is obtained as follows,

dimB ·x = dimB−dim{y ∈ b : [y, x] = 0} = dim b−dim kerMα(x) = rankMα(x).

From part (a), it follows that if the rows of Mα(x) are linearly independent, i.e.,
rankMα(x) = dim nα, then B · x is a dense, open subset of nα, which implies that
its intersection with Osubreg ∩ nα is nonempty; in fact this ensures that x belongs
to Osubreg ∩ nα (i.e., to Vsubreg(α)) since this set is B-stable. The equivalence in
part (b) immediately follows from part (a) and this observation. �

Corollary 2. We consider a connected subdiagram of the Dynkin diagram of g,
which corresponds to a subset of simple roots Π′ ⊂ Π. Let G′ ⊂ G be the connected
simple algebraic subgroup corresponding to Π′, let g′ ⊂ g be its Lie algebra, and let
B′ ⊂ G′ be the standard Borel subgroup.

In this way, in addition to the orbital variety Vsubreg(α) (relative to g), a simple
root α ∈ Π′ determines an orbital variety V ′subreg(α) relative to g′, contained in the

subregular nilpotent orbit of g′.
If V ′subreg(α) has no dense B′-orbit, then Vsubreg(α) has no dense B-orbit.

More precisely, if B := B · x is a dense orbit of Vsubreg(α), denoting by x′ the
natural projection of x onto g′, we have that B′ := B′ · x′ is a dense orbit of
Vsubreg(α′). Moreover, the map B → B′, x 7→ x′ is then surjective.

Proof. Let Φ′ ⊂ Φ be the root system generated by Π′, i.e., the subset of roots
which are linear combinations of the elements of Π′. Let Φ′+ := Φ′ ∩ Φ+ be the
subset of positive roots. Let b′ be the Lie algebra of B′, let n′α ⊂ b′ be the nilradical
corresponding to α, let h′ be the standard Cartan subalgebra of g′. Thus

b′ = h′ ⊕
⊕
γ∈Φ′+

gγ and n′α =
⊕

γ∈Φ′+\{α}

gγ .

Recall that for each root γ ∈ Φ+ we consider a root vector eγ ∈ gγ \ {0}. Let
{λ′γ : γ ∈ Π′} ⊂ h′ and {λγ : γ ∈ Π} ⊂ h be the dual bases of Π′ ⊂ h′∗ and Π ⊂ h∗,
respectively. Let an element x ∈ nα and let x′ ∈ n′α be its image by the projection
relative to the decomposition nα = n′α ⊕

⊕
γ∈Φ+\Φ′+ gγ . Let Mα(x) be the matrix

of the linear map b→ nα, y 7→ [y, x] in the bases {λγ : γ ∈ Π} ∪ {eγ : γ ∈ Φ+} (of
b) and {eγ : γ ∈ Φ+ \ {α}} (of nα). Let M ′α(x′) be the matrix of the map b′ → n′α,
y 7→ [y, x′] in the bases {λ′γ : γ ∈ Π′}∪{eγ : γ ∈ Φ′+} (of b′) and {eγ : γ ∈ Φ′+\{α}}
(of n′α). Then (up to adding columns of zeros) the matrix M ′α(x′) coincides with
the submatrix of Mα(x) formed by the rows corresponding to the basis vectors eγ
for γ ∈ Φ′+ \ {α}. Therefore, if the rows of M ′α(x′) are linearly dependent, then so
are the rows of Mα(x). The corollary now follows from Proposition 6 (b) (the last
claim follows from the fact that the map x 7→ x′ is B′-equivariant). �

4.2. Proof of Theorem 2 in classical cases. We rely on a technical lemma:

Lemma 5. Let α be a simple root. Assume that there is an element x ∈ Osubreg∩nα
of the form

x =
∑
γ∈I

xγ with xγ ∈ gγ \ {0}
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where I is a subset of Φ+ \ {α} satisfying the following conditions:

(A) There is γ ∈ I such that γ − α ∈ Φ \ (I ∪ I ′) where I ′ = I + Φ+;

(B) There is γ ∈ I such that γ + α ∈ Φ \ (I ∪ Î ′) where Î ′ = I + (Φ+ \ {α});
(C) For every δ ∈ {γ′ − γ : γ, γ′ ∈ I} ∩ Φ+ \ {α}, there is β ∈ I such that

β + δ ∈ Φ \ I and (β + δ)− β′ /∈ Φ+ \ {α} for all β′ ∈ I \ {β};
(D) Φ is contained in the linear space spanned by I.

Then Vsubreg(α) has no dense B-orbit.

Proof. In view of Proposition 5, it suffices to show the inclusion

(5) {y ∈ pα : [y, x] = 0} ⊂ nα.

So, let y ∈ pα such that [y, x] = 0, write

y = h+ yα + y−α + y′ with h ∈ h, yα ∈ gα, y−α ∈ g−α, y′ ∈ nα,

and let us show that h = yα = y−α = 0. Let γ1 ∈ I and γ2 ∈ I be the elements
provided by conditions (A) and (B), respectively. First we see that

[y−α, x] = [−h− yα − y′, x] ∈
⊕

γ∈I∪I′
gγ .

The vector [y−α, xγ1 ] is the component of [y−α, x] in the root space gγ1−α. Since
γ1 − α /∈ I ∪ I ′, we must have [y−α, xγ1 ] = 0, hence y−α = 0. Next we see that

[yα, x] = [−h− y′, x] ∈
⊕

γ∈I∪Î′
gγ

and the condition γ2 + α /∈ I ∪ Î ′ implies that [yα, xγ2 ] = 0; since γ2 + α is a root,
this forces yα = 0. Thus the relation

(6) [y′, x] = [−h, x] ∈
⊕
γ∈I

gγ

holds. We claim that [y′, x] = 0. Arguing by contradiction, say [y′, x] 6= 0. Hence
there are roots γ ∈ I and δ ∈ Φ+ \ {α} such that [y′δ, xγ ] 6= 0, where y′δ is the
component of y′ in the root space gδ. By (6), this yields γ′ := γ + δ ∈ I. Then, let
β ∈ I be as in condition (C). Condition (C) implies that [y′δ, xβ ] is the component of
[y′, x] in the root space gβ+δ and that it is nonzero. Since β+δ /∈ I, this contradicts
(6). Therefore [y′, x] = 0 and in turn (again by (6)) [h, x] = 0. The last relation
implies that h ∈

⋂
γ∈I ker γ, which, in view of condition (D), yields h = 0. The

proof of the lemma is complete. �

Hereafter we denote by {λα : α ∈ Π} the basis of the Cartan subalgebra h which
is dual to the basis of h∗ formed by the simple roots.

By E
(n)
i,j we denote the elementary n × n matrix with 1 in position (i, j) and

zeros elsewhere. By ta we denote the transpose of a matrix a. For each classical Lie
algebra g considered below, we consider the root datum (Φ,Φ+) corresponding to
the Cartan subalgebra h ⊂ g formed by diagonal matrices and the Borel subalgebra
b ⊂ g formed by upper triangular matrices.

Proof of Theorem 2 in type A. Assume that G is a simple group of type An−1, i.e.,
g = sln(K) is the space of n × n matrices of trace zero. The subregular orbit
Osubreg consists of all nilpotent matrices x ∈ sln(K) with Jordan form (n − 1, 1).
Let Φ = {εi − εj : 1 ≤ i 6= j ≤ n} and Φ+ = {εi − εj : 1 ≤ i < j ≤ n}. The
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matrix eεi−εj := E
(n)
i,j is a root vector for the root εi − εj . Let αi := εi − εi+1

(i = 1, . . . , n− 1) be the simple roots.
Let a simple root α = αi. Up to automorphism of the Dynkin diagram, we may

suppose that i < n− 1. The matrix x := eαi+αi+1
+
∑
j /∈{i,i+1} eαj is an element of

Osubreg∩nαi and the matrix y := λαi−λαi+1 ∈ pαi \Rad(pαi) is such that [y, x] = 0.
From Proposition 5, we conclude that Vsubreg(αi) has a dense B-orbit. �

Proof of Theorem 2 in type B. Assume that G is a simple group of type Bm with
m ≥ 2, i.e., g = son(K) with n = 2m + 1, seen as the subalgebra of sln(K) of
matrices which are skew symmetric with respect to the skew diagonal. The roots
are Φ = {±εi ± εj : 1 ≤ i < j ≤ m} ∪ {±εi : 1 ≤ i ≤ m} and Φ+ = {εi ± εj : 1 ≤
i < j ≤ m} ∪ {εi : 1 ≤ i ≤ m} and corresponding root vectors are

eεi−εj = E
(n)
i,j − E

(n)
n+1−j,n+1−i, eεi+εj = E

(n)
i,n+1−j − E

(n)
j,n+1−i for 1 ≤ i < j ≤ m,

eεi = E
(n)
i,m+1 − E

(n)
m+1,n+1−i for 1 ≤ i ≤ m, e−α = teα for α ∈ Φ+.

The simple roots are αi := εi − εi+1, for i = 1, . . . ,m− 1, and αm := εm.
The subregular orbit Osubreg consists of nilpotent matrices x ∈ son(K) of Jordan

form (n− 2, 1, 1). For i ∈ {1, . . . ,m− 1}, the matrix

xi := eαi+αi+1
+

∑
j /∈{i,i+1}

eαj

belongs to Osubreg ∩ nαi . Moreover the matrix yi := λαi − λαi+1
is an element of

pαi \Rad(pαi) such that [yi, xi] = 0. From Proposition 5, it follows that Vsubreg(αi)
has a dense B-orbit. Note that xm−1 also belongs to Osubreg ∩ nαm and ym−1 also
belongs to pαm \ Rad(pαm), hence the orbital variety Vsubreg(αm) has also a dense
B-orbit. We have shown that, in type B, all the orbital varieties of Osubreg have a
dense B-orbit. �

Proof of Theorem 2 in type C. Assume G of type Cm with m ≥ 3. We deal with
the following realization of g = spn(K) with n = 2m:

g =

{(
a b
c −a∗

)
: a, b, c are n× n matrices, b = b∗, c = c∗

}
where x∗ stands for the transpose of x by the skew diagonal. In this case, we
have the roots Φ = {±εi ± εj : 1 ≤ i < j ≤ m} ∪ {±2εi : 1 ≤ i ≤ m} and
Φ+ = {εi ± εj : 1 ≤ i < j ≤ m} ∪ {2εi : 1 ≤ i ≤ m}, and we consider the following
root vectors:

eεi−εj = E
(n)
i,j − E

(n)
n+1−j,n+1−i, eεi+εj = E

(n)
i,n+1−j + E

(n)
j,n+1−i for 1 ≤ i < j ≤ m,

e2εi = E
(n)
i,n+1−i for 1 ≤ i ≤ m, e−α = teα for α ∈ Φ+.

The simple roots are αi := εi − εi+1, for i = 1, . . . ,m− 1, and αm := 2εm.
The subregular orbit Osubreg ⊂ spn(K) consists of all nilpotent matrices x ∈

spn(K) of Jordan form (n− 2, 2).
The element x1 := e2ε1 +

∑m
j=2 eαj belongs to Osubreg ∩ nα1 and the element

y1 := e−α1 +eε1+ε3 belongs to pα1 \Rad(pα1) and satisfies [y1, x1] = 0. The element

xm := e2εm−1
+
∑m−1
j=1 eαj belongs to Osubreg ∩ nαm and satisfies [e−αm , xm] = 0.

By applying Proposition 5, we get that Vsubreg(α1) and Vsubreg(αm) contain a dense
B-orbit.
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Finally let us show that Vsubreg(αi) has no denseB-orbit whenever i ∈ {2, . . . ,m−
1}. In view of Corollary 2, arguing by induction on m ≥ 3, we may assume that
i = 2. Let I = {αj : j /∈ {2, 3}} ∪ {α2 + α3, 2ε3} and set x2 =

∑
α∈I eα. Note that

x2 ∈ Osubreg ∩ nα2
. Moreover, it is easy to see that the set I fulfills the conditions

(A)–(D) of Lemma 5. It follows that Vsubreg(α2) has no dense B-orbit. The proof
of the theorem is complete in type C. �

Proof of Theorem 2 in type D. AssumeG of typeDm form ≥ 4. Hence g = son(K)
with n = 2m, seen as the subalgebra of sln(K) formed by matrices which are skew
symmetric by the skew diagonal. The roots are Φ = {±εi ± εj : 1 ≤ i < j ≤ m}
and Φ+ = {εi ± εj : 1 ≤ i < j ≤ m} and we consider the root vectors

eεi−εj = E
(n)
i,j − E

(n)
n+1−j,n+1−i and eεi+εj = E

(n)
i,n+1−j − E

(n)
j,n+1−i

for 1 ≤ i < j ≤ m, and e−α = teα for all α ∈ Φ+. The simple roots are αi :=
εi− εi+1, for i = 1, . . . ,m− 1, and αm := εm−1 + εm. The subregular orbit Osubreg

is the set of nilpotent elements x ∈ son(K) of Jordan form (n− 3, 3).
The element x1 := eε1+εm +

∑m
j=2 eαj belongs to Osubreg∩nα1

. The matrix y1 :=

2e−α1
−eε1+ε4−eε2−εm−1

−eε3−εm+eε3+εm belongs to pα1
\Rad(pα1

) and commutes
with x1. By Proposition 5, we deduce that Vsubreg(α1) has a dense B-orbit. The
element xm−1 := eεm−2+εm−1 +

∑
j 6=m−1 eαj belongs to Osubreg ∩ nαm−1 and it

commutes with ym−1 := e−αm−1
+eαm ∈ pαm−1

\Rad(pαm−1
), hence Vsubreg(αm−1)

contains a dense B-orbit. The symmetry of the Dynkin diagram guarantees that
Vsubreg(αm) also contains a dense B-orbit.

Next we show that Vsubreg(αm−2) has no dense B-orbit. In view of Corollary
2, we may assume that m = 4. In this case x := eα1 + eα1+α2 + eα2+α3 + eα4 is
an element of Osubreg ∩ nα2 . Then, Lemma 5 shows that Vsubreg(α2) has no dense
B-orbit.

Finally assume that m ≥ 5 and let us show that the orbital variety Vsubreg(αi)
has no dense B-orbit for i ∈ {2, . . . ,m − 3}. Invoking again Corollary 2, we may
assume that i = 2. Letting I = {αj : j /∈ {2, 3}}∪{α2 +α3, α3 + . . .+αm−2 +αm},
it is easy to check that the set I fulfills conditions (A)–(D) of Lemma 5 and that the
element x :=

∑
α∈I eα belongs to Osubreg ∩ nα2

. Hence, by Lemma 5, Vsubreg(α2)
contains no dense B-orbit. The proof is complete in type D. �

4.3. Proof of Theorem 2 in exceptional cases. In this section, G is a simple
algebraic group of exceptional type. As in Section 4.2, we denote by {λα : α ∈ Π}
the basis of the Cartan subalgebra h which is dual to the basis of h∗ formed by the
simple roots. Moreover for each exceptional type we have determined a Chevalley
basis of n =

⊕
α∈Φ+ gα, i.e., the subbasis of a Chevalley basis of g. To this end, we

consider the following total ordering of the positive roots:

• In types G2 and F4, the simple roots are ordered according to the following
Dynkin diagrams:

G2 : α1
jt α2 F4 : α1 α2

+3 α3 α4

In type E8 (and in type E6, resp., E7), the simple roots are ordered ac-
cording to the numbering of the Dynkin diagram drawn above Theorem 2
(and its subdiagram of vertices α1, . . . , α6, resp., α1, . . . , α7)
• Next each positive root is identified with the tuple of its coordinates in

the basis Π. We consider the partial order determined by the height (i.e.,
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the sum of the coordinates) and we order the roots of same height by the
lexicographic order of the coordinates.

For instance here is the ordered list of the positive roots in type G2, identified with
the couples of their coordinates in the basis (α1, α2):

α1 = [1, 0], α2 = [0, 1], α3 = [1, 1], α4 = [2, 1], α5 = [3, 1], α6 = [3, 2].

In each case let r be the number of simple roots, so α1, . . . , αr are the simple
roots, and let n denote the number of positive roots. For i ∈ {1, . . . , r}, we set
λi := λαi . Finally let (e1, . . . , en) be the Chevalley basis of n, numbered according
to the total ordering of the positive roots. We fix an element

x =

n∑
j=1

xjej ∈ n.

We consider the linear map b → n, y 7→ [y, x], and we denote by A(x) the matrix
of this map between the bases (λ1, . . . , λr, e1, . . . , en) and (e1, . . . , en) of b and n,
respectively. Note that for every simple root α = αi (with i ∈ {1, . . . , r}), the
matrix Mα(x) of Proposition 6 is obtained from the matrix A(x) by deleting the
i-th row of the matrix (i.e, the row of the matrix corresponding to ei) and replacing
all the coefficients xi by zeros. The explicit matrices A(x) corresponding to the
different exceptional cases are given in the Appendix.

Proof of Theorem 2 in type G2. On the one hand, for x ∈ nα1
, it is easy to see that

the matrix Mα1
(x) has rank at most 4 whereas it has five rows. By Proposition 6,

Vsubreg(α1) has no dense B-orbit. On the other hand, the matrix Mα2(e1 + e6) has
five linearly independent rows. It follows from Proposition 6 that B · (e1 + e6) is a
dense B-orbit of Vsubreg(α2). �

Proof of Theorem 2 in type F4. The roots α2, α3, α4 generate a root system of type
C3. Hence it follows from Corollary 2 and the proof of the theorem in type C that
Vsubreg(α3) has no dense B-orbit.

For every x ∈ nα2 , the rows of the matrix Mα2(x) corresponding to the root
vectors e1, e3, e4, . . . , e10 are linearly dependent. By Proposition 6, it follows that
Vsubreg(α2) has no dense B-orbit.

For x ∈ nα4
, the rows of the matrix Mα4

(x) corresponding to the root vectors
ej for j ∈ {1, . . . , 16} \ {4} are linearly dependent, and this shows that Vsubreg(α4)
has no dense B-orbit.

Finally, it can be seen that the matrix Mα1(e2 + e3 + e4 + e12) has linearly
independent rows, and this shows that B ·(e2 +e3 +e4 +e12) is dense in Vsubreg(α1).
The proof is complete in type F4. �

Proof of Theorem 2 in types E6, E7, E8. In type E8, the roots α1, . . . , α5 generate
a root system of type D5 while the roots α2, . . . , α8 generate a root system of type
D7. By comparing Corollary 2 and the proof of the theorem in type D, we deduce
that the orbital varieties of type E8 corresponding to α3, . . . , α7 have no dense B-
orbit. Arguing in the same way shows that the orbital varieties of type E7 (resp.,
E6) attached to the roots α3, . . . , α6 (resp., α3, . . . , α5) have no dense B-orbit.

In type E6, letting x1 :=
∑6
j=2 eαj + eα1+α3+α4+α5

, it can be seen that the

matrix Mα1
(x1) has linearly independent rows. Therefore, Proposition 6 implies

that the element x1 belongs to a dense B-orbit of Vsubreg(α1). In view of the
symmetry of the Dynkin diagram of type E6, the orbital variety Vsubreg(α6) has also
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a dense B-orbit whose representative is
∑5
j=1 eαj + eα3+α4+α5+α6 . By combining

Corollary 2 and the proof of Theorem 2 in type D, we obtain that, if Vsubreg(α2)
has a dense B-orbit, then this orbit contains an element x ∈ nα2

whose natural
projection on the subalgebra g′ ⊂ g of type D5 corresponding to the set of simple
roots Π′ = {α1, . . . , α5} is x′ = eα1

+ eα3
+ eα4

+ eα5
+ eα2+α4+α5

. For such an
element x, on can see that the matrix Mα2(x) has linearly dependent rows (the row
corresponding to the root vector eα2+α4+α5+α6 is a linear combination of the rows
above it). By Proposition 6, this implies that Vsubreg(α2) has no dense B-orbit.
This completes the proof of the theorem in type E6.

In type E7, the above proof of the theorem in type E6 and Corollary 2 imply
that Vsubreg(α2) has no dense B-orbit. It can be seen that the matrix Mα7

(x7)

corresponding to the element x7 :=
∑6
j=1 eαj + eα6+α7

+ eα3+α4+α5+α6+α7
has

linearly independent rows, hence Proposition 6 implies that B · x7 is a dense B-
orbit of Vsubreg(α7). Finally, invoking again Corollary 2, we obtain that a dense
B-orbit of Vsubreg(α1) (if it exists) must contain an element x ∈ nα1

whose natural
projection on the Lie subalgebra g′ ⊂ g of type E6 corresponding to the set of
simple roots Π′ = {α1, . . . , α6} is the element x1 written above. However, for such
an element x, one can check that the row of the matrix Mα1(x) corresponding to
the root vector eα1+α3+α4+α5+α6+α7

is a linear combination of the rows above it.
This implies that Vsubreg(α1) has no dense B-orbit. This completes the proof of the
theorem in type E7.

In type E8, comparing Corollary 2 with the proof of the theorem in type E7 given
above, we already deduce that Vsubreg(α1) and Vsubreg(α2) have no dense B-orbit.
Invoking again Corollary 2 and the proof of the theorem in type D, we obtain that a
dense B-orbit of Vsubreg(α8) (if it exists) should have a representative x ∈ nα8

whose
natural projection x′ on the subalgebra g′ ⊂ g of type D7 corresponding to the
simple roots Π′ = {α2, . . . , α8} is given by x′ =

∑7
j=2 ej + e43. However, a careful

calculation shows that for any such element x, the row of Mα8
(x) corresponding to

the root vector e68 is a linear combination of the rows above it. This implies that
Vsubreg(α8) has no dense B-orbit. The proof of the theorem is complete. �

Remark 1. Note that, in the proofs done in this section, in each case where
Vsubreg(α) has a dense B-orbit, we provide a representative of this orbit. This
element is in particular a Richardson element of the nilradical nα.

Appendix

In this appendix, g is a simple Lie algebra of exceptional type, (λ1, . . . , λr) is
the basis of the Cartan subalgebra h which is dual to the basis of h∗ formed by the
simple roots α1, . . . , αr, (e1, . . . , en) is a Chevalley basis of the maximal nilpotent
subalgebra n (the numbering of the vectors corresponds to the total ordering of the
positive roots determined by the height, roots with the same height being ordered
according to the lexicographic order of their coordinates).

Given x =
∑n
j=1 xjej , we denote by A(x) the matrix of the linear map b → n,

y 7→ [y, x] with respect to the bases (λ1, . . . , λr, e1, . . . , en) of b and (e1, . . . , en) of
n. In this appendix, we describe the matrix A(x) in the different exceptional cases.

In Figures 1 and 2, we give the matrix A(x) in types G2 and F4, respectively. For
clarity, the zero coefficients are replaced by dots. In type F4, we write the matrix
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in the form A(x) =

(
A1,1 0
A2,1 A2,2

)
where A1,1, A2,1, and A2,2 are the 12 × 14

matrices described in Figure 2.
x1 · · · · · · ·
· x2 · · · · · ·
x3 x3 x2 −x1 · · · ·
2x4 x4 2x3 · −2x1 · · ·
3x5 x5 −3x4 · · 3x1 · ·
3x6 2x6 · −x5 −3x4 3x3 x2 ·


Figure 1. The matrix A(x) in type G2

A1,1 =



x1 · · · · · · · · · · · · ·
· x2 · · · · · · · · · · · ·
· · x3 · · · · · · · · · · ·
· · · x4 · · · · · · · · · ·
x5 x5 · · x2 −x1 · · · · · · · ·
· x6 x6 · · x3 −x2 · · · · · · ·
· · x7 x7 · · x4 −x3 · · · · · ·
x8 x8 x8 · x6 · −x5 · x3 −x1 · · · ·
· x9 2x9 · · · 2x6 · · −2x3 · · · ·
· x10 x10 x10 · x7 · −x6 · x4 −x2 · · ·
x11 x11 2x11 · x9 · 2x8 · · · · −2x3 −x1 ·
x12 x12 x12 x12 x10 · · −x8 x7 · −x5 x4 · −x1



A2,1 =



· x13 2x13 x13 · · x10 −x9 · −x7 x6 · x4 −x3
x14 2x14 2x14 · · x11 · · −x9 2x8 · −2x6 x5 ·
x15 x15 2x15 x15 x13 · x12 −x11 · · x8 −x7 · ·
· x16 2x16 2x16 · · · 2x13 · · −2x10 · · 2x7
x17 2x17 2x17 x17 · x15 · −x14 −x13 x12 · −x10 · x8
x18 x18 2x18 2x18 x16 · · 2x15 · · −2x12 · · ·
x19 2x19 3x19 x19 · · x17 · · −x15 −x14 x13 x12 x11
x20 2x20 2x20 2x20 x18 · · 2x17 −x16 · · · · −2x12
x21 2x21 3x21 2x21 · · x20 x19 · −x18 x17 x16 · −x15
x22 2x22 4x22 2x22 · · 2x21 · · · 2x19 · −x18 ·
x23 3x23 4x23 2x23 · x22 · · · 2x21 · · −x20 2x19
2x24 3x24 4x24 2x24 x23 · · · x22 · · 2x21 · ·



A2,2 =



· · · · · · · · · · · · · ·
−x2 · · · · · · · · · · · · ·
x4 −x3 −x1 · · · · · · · · · · ·
· · −2x4 · · · · · · · · · · ·
· −x6 x5 x4 −x2 · · · · · · · · ·
· 2x7 · · −2x4 −x1 · · · · · · · ·

−x10 −x9 −x8 x7 x6 · −x3 · · · · · · ·
· 2x10 · · · x5 −2x4 −x2 · · · · · ·
· x13 −x12 · x10 −x8 −x7 x6 −x4 −x3 · · · ·
x16 · −2x15 · 2x13 −x11 · x9 −2x7 · −2x3 · · ·
· · −2x17 x16 · −x14 2x13 · −2x10 x9 −2x6 −x2 · ·

−x20 2x19 · x18 −2x17 · 2x15 −x14 −2x12 x11 −2x8 −x5 −x1 ·



Figure 2. The blocks A1,1, A2,1, A2,2 of the matrix A(x) in type F4

In type E8, instead of drawing the matrix A(x), we give the list of the roots αj ,
for j = 1, . . . , 120. For each root αj , we indicate its coordinates [εj,1, . . . , εj,8] in the
basis (α1, . . . , α8) and the couples (a, b) such that ej = +[ea, eb] = −[eb, ea]. This
information is sufficient for characterizing the matrix A(x): the row of the matrix
corresponding to ej contains the coefficient xjεj,i in the column corresponding to
λi for all i ∈ {1, . . . , 8}, and for each one of the listed couples (a, b) it contains xb
in the column corresponding to ea and −xa in the column corresponding to eb, and
these are all the nonzero coefficients in the j-th row of the matrix.

In type E6 (resp. E7) the matrix A(x) is obtained from the matrix A(x) of
type E8 by deleting the columns corresponding to λ7 and λ8 (resp., the column
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corresponding to λ8) and by deleting the rows and the columns corresponding to
ej whenever (εj,7, εj,8) 6= (0, 0) (resp., whenever εj,8 6= 0).

α1 = [1, 0, 0, 0, 0, 0, 0, 0].

α2 = [0, 1, 0, 0, 0, 0, 0, 0].

α3 = [0, 0, 1, 0, 0, 0, 0, 0].

α4 = [0, 0, 0, 1, 0, 0, 0, 0].

α5 = [0, 0, 0, 0, 1, 0, 0, 0].

α6 = [0, 0, 0, 0, 0, 1, 0, 0].

α7 = [0, 0, 0, 0, 0, 0, 1, 0].

α8 = [0, 0, 0, 0, 0, 0, 0, 1].

α9 = [1, 0, 1, 0, 0, 0, 0, 0]: (1, 3).

α10 = [0, 1, 0, 1, 0, 0, 0, 0]: (2, 4).

α11 = [0, 0, 1, 1, 0, 0, 0, 0]: (3, 4).

α12 = [0, 0, 0, 1, 1, 0, 0, 0]: (4, 5).

α13 = [0, 0, 0, 0, 1, 1, 0, 0]: (5, 6).

α14 = [0, 0, 0, 0, 0, 1, 1, 0]: (6, 7).

α15 = [0, 0, 0, 0, 0, 0, 1, 1]: (7, 8).

α16 = [1, 0, 1, 1, 0, 0, 0, 0]: (1, 11), (9, 4).

α17 = [0, 1, 1, 1, 0, 0, 0, 0]: (2, 11), (3, 10).

α18 = [0, 1, 0, 1, 1, 0, 0, 0]: (2, 12), (10, 5).

α19 = [0, 0, 1, 1, 1, 0, 0, 0]: (3, 12), (11, 5).

α20 = [0, 0, 0, 1, 1, 1, 0, 0]: (4, 13), (12, 6).

α21 = [0, 0, 0, 0, 1, 1, 1, 0]: (5, 14), (13, 7).

α22 = [0, 0, 0, 0, 0, 1, 1, 1]: (6, 15), (14, 8).

α23 = [1, 1, 1, 1, 0, 0, 0, 0]: (1, 17), (2, 16), (9, 10).

α24 = [1, 0, 1, 1, 1, 0, 0, 0]: (1, 19), (9, 12), (16, 5).

α25 = [0, 1, 1, 1, 1, 0, 0, 0]: (2, 19), (3, 18), (17, 5).

α26 = [0, 1, 0, 1, 1, 1, 0, 0]: (2, 20), (10, 13), (18, 6).

α27 = [0, 0, 1, 1, 1, 1, 0, 0]: (3, 20), (11, 13), (19, 6).

α28 = [0, 0, 0, 1, 1, 1, 1, 0]: (4, 21), (12, 14), (20, 7).

α29 = [0, 0, 0, 0, 1, 1, 1, 1]: (5, 22), (13, 15), (21, 8).

α30 = [1, 1, 1, 1, 1, 0, 0, 0]: (1, 25), (2, 24), (9, 18), (23, 5).

α31 = [1, 0, 1, 1, 1, 1, 0, 0]: (1, 27), (9, 20), (16, 13), (24, 6).

α32 = [0, 1, 1, 2, 1, 0, 0, 0]: (4, 25), (17, 12), (18, 11), (19, 10).

α33 = [0, 1, 1, 1, 1, 1, 0, 0]: (2, 27), (3, 26), (17, 13), (25, 6).

α34 = [0, 1, 0, 1, 1, 1, 1, 0]: (2, 28), (10, 21), (18, 14), (26, 7).

α35 = [0, 0, 1, 1, 1, 1, 1, 0]: (3, 28), (11, 21), (19, 14), (27, 7).

α36 = [0, 0, 0, 1, 1, 1, 1, 1]: (4, 29), (12, 22), (20, 15), (28, 8).

α37 = [1, 1, 1, 2, 1, 0, 0, 0]: (1, 32), (4, 30), (18, 16), (23, 12), (24, 10).

α38 = [1, 1, 1, 1, 1, 1, 0, 0]: (1, 33), (2, 31), (9, 26), (23, 13), (30, 6).

α39 = [1, 0, 1, 1, 1, 1, 1, 0]: (1, 35), (9, 28), (16, 21), (24, 14), (31, 7).

α40 = [0, 1, 1, 2, 1, 1, 0, 0]: (4, 33), (17, 20), (26, 11), (27, 10), (32, 6).

α41 = [0, 1, 1, 1, 1, 1, 1, 0]: (2, 35), (3, 34), (17, 21), (25, 14), (33, 7).

α42 = [0, 1, 0, 1, 1, 1, 1, 1]: (2, 36), (10, 29), (18, 22), (26, 15), (34, 8).

α43 = [0, 0, 1, 1, 1, 1, 1, 1]: (3, 36), (11, 29), (19, 22), (27, 15), (35, 8).

α44 = [1, 1, 2, 2, 1, 0, 0, 0]: (3, 37), (11, 30), (23, 19), (24, 17), (25, 16), (32, 9).

α45 = [1, 1, 1, 2, 1, 1, 0, 0]: (1, 40), (4, 38), (23, 20), (26, 16), (31, 10), (37, 6).

α46 = [1, 1, 1, 1, 1, 1, 1, 0]: (1, 41), (2, 39), (9, 34), (23, 21), (30, 14), (38, 7).

α47 = [1, 0, 1, 1, 1, 1, 1, 1]: (1, 43), (9, 36), (16, 29), (24, 22), (31, 15), (39, 8).

α48 = [0, 1, 1, 2, 2, 1, 0, 0]: (5, 40), (18, 27), (19, 26), (20, 25), (32, 13), (33, 12).

α49 = [0, 1, 1, 2, 1, 1, 1, 0]: (4, 41), (17, 28), (32, 14), (34, 11), (35, 10), (40, 7).

α50 = [0, 1, 1, 1, 1, 1, 1, 1]: (2, 43), (3, 42), (17, 29), (25, 22), (33, 15), (41, 8).

α51 = [1, 1, 2, 2, 1, 1, 0, 0]: (3, 45), (11, 38), (23, 27), (31, 17), (33, 16), (40, 9), (44, 6).

α52 = [1, 1, 1, 2, 2, 1, 0, 0]: (1, 48), (5, 45), (18, 31), (20, 30), (24, 26), (37, 13), (38, 12).

α53 = [1, 1, 1, 2, 1, 1, 1, 0]: (1, 49), (4, 46), (23, 28), (34, 16), (37, 14), (39, 10), (45, 7).

α54 = [1, 1, 1, 1, 1, 1, 1, 1]: (1, 50), (2, 47), (9, 42), (23, 29), (30, 22), (38, 15), (46, 8).

α55 = [0, 1, 1, 2, 2, 1, 1, 0]: (5, 49), (18, 35), (19, 34), (28, 25), (32, 21), (41, 12), (48, 7).

α56 = [0, 1, 1, 2, 1, 1, 1, 1]: (4, 50), (17, 36), (32, 22), (40, 15), (42, 11), (43, 10), (49, 8).

α57 = [1, 1, 2, 2, 2, 1, 0, 0]: (3, 52), (5, 51), (24, 33), (25, 31), (27, 30), (38, 19), (44, 13), (48, 9).

α58 = [1, 1, 2, 2, 1, 1, 1, 0]: (3, 53), (11, 46), (23, 35), (39, 17), (41, 16), (44, 14), (49, 9), (51, 7).

α59 = [1, 1, 1, 2, 2, 1, 1, 0]: (1, 55), (5, 53), (18, 39), (24, 34), (28, 30), (37, 21), (46, 12), (52, 7).

α60 = [1, 1, 1, 2, 1, 1, 1, 1]: (1, 56), (4, 54), (23, 36), (37, 22), (42, 16), (45, 15), (47, 10), (53, 8).

α61 = [0, 1, 1, 2, 2, 2, 1, 0]: (6, 55), (20, 41), (21, 40), (33, 28), (34, 27), (35, 26), (48, 14), (49, 13).

α62 = [0, 1, 1, 2, 2, 1, 1, 1]: (5, 56), (18, 43), (19, 42), (32, 29), (36, 25), (48, 15), (50, 12), (55, 8).

α63 = [1, 1, 2, 3, 2, 1, 0, 0]: (4, 57), (12, 51), (16, 48), (24, 40), (27, 37), (32, 31), (44, 20), (45, 19), (52, 11).

α64 = [1, 1, 2, 2, 2, 1, 1, 0]: (3, 59), (5, 58), (24, 41), (25, 39), (35, 30), (44, 21), (46, 19), (55, 9), (57, 7).

α65 = [1, 1, 2, 2, 1, 1, 1, 1]: (3, 60), (11, 54), (23, 43), (44, 22), (47, 17), (50, 16), (51, 15), (56, 9), (58, 8).

α66 = [1, 1, 1, 2, 2, 2, 1, 0]: (1, 61), (6, 59), (20, 46), (21, 45), (34, 31), (38, 28), (39, 26), (52, 14), (53, 13).

α67 = [1, 1, 1, 2, 2, 1, 1, 1]: (1, 62), (5, 60), (18, 47), (24, 42), (36, 30), (37, 29), (52, 15), (54, 12), (59, 8).
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α68 = [0, 1, 1, 2, 2, 2, 1, 1]: (6, 62), (20, 50), (29, 40), (33, 36), (42, 27), (43, 26), (48, 22), (56, 13), (61, 8).

α69 = [1, 2, 2, 3, 2, 1, 0, 0]: (2, 63), (10, 57), (18, 51), (23, 48), (30, 40), (32, 38), (33, 37), (44, 26), (45, 25), (52, 17).

α70 = [1, 1, 2, 3, 2, 1, 1, 0]: (4, 64), (12, 58), (16, 55), (24, 49), (32, 39), (35, 37), (44, 28), (53, 19), (59, 11), (63, 7).

α71 = [1, 1, 2, 2, 2, 2, 1, 0]: (3, 66), (6, 64), (21, 51), (27, 46), (38, 35), (39, 33), (41, 31), (57, 14), (58, 13), (61, 9).

α72 = [1, 1, 2, 2, 2, 1, 1, 1]: (3, 67), (5, 65), (24, 50), (25, 47), (43, 30), (44, 29), (54, 19), (57, 15), (62, 9), (64, 8).

α73 = [1, 1, 1, 2, 2, 2, 1, 1]: (1, 68), (6, 67), (20, 54), (29, 45), (38, 36), (42, 31), (47, 26), (52, 22), (60, 13), (66, 8).

α74 = [0, 1, 1, 2, 2, 2, 2, 1]: (7, 68), (21, 56), (22, 55), (34, 43), (35, 42), (36, 41), (49, 29), (50, 28), (61, 15), (62, 14).

α75 = [1, 2, 2, 3, 2, 1, 1, 0]: (2, 70), (10, 64), (18, 58), (23, 55), (30, 49), (32, 46), (41, 37), (44, 34), (53, 25), (59, 17),

(69, 7).

α76 = [1, 1, 2, 3, 2, 2, 1, 0]: (4, 71), (6, 70), (16, 61), (27, 53), (28, 51), (39, 40), (45, 35), (49, 31), (58, 20), (63, 14),

(66, 11).

α77 = [1, 1, 2, 3, 2, 1, 1, 1]: (4, 72), (12, 65), (16, 62), (24, 56), (32, 47), (43, 37), (44, 36), (60, 19), (63, 15), (67, 11),

(70, 8).

α78 = [1, 1, 2, 2, 2, 2, 1, 1]: (3, 73), (6, 72), (27, 54), (29, 51), (38, 43), (47, 33), (50, 31), (57, 22), (65, 13), (68, 9),

(71, 8).

α79 = [1, 1, 1, 2, 2, 2, 2, 1]: (1, 74), (7, 73), (21, 60), (22, 59), (34, 47), (36, 46), (39, 42), (53, 29), (54, 28), (66, 15),

(67, 14).

α80 = [1, 2, 2, 3, 2, 2, 1, 0]: (2, 76), (6, 75), (10, 71), (23, 61), (33, 53), (34, 51), (45, 41), (46, 40), (49, 38), (58, 26),

(66, 17), (69, 14).

α81 = [1, 2, 2, 3, 2, 1, 1, 1]: (2, 77), (10, 72), (18, 65), (23, 62), (30, 56), (32, 54), (44, 42), (50, 37), (60, 25), (67, 17),

(69, 15), (75, 8).

α82 = [1, 1, 2, 3, 3, 2, 1, 0]: (5, 76), (13, 70), (19, 66), (27, 59), (28, 57), (39, 48), (52, 35), (55, 31), (61, 24), (63, 21),

(64, 20), (71, 12).

α83 = [1, 1, 2, 3, 2, 2, 1, 1]: (4, 78), (6, 77), (16, 68), (27, 60), (36, 51), (45, 43), (47, 40), (56, 31), (63, 22), (65, 20),

(73, 11), (76, 8).

α84 = [1, 1, 2, 2, 2, 2, 2, 1]: (3, 79), (7, 78), (21, 65), (22, 64), (39, 50), (41, 47), (43, 46), (54, 35), (58, 29), (71, 15),

(72, 14), (74, 9).

α85 = [1, 2, 2, 3, 3, 2, 1, 0]: (2, 82), (5, 80), (13, 75), (25, 66), (33, 59), (34, 57), (46, 48), (52, 41), (55, 38), (61, 30),

(64, 26), (69, 21), (71, 18).

α86 = [1, 2, 2, 3, 2, 2, 1, 1]: (2, 83), (6, 81), (10, 78), (23, 68), (33, 60), (42, 51), (45, 50), (54, 40), (56, 38), (65, 26),

(69, 22), (73, 17), (80, 8).

α87 = [1, 1, 2, 3, 3, 2, 1, 1]: (5, 83), (13, 77), (19, 73), (27, 67), (36, 57), (47, 48), (52, 43), (62, 31), (63, 29), (68, 24),

(72, 20), (78, 12), (82, 8).

α88 = [1, 1, 2, 3, 2, 2, 2, 1]: (4, 84), (7, 83), (16, 74), (22, 70), (28, 65), (39, 56), (43, 53), (49, 47), (58, 36), (60, 35),

(76, 15), (77, 14), (79, 11).

α89 = [1, 2, 2, 4, 3, 2, 1, 0]: (4, 85), (12, 80), (20, 75), (32, 66), (34, 63), (40, 59), (52, 49), (53, 48), (55, 45), (61, 37),

(69, 28), (70, 26), (76, 18), (82, 10).

α90 = [1, 2, 2, 3, 3, 2, 1, 1]: (2, 87), (5, 86), (13, 81), (25, 73), (33, 67), (42, 57), (52, 50), (54, 48), (62, 38), (68, 30),

(69, 29), (72, 26), (78, 18), (85, 8).

α91 = [1, 2, 2, 3, 2, 2, 2, 1]: (2, 88), (7, 86), (10, 84), (22, 75), (23, 74), (34, 65), (46, 56), (49, 54), (50, 53), (58, 42),

(60, 41), (79, 17), (80, 15), (81, 14).

α92 = [1, 1, 2, 3, 3, 2, 2, 1]: (5, 88), (7, 87), (19, 79), (28, 72), (29, 70), (39, 62), (43, 59), (55, 47), (64, 36), (67, 35),

(74, 24), (77, 21), (82, 15), (84, 12).

α93 = [1, 2, 3, 4, 3, 2, 1, 0]: (3, 89), (11, 85), (19, 80), (27, 75), (32, 71), (40, 64), (41, 63), (55, 51), (57, 49), (58, 48),

(61, 44), (69, 35), (70, 33), (76, 25), (82, 17).

α94 = [1, 2, 2, 4, 3, 2, 1, 1]: (4, 90), (12, 86), (20, 81), (32, 73), (40, 67), (42, 63), (52, 56), (60, 48), (62, 45), (68, 37),

(69, 36), (77, 26), (83, 18), (87, 10), (89, 8).

α95 = [1, 2, 2, 3, 3, 2, 2, 1]: (2, 92), (5, 91), (7, 90), (25, 79), (29, 75), (34, 72), (46, 62), (50, 59), (55, 54), (64, 42),

(67, 41), (74, 30), (81, 21), (84, 18), (85, 15).

α96 = [1, 1, 2, 3, 3, 3, 2, 1]: (6, 92), (14, 87), (20, 84), (28, 78), (29, 76), (31, 74), (39, 68), (43, 66), (61, 47), (71, 36),

(73, 35), (79, 27), (82, 22), (83, 21), (88, 13).
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α97 = [2, 2, 3, 4, 3, 2, 1, 0]: (1, 93), (9, 89), (16, 85), (24, 80), (31, 75), (37, 71), (45, 64), (46, 63), (57, 53), (58, 52),

(59, 51), (66, 44), (69, 39), (70, 38), (76, 30), (82, 23).

α98 = [1, 2, 3, 4, 3, 2, 1, 1]: (3, 94), (11, 90), (19, 86), (27, 81), (32, 78), (40, 72), (50, 63), (57, 56), (62, 51), (65, 48),

(68, 44), (69, 43), (77, 33), (83, 25), (87, 17), (93, 8).

α99 = [1, 2, 2, 4, 3, 2, 2, 1]: (4, 95), (7, 94), (12, 91), (32, 79), (34, 77), (36, 75), (53, 62), (55, 60), (56, 59), (67, 49),

(70, 42), (74, 37), (81, 28), (88, 18), (89, 15), (92, 10).

α100 = [1, 2, 2, 3, 3, 3, 2, 1]: (2, 96), (6, 95), (14, 90), (26, 84), (29, 80), (34, 78), (38, 74), (46, 68), (50, 66), (61, 54),

(71, 42), (73, 41), (79, 33), (85, 22), (86, 21), (91, 13).

α101 = [2, 2, 3, 4, 3, 2, 1, 1]: (1, 98), (9, 94), (16, 90), (24, 86), (31, 81), (37, 78), (45, 72), (54, 63), (57, 60), (65, 52),

(67, 51), (69, 47), (73, 44), (77, 38), (83, 30), (87, 23), (97, 8).

α102 = [1, 2, 3, 4, 3, 2, 2, 1]: (3, 99), (7, 98), (11, 95), (19, 91), (32, 84), (41, 77), (43, 75), (55, 65), (56, 64), (58, 62),

(70, 50), (72, 49), (74, 44), (81, 35), (88, 25), (92, 17), (93, 15).

α103 = [1, 2, 2, 4, 3, 3, 2, 1]: (4, 100), (6, 99), (14, 94), (26, 88), (34, 83), (36, 80), (45, 74), (53, 68), (56, 66),

(61, 60), (73, 49), (76, 42), (79, 40), (86, 28), (89, 22), (91, 20), (96, 10).

α104 = [2, 2, 3, 4, 3, 2, 2, 1]: (1, 102), (7, 101), (9, 99), (16, 95), (24, 91), (37, 84), (46, 77), (47, 75), (58, 67),

(59, 65), (60, 64), (70, 54), (72, 53), (79, 44), (81, 39), (88, 30), (92, 23), (97, 15).

α105 = [1, 2, 3, 4, 3, 3, 2, 1]: (3, 103), (6, 102), (11, 100), (14, 98), (33, 88), (41, 83), (43, 80), (51, 74), (56, 71),

(58, 68), (61, 65), (76, 50), (78, 49), (84, 40), (86, 35), (91, 27), (93, 22), (96, 17).

α106 = [1, 2, 2, 4, 4, 3, 2, 1]: (5, 103), (13, 99), (18, 96), (21, 94), (26, 92), (34, 87), (36, 85), (52, 74), (59, 68),

(61, 67), (62, 66), (73, 55), (79, 48), (82, 42), (89, 29), (90, 28), (95, 20), (100, 12).

α107 = [2, 2, 3, 4, 3, 3, 2, 1]: (1, 105), (6, 104), (9, 103), (14, 101), (16, 100), (38, 88), (46, 83), (47, 80), (51, 79),

(58, 73), (60, 71), (66, 65), (76, 54), (78, 53), (84, 45), (86, 39), (91, 31), (96, 23), (97, 22).

α108 = [1, 2, 3, 4, 4, 3, 2, 1]: (3, 106), (5, 105), (13, 102), (21, 98), (25, 96), (33, 92), (41, 87), (43, 85), (57, 74),

(61, 72), (62, 71), (64, 68), (78, 55), (82, 50), (84, 48), (90, 35), (93, 29), (95, 27), (100, 19).

α109 = [2, 2, 3, 4, 4, 3, 2, 1]: (1, 108), (5, 107), (9, 106), (13, 104), (21, 101), (30, 96), (38, 92), (46, 87), (47, 85),

(57, 79), (64, 73), (66, 72), (67, 71), (78, 59), (82, 54), (84, 52), (90, 39), (95, 31), (97, 29), (100, 24).

α110 = [1, 2, 3, 5, 4, 3, 2, 1]: (4, 108), (12, 105), (20, 102), (28, 98), (32, 96), (40, 92), (43, 89), (49, 87), (61, 77),

(62, 76), (63, 74), (70, 68), (82, 56), (83, 55), (88, 48), (93, 36), (94, 35), (99, 27), (103, 19), (106, 11).

α111 = [2, 2, 3, 5, 4, 3, 2, 1]: (1, 110), (4, 109), (12, 107), (20, 104), (28, 101), (37, 96), (45, 92), (47, 89), (53, 87),

(63, 79), (66, 77), (67, 76), (70, 73), (82, 60), (83, 59), (88, 52), (94, 39), (97, 36), (99, 31), (103, 24), (106, 16).

α112 = [1, 3, 3, 5, 4, 3, 2, 1]: (2, 110), (10, 108), (18, 105), (26, 102), (32, 100), (34, 98), (40, 95), (49, 90), (50, 89),

(61, 81), (62, 80), (69, 74), (75, 68), (85, 56), (86, 55), (91, 48), (93, 42), (94, 41), (99, 33), (103, 25), (106, 17).

α113 = [2, 3, 3, 5, 4, 3, 2, 1]: (1, 112), (2, 111), (10, 109), (18, 107), (26, 104), (34, 101), (37, 100), (45, 95), (53, 90),

(54, 89), (66, 81), (67, 80), (69, 79), (75, 73), (85, 60), (86, 59), (91, 52), (94, 46), (97, 42), (99, 38), (103, 30),

(106, 23).

α114 = [2, 2, 4, 5, 4, 3, 2, 1]: (3, 111), (11, 109), (19, 107), (27, 104), (35, 101), (44, 96), (47, 93), (51, 92), (58, 87),

(63, 84), (70, 78), (71, 77), (72, 76), (82, 65), (83, 64), (88, 57), (97, 43), (98, 39), (102, 31), (105, 24), (108, 16),

(110, 9).

α115 = [2, 3, 4, 5, 4, 3, 2, 1]: (2, 114), (3, 113), (17, 109), (25, 107), (33, 104), (41, 101), (44, 100), (51, 95), (54, 93),

(58, 90), (69, 84), (71, 81), (72, 80), (75, 78), (85, 65), (86, 64), (91, 57), (97, 50), (98, 46), (102, 38), (105, 30),

(108, 23), (112, 9).

α116 = [2, 3, 4, 6, 4, 3, 2, 1]: (4, 115), (16, 112), (17, 111), (32, 107), (40, 104), (44, 103), (49, 101), (51, 99), (58, 94),

(60, 93), (69, 88), (75, 83), (76, 81), (77, 80), (86, 70), (89, 65), (91, 63), (97, 56), (98, 53), (102, 45), (105, 37),

(110, 23), (113, 11), (114, 10).

α117 = [2, 3, 4, 6, 5, 3, 2, 1]: (5, 116), (18, 114), (19, 113), (30, 110), (32, 109), (44, 106), (48, 104), (55, 101),

(57, 99), (64, 94), (67, 93), (69, 92), (75, 87), (77, 85), (82, 81), (89, 72), (90, 70), (95, 63), (97, 62), (98, 59),

(102, 52), (108, 37), (111, 25), (112, 24), (115, 12).

α118 = [2, 3, 4, 6, 5, 4, 2, 1]: (6, 117), (20, 115), (31, 112), (33, 111), (45, 108), (48, 107), (57, 103), (61, 101),

(69, 96), (71, 94), (73, 93), (80, 87), (82, 86), (83, 85), (89, 78), (90, 76), (97, 68), (98, 66), (100, 63), (105, 52),
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(106, 51), (109, 40), (110, 38), (113, 27), (114, 26), (116, 13).

α119 = [2, 3, 4, 6, 5, 4, 3, 1]: (7, 118), (21, 116), (34, 114), (35, 113), (46, 110), (49, 109), (58, 106), (59, 105),

(61, 104), (70, 100), (71, 99), (79, 93), (80, 92), (82, 91), (88, 85), (89, 84), (95, 76), (96, 75), (97, 74), (102, 66),

(103, 64), (107, 55), (108, 53), (111, 41), (112, 39), (115, 28), (117, 14).

α120 = [2, 3, 4, 6, 5, 4, 3, 2]: (8, 119), (22, 117), (36, 115), (47, 112), (50, 111), (60, 108), (62, 107), (72, 103),

(73, 102), (74, 101), (81, 96), (83, 95), (84, 94), (90, 88), (91, 87), (92, 86), (98, 79), (99, 78), (100, 77), (104, 68),

(105, 67), (106, 65), (109, 56), (110, 54), (113, 43), (114, 42), (116, 29), (118, 15).
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