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SOME PROPERTIES OF ORBITAL VARIETIES IN EXTREMAL
NILPOTENT ORBITS

LUCAS FRESSE

Dedicated to Professor Anthony Joseph on the occasion of his 75th birthday

ABSTRACT. The intersection between a nilpotent orbit of a simple Lie algebra
and a Borel subalgebra is always equidimensional. Its irreducible components
are called orbital varieties. Orbital varieties belonging to different nilpotent
orbits may have quite different behaviours. The orbital varieties of the sub-
regular nilpotent orbit are always smooth but they have in general infinitely
many B-orbits. At the opposite, the minimal nilpotent orbit is spherical but
its orbital varieties may have singularities. In this paper, we characterize the
orbital varieties of the subregular nilpotent orbit which have a finite number
of B-orbits and we give a smoothness criterion for the orbital varieties of the
minimal nilpotent orbit.

1. INTRODUCTION

1.1. Nilpotent orbits. Let G be a connected simple algebraic group over K (an
algebraically closed field of characteristic zero). By g we denote the Lie algebra of
G, by (g,x) — g - = we denote the adjoint action. Let B C G be a Borel subgroup
and let n C g be the nilpotent radical of the Lie algebra of B.

An adjoint orbit O = G-z := {g-z : g € G} is called nilpotent if the intersection
O Nn is nonempty. The set N := G - n is the nilpotent cone. It consists of a finite
number of nilpotent orbits. We emphasize four of them:

e The regular nilpotent elements form a single orbit O, called the regular
nilpotent orbit, which is dense in N.

e There is a single orbit Ogybreg, called the subregular nilpotent orbit, which
is dense in N\ Oheg.

e There is a single nontrivial nilpotent orbit O, of minimal dimension,
called the minimal nilpotent orbit; it lies in the closure of every nontrivial
nilpotent orbit.

e The only closed nilpotent orbit is the trivial orbit Oy, = {0}.

1.2. Orbital varieties. Every nilpotent orbit @ C N has a structure of symplec-
tic variety, in particular its dimension dim O is even. The intersection O N n is
a quasi-affine variety, which is in fact equidimensional of dimension %dim@ (see
[10]). The irreducible components of O Nn are called orbital varieties. They are
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B-stable, Lagrangian subvarieties of O. Orbital varieties arise in geometric rep-
resentation theory, in relation with associated varieties of simple highest weight
modules. We refer to the works of A. Joseph [8, 9] and references therein. In [9],
the orbital varieties of the minimal nilpotent orbit are studied with respect to their
quantization properties.

Orbital varieties may be singular and may have an infinite number of B-orbits,
and they have a complicated intersection pattern. There is no general classification
of orbital varieties with respect to their geometrical or topological properties. We
refer to [7] for some partial classifications, mainly in type A.

In this paper we study some properties of orbital varieties for an arbitrary simple
algebraic group G, but in the case of the particular nilpotent orbits mentioned
above.

There is not much to say about the trivial nilpotent orbit Oy, = {0} and its
sole orbital variety Oy N1 = {0}. In the case of the regular nilpotent orbit,
the intersection Oreg N1 is a single B-orbit, hence a single B-homogeneous (and
therefore smooth) orbital variety. For the remaining two extremal nilpotent orbits
Omin and Ogypreg, the situation is not so straightforward. We stress the following
facts:

e The minimal nilpotent orbit Oy,;y, is spherical, hence every orbital variety of
Omin has a finite number of B-orbits. Moreover Oy,i, N1 contains a unique
closed B-orbit, which therefore lies in every orbital variety. However the
orbital varieties of Oy, may be singular.

In this paper, we characterize the singular orbital varieties of Omip -

o At the opposite, in the subregular nilpotent orbit Ogypreg, every orbital va-
riety is smooth; in fact it is open in the nilradical of some minimal parabolic
subalgebra. However an orbital variety of Ogybreg does not always contain
a dense B-orbit, and two orbital varieties of Ogypreg rarely intersect.

In this paper, we characterize the orbital varieties of Ogubreg which have
a dense B-orbit (resp. a finite number of B-orbits), and we characterize
the pairs of orbital varieties of Osubreg Which intersect.

In particular, the results shown in this paper illustrate how orbital varieties
belonging to different nilpotent orbits may have different properties. Our main
results are stated in terms of roots, simple roots and biggest root: see Section 2.2.
The orbital varieties of Ogubreg can indeed be parameterized by the simple roots
whereas the orbital varieties of O, can be parameterized by the simple long roots.
These parameterizations are explained in Section 2.1.

2. MAIN RESULTS

2.1. Parameterization of orbital varieties. Hereafter we fix a maximal torus
T C B andlet hh C g denote the corresponding Cartan subalgebra. We then consider
the root system ® = ®(g, h), the root space decomposition

g:b@@ga»
acd

and the subset of positive roots ®* corresponding to the choice of B and n, i.e.,
such that n = @ g+ ga- Let I1 C ®T be the set of simple roots.
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Let W = W(G,T) be the Weyl group. By [12] there is a surjective map from
W onto the set of orbital varieties of N: for every w € W, there is a unique
nilpotent orbit O,, which intersects the linear space n N (w - n) densely; then, the
set Vy = B-(nN(w-n)) N O, is an orbital variety, and every orbital variety is
obtained in this way. In particular O = Oyeg, Ve = Oreg N1, Vi, = Oy, = {0},
where e, wy € W respectively stand for the neutral element and the longest element.

The orbital varieties contained in the nilpotent orbits Omin and Ogypreg have an
alternative, handy parameterization, obtained as follows.

Every simple root a € II gives rise to a minimal parabolic subgroup P, and a
nilradical n, = @, cg+\ (o} 8- By [5, §4.1], we have

n \ Oreg = U n,, hence Osubreg nn= U Osubreg Nng.
a€cll acll

By [5, Theorem 7.1.1], for every a € II, the intersection Osybreg N N IS Pa-
homogeneous (thus irreducible, smooth) and dense in n,. This yields:

Proposition 1. (a) The subsets Vsubreg(@t) := Ogsubreg N Na, for a € II, are
exactly the irreducible components of Ogubreg N1, i.e., the orbital varieties
Of Osubreg-

(b) Vsubreg(@) is Po-homogeneous (thus smooth) and its closure is the linear
space 0, (thus this closure is also smooth).

(c) For a,a’ € 1, the orbital varieties Vsubreg(t) and Vsubreg(¢') intersect if
and only if the Toots o, o’ are not orthogonal.

(d) Vsubreg(@) = Vs, where s, € W is the simple reflection attached to the
T00t Q1.

Proof. Parts (a) and (b) follow from the previous discussion. Part (d) follows
from the definitions of Viybreg(ar) and V. Let us show part (c). If the simple
roots o and o’ are orthogonal, then the intersection n, N1, is the nilradical of a
parabolic subalgebra. By [5, Theorem 7.1.1], the maximal dimension of a nilpotent
orbit intersecting n, N ny is 2dimn, Ny < 2dimn, = dim Ogypreg.  Hence
Vsubreg (@) N Vsubreg () = Osubreg N Mg N 1o = . We have shown that two orbital
varieties of Ogubreg have an empty intersection if they correspond to simple roots
which are orthogonal, i.e., which are not connected by an edge in the Dynkin
diagram. By [10], the variety Ogubreg N1 is connected. This implies that Vsybreg ()
and Vsubreg (@) must intersect if there is an edge between o and ' in the Dynkin
diagram. O

For every root a € ®T we fix a root vector e, € go \ {0}. In the simply laced
cases, we say that all the roots are long. In general, let ®;, (resp., @?) stand for the
set of long roots (resp., positive long roots) and let I, C II be the subset of simple
long roots. Let < be the usual partial order on the root system ® determined by
the choice of the set of positive roots ®T. Let Spax € @+ be the biggest root, i.e.,
the biggest element of ® with respect to the order <. It is always a long root, and
the root vector eg, . is a representative of the minimal nilpotent orbit Op,in. Note
that

B : eﬁmax = gﬁmax \ {0}’ hence Omin = G ' eﬂmax = U B : ew(ﬁmax)’
weW
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where the last equality follows from the Bruhat decomposition G' = | |,y BwB,
whence

(1) Omin= ) B-ea and Ommnnn= |J B-ea

acd, ae@;r

since the Weyl group W acts transitively on the set of long roots. The next state-
ment follows from [4, 8] and [3, §6.1].

Proposition 2. (a) For every a € <1)2', we have
B-eyNOnin = U B-ey
pates

where the union is taken over all long roots v € @Z satisfying v = «.

(b) Thus, the subsets Vimin(a) := B - eq N Omin, for a € I, are exactly the
irreducible components of OpinNn, i.e., the orbital varieties of Opmin- Fvery
orbital variety contains in particular the orbit B -eg . .

(¢) Ewvery orbital variety Vmin(c) (for o € 1) is normal, Cohen-Macaulay,
and has rational singularities.

(d) Vmin (OZ) = VSQ’U)()'

2.2. Statement of main results. As in Section 2.1, (. stands for the biggest
root. It decomposes as a sum of simple roots

ﬂmax = Z TL(O[)Oé7
a€ell
where the coefficients n(«) are positive integers.
Our first main result is a smoothness criterion for the orbital varieties of the
minimal nilpotent orbit. The proof is given in Section 3.3.

Theorem 1. Let o € Iy be a simple long root and let Viin(a) = B - eq N Omin be
the corresponding orbital variety of the minimal nilpotent orbit Onin. Then:

Viin (@) is smooth if and only if n(a) = 1.

Our second main result is a criterion of finiteness of number of B-orbits / exis-
tence of dense B-orbit for the orbital varieties of the subregular nilpotent orbit. In
the result below we say that a simple root « is extremal if it belongs to only one
(possibly multiple) edge of the Dynkin diagram (i.e., there is only one simple root
which is not orthogonal to «). In types Fs, Er, Eg, we consider the numbering of
the simple roots determined by the following diagram (of type Fs)

s
] — Q3 — Qg — Q5 — Qg —— 7y — Qg
and its subdiagrams {aq,...,ar} (of type Er) and {aq,...,a} (of type Eg).

Theorem 2. Let a € II be a simple root and let Vsybreg(®) = Osubreg N Mo e the
corresponding orbital variety of the subregular nilpotent orbit Osybreg. The following
conditions are equivalent:
(1) Vsubreg(@) has a finite number of B-orbits;
(i) Vsubreg(@) has a dense B-orbit;
(iii) One of the following conditions is satisfied:
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(1) the group G is of type A or B;

(2) the group G is of type C or D, and « is an extremal root of the Dynkin
diagram;

(3) the group G is of type Go or Fy, and « is long and extremal;

(4) the group G is of type Eg (resp., E7) and o« € {aq, a6} (resp., a = az).

The proof is given in Section 4.

Corollary 1. (a) In types A and C, every orbital variety of Omin s smooth.
(b) In types Ga, Fy, and Es, every orbital variety of Omin 1s singular.
(c) In types A and B, every orbital variety of Osubreg has a finite number of
B-orbits.

(d) In type Es, every orbital variety of Osubreg has an infinite number of B-
orbits.

3. PROOF OF THEOREM 1

3.1. Notation. Recall that the root system ® is endowed with the partial order <
defined by letting a@ < § if 8 — « is a sum of simple roots, and [ax stands for the
biggest element of ® relatively to this order.
Given two positive roots a, 8, we write:
e a<Bif f—aecdt
o a fif B=a+kn for some n € &+ and some positive integer k.

Moreover we consider the set
Mpax == {0 € @ : @ < Bax}-

The following technical lemmas can be checked case by case. The first lemma is
immediate in the simply laced case (where by convention we say that all the roots
are long, i.e., there is no short root).

Lemma 1. Let v be a short positive root such that the set

{B€ @ long: B =<~}

is nonempty. Then, this set contains a biggest element By relatively to the order <,
and we have By <<.

Moreover, let us suppose that v € Myay, 50 that Bmax — v € ®F. Then, the
following alternative holds:

(1) FEither Y — 50 = Bmax -7
(ii) Or, for all root B such that By = B < 7, we have B+ Pmax — 7 ¢ P.

Lemma 2. Let « be a simple long root such that n(a) > 2. Then there is a couple
(v,7') of positive roots such that « < v, a =+, and v+~ = Bmax-

For every root «, we fix a morphism of algebraic groups u, : K — G such that
hue(s)h™ = ug(a(h)s) for all h € T and Imdu, = g, (see [11, Lemma 7.3.3]).
Note that there is a nonzero root vector x, € go \ {0} such that

(2) Aduy(s) =exp(sadz,) forall s € K

where Ad : G — GL(g) and ad : g — gl(g) stand for the adjoint representations.



6 LUCAS FRESSE

3.2. Tangent space of the minimal nilpotent orbit at the biggest root
vector. Recall that for each positive root « we consider a root vector e, € g, \{0}.
The biggest root vector eg_ . is a representative of the minimal nilpotent orbit Op;p.
By T, Omin we denote the tangent space of Onin at eg, . .

Bmax

Proposition 3. Tc, = Ownin = g, @ (980 s B—Bunar] P @veM
Proof. We first claim that
(3) dim Teﬂmax Omin = dim Omin = |Mmax| + 2.

The first equality in (3) follows from the fact that Oy is smooth. For showing the
second equality, we compute the stabilizer 34(eg,...) = {v € g: [v,eg,,..] = 0}. Let
v € g and let us write v = h + Zae‘b vq Where h € §h and v, € g, for all @ € .
We get

[0, €8] = Bmax (M) €8s + [V €]+ D [Vas €
a€P\{—PBmax}
and the equality [v,eg,,.] = 0 holds if and only if h € ker fmax, v—g,.. = 0,
and v, = 0 whenever « + Bnax is a root. The last fact is equivalent to having
—a € Muyax. Altogether, this yields

G-

max

dimz’g(eﬂmax) = dlmg —2- |Mmax|-

Since dim Oyin = dimg — dim 34(eg,,,. ), the verification of (3) is complete.
In view of (3), for showing the proposition, it suffices to show the inclusion

(4) gﬁmax @ [gﬂmax’ g_ﬂmax] EB @ g’)’ C TeBmax Omin-
YEMmax

There is a cocharacter A : K* — T such that A(K*) - eg,.. = K*eg,... Hence
K*eg,,.x C Omin, which yields the inclusion gg,,,. = Te, (K*eg,..) C Te Sy Omin-
By (2), the inclusion

(0B 8Bimae] = KT s €iman] = T, (UBinan (K) * €8,00) € T, Omin
holds. Similarly, for every v € Muax, letting 7/ := Bmnax — v (which is a positive
root), the inclusion

9y = K[va" eﬁmax] = Teﬁmax (u*’y' (K) : eBInax) C Teﬂmax Omin
holds. Altogether we get (4). The proof is complete. O
3.3. Tangent space of orbital varieties of the minimal nilpotent orbit at

the biggest root vector. Theorem 1 is implied by Proposition 4 (b) below. We
need two preparatory lemmas.

Lemma 3. For every x € Onin, we have K*z C B - x.

Proof. By (1), there is a long root vector eg and an element b € B such that
x =b-eg. For every s € K*, we can find h € T such that h - eg = seg, whence
sx = (bh)-eg € B-eg =B - . O

Recall that for every positive long root «, the root vector e, belongs to the
minimal nilpotent orbit Op,;, and the biggest long root vector eg, . belongs to the
closure of B - e, (see Proposition 2 (a)).

Lemma 4. Let v € Myax.
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B-e,.

€Bmax v

(b) Assume that v is short and such that the set {8 € @t long : B < ~}
is nonempty, hence contains a biggest element By (see Lemma 1). Then

9y C T, B €50

(a) Assume that the root v is long. Then g, C T,

Proof. Let ' := Bmax — 7, which is a positive root. First we show part (a) of the
lemma. In view of (2), there is an element ./ € g,/ \ {0} such that

ey + s_l[xy/,ev] = uvl(s_l) ey €B-e,

for all s € K*. Note that [z, e,] € gg,... \ {0} = K*eg,... By Lemma 3, we get
€hmax T 86y € B - e for all s € K*. Whence the inclusion g, CTe, B -e,.

Next let us show part (b) of the lemma. First assume that condition (i) of
Lemma 1 holds, so that v = 8y + " and Bmax = Bo + 2. In view of (2), we have
in this case

ey + 5 s ep,] + 3 8 2 [z, [T, e8,]] =y (s71) - ep, € B-ep, forall s € K*
for some z, € g, \ {0}. Note that [z.,eg,] € gy \ {0} while [z, [z, e5,]] €
06 \ {0}, hence [z, [z, e5,]] = s;'ep,., for some so € K*. Invoking also

Lemma 3, this yields
€ B T 28501, €5,] + 257 s0e5, € B - eg, for all s € K*.
Whence the inclusion g, = K[z, e5,] CTe, B -eg,.

Finally assume that condition (ii) of Lemma 1 holds. By Lemma 1, there is a
positive root 1 and a positive integer k such that v = Sy + kn. Let r > k be the
integer such that v, := fo + ¢ is a root for all £ € {0,1,...,7} and is not a root
whenever £ > r. By (2), there are root vectors €., € g,, \ {0} (for £ =0,1,...,7)
such that

uy(t) - eg, = Zteefw for all t € K.
=0
By assumption, v, +«' is a root if and only if £ = k, and v, +v = v + 7 = Bumax-
Applying again (2), we get

ths syl egan + Z:ﬁee’w = uy (57 uy(t) - ep, for all t € K, all s € K*,
=0
for some sg € K*. Whence (by Lemma 3)

.
€Bunn + 550t F Ztlefﬂz € B-eg, forallteK, all s e K"
=0

We deduce that
-
> otlel, €T, Bres, forallteK
=0

and therefore
I
g, C @gw CTe, . B-eg,.
=0

The proof of the lemma is complete. O
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Proposition 4. Let a be a simple long root, so that Vimin(«) := B - eq N Omin 18
an orbital variety of Omin and B-eg, . is the unique closed B-orbit of Vimin(cr) (see
Proposition 2).

(@) Tep,,.. Vimin(@) = 9p,,, @ @ v
YEMmax, Y=

(b) The following conditions are equivalent:
(1) Vmin(@) is singular;
(11) ‘{'Y € Mmax Y = Oé}| > %‘Mmaxl;
(iii) there exists a couple (7v,7') of positive roots such that v = a, v = «,
Y+ = Bmax;
(iv) n(a) > 2.

Proof. First we show the inclusion D in (a). Since gg,,. \{0} = B-eg,,,. C Vmin(®),
we have gg,.. C Tes Viin(). Next let v € Myax such that v = a. If 7 is a long
root, then we have B - e, C Vnin(a) by Proposition 2, hence g, C Ty Viin(@)
by Lemma 4 (a). Assume now that v is a short root and let 3y be as in Lemmas 1
and 4 (b). The maximality property of 8y implies that 8y > «, whence B -eg, C
Vmin(c) (by Proposition 2). In view of Lemma 4 (b), this yields g, C Tc, ~ Viin(@).
Altogether we get the inclusion D in (a).

In view of the inclusion Viin(a) C B-eq C @'y>a g, and of Proposition 3, we
also have

TE[gmax Vmin(a) - ( @ gv) N Te;gmax Omin = gﬁmax @ @ g’yv

Yo YEMmax, Y=o

and this completes the proof of part (a).
On the one hand, part (a) and Proposition 3 yield

dim T, Vinin(@) = 1+ [{y € Miax : 7 = a}|
and

1 1
dim Vyin () = 3 dim Opiy =1+ §|Mmax|

(recall from Section 1.2 that we have dimV = 1dimO whenever V is an or-
bital variety of a nilpotent orbit ). On the other hand, since B - eg,,,, is the
unique closed B-orbit in Vpin (@), we know that Vyin(«) is singular if and only if
dim T, Vmin(a) > dim Viin(a). The equivalence between conditions (i) and (ii)
of part (b) ensues.

Since « necessarily occurs in the decomposition of Sy, as a sum of simple roots,
for every v € Mpax we must have v = @ or Bpax—7 = «. Whence |[{y € Mupax : 7 =
a}| > %|Mmax| with strict inequality if and only if there is an element v € M.
such that v = « and Bnax — 7 = «, which is equivalent to the existence of a couple
(7,v) as in (iii). Conditions (ii) and (iii) of part (b) are therefore equivalent.

The implication (iii)=-(iv) is immediate while the inverse implication (iv)=-(iii)
follows from Lemma 2. The proof of part (b) of the statement is now complete. O

4. PROOF OF THEOREM 2

As in Section 2.1, for every simple root «, we denote by P, the corresponding
standard minimal parabolic subgroup and by n, the nilpotent radical of its Lie
algebra.
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As noted in Proposition 1 (b), the orbital variety Vsubreg(®) = Osubreg N Na Of
Osubreg attached to o is P,-homogeneous. In view of well-known properties of
spherical varieties [2, 13] (see also [6, Lemma 1]), this fact already guarantees the
equivalence between parts (i) and (ii) of Theorem 2. The purpose of this section is
to prove the equivalence between parts (ii) and (iii) of Theorem 2.

4.1. Criteria of existence of dense B-orbit. For a simple root «, we also denote
by po the Lie algebra of the minimal parabolic subgroup P, and by Rad(p,) its
radical, i.e., the intersection of the Borel subalgebras of p,; in other words

Rad(py) ={h €b:alh) =0} ®n,.

Proposition 5. Let «a be a simple root. Let © € Vsubreg() = Osubreg N No. The
following conditions are equivalent:

(i) Vsubreg(@) has a dense B-orbit;
(ii> {y € Pa: [y, x] = O} Z Rad(pa)'

Proof. The orbital variety Viupreg () (which coincides with the P,-orbit of ) has a
dense B-orbit if and only if there exists an element g € P, such that dim B-(g-z) =
dim Vsybreg (@0). By b we denote the Lie algebra of the Borel subgroup B. Note that

dmB:-(g-z) = dimB-—dim{yeb:[y,g -z] =0}
= dimB—dim{y€g " -b:[y,z] =0}

and
dim Vaupbreg (@) = dim P, - = dim P, — dim{y € p, : [y, z] = 0}

hence
dim Vsupreg (@) —dim B-(g-z) = 1—dim{y € p, : [y, 2] = 0}/{y € g~ *-b : [y, 2] = 0}.

Therefore the existence of a dense B-orbit in Vgybreg (@) is equivalent to the existence
of a Borel subalgebra b’ = g~ - b C p, such that {y € p, : [y,z] = 0} ¢ b’. This
property is equivalent to condition (ii) of the statement. The proof is complete. O

Proposition 5 is an efficient criterion of existence of dense B-orbit once we know
a representative x of the orbital variety Vsubreg (), i.€., an element x of the intersec-
tion Ogsybreg M- Such an element x is called a Richardson element of the nilradical
n. In the classical cases, due to the combinatorial classification of nilpotent orbits
in terms of Jordan forms, it is possible to construct Richardson elements for many
parabolic subalgebras; see [1]. In the classical cases, our proof of Theorem 2 relies
on Proposition 5. In particular we construct Richardson elements for nilradicals of
the form n,, (the constructions made in [1] do not apply to all the nilradicals of this
form).

In the exceptional cases, out of our knowledge, there is no construction of
Richardson elements. For this reason, we cannot use Proposition 5 for proving
Theorem 2 in the exceptional cases (however, as a byproduct of our proof, we pro-
vide Richardson elements for certain nilradicals n,; see also Remark 1 below). We
rely on the construction of Chevalley bases and on the following criterion.

Proposition 6. Let o be a simple root and let Vsybreg () = Osubreg N Mo be the
corresponding orbital variety of Osubreg- Let x € 1y and let My (z) be the matriz of
the linear transformation b — ng, y — [y, x] (relatively to some bases of b and n,,
e.g., subbases of a Chevalley basis of g). Then
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(a) dim B -z = rank M, (z).
(b) Vsubreg(@) has a dense B-orbit if and only if for some x € n, the rows of
M, (z) are linearly independent.

Proof. Part (a) is obtained as follows,
dim B -z = dim B—dim{y € b : [y, 2] = 0} = dim b —dim ker M, (x) = rank M, (z).

From part (a), it follows that if the rows of M,(z) are linearly independent, i.e.,
rank M, (z) = dimn,, then B -z is a dense, open subset of n,, which implies that
its intersection with Ogypreg M Mo is nonempty; in fact this ensures that = belongs
t0 Ogubreg N Mo (i.€., 10 Vsubreg(v)) since this set is B-stable. The equivalence in
part (b) immediately follows from part (a) and this observation. O

Corollary 2. We consider a connected subdiagram of the Dynkin diagram of g,
which corresponds to a subset of simple roots II' C 1. Let G' C G be the connected
simple algebraic subgroup corresponding to I, let g’ C g be its Lie algebra, and let
B’ C G’ be the standard Borel subgroup.

In this way, in addition to the orbital variety Vsubreg(a) (relative to g), a simple
root o € II' determines an orbital variety V! («) relative to ¢, contained in the
subregular nilpotent orbit of g'.

If V;ubreg(a) has no dense B’-orbit, then Vsubreg(a) has no dense B-orbit.

More precisely, if B := B - x is a dense orbit of Vsubreg(t), denoting by x’ the
natural projection of x onto g, we have that B' := B’ -z’ is a dense orbit of
Vsubreg(@'). Moreover, the map B — B', x + &’ is then surjective.

ubreg

Proof. Let ® C ® be the root system generated by II’, i.e., the subset of roots
which are linear combinations of the elements of II'. Let ®'* := & N ®* be the
subset of positive roots. Let b’ be the Lie algebra of B’, let n/, C b’ be the nilradical
corresponding to «, let h’ be the standard Cartan subalgebra of g’. Thus

b'=bae P g, and n,= P g

yeart ye@\{a}

Recall that for each root v € ®* we consider a root vector e, € g, \ {0}. Let
{N,:y e’} b and {\, : v € I} C b be the dual bases of II" C ™ and II C b*,
respectively. Let an element x € n, and let 2’ € n/, be its image by the projection
relative to the decomposition n, = nl, @ EBVQM\@,+ g. Let M, (x) be the matrix
of the linear map b — n,, y + [y, z] in the bases {\, : v € I} U{ey : v € T} (of
b) and {ey : v € @1\ {a}} (of ny). Let M/ (2') be the matrix of the map b’ — n,,
y > [y, 2] in the bases {\, : v € I'}U{e, : v € @'} (of b’) and {e, : v € @' \{a}}
(of n),). Then (up to adding columns of zeros) the matrix M/ (z’) coincides with
the submatrix of M, () formed by the rows corresponding to the basis vectors e,
for v € ®'* \ {a}. Therefore, if the rows of M/ (') are linearly dependent, then so
are the rows of M, (z). The corollary now follows from Proposition 6 (b) (the last
claim follows from the fact that the map x — 2z’ is B’-equivariant). O

4.2. Proof of Theorem 2 in classical cases. We rely on a technical lemma:

Lemma 5. Let o be a simple root. Assume that there is an element * € OgupregNNa
of the form

17:sz with z, € g, \ {0}

yel
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where I is a subset of @\ {a} satisfying the following conditions:
(A) There is v € I such thaty —a € ®\ (I UI") where I' =1+ &7,
(B) There is y € I such that y+a € ®\ (IUI') where I' = T + (®T \ {a});
(C) For every 6 € {' —~ : v, € I} N®T \ {a}, there is B € I such that
B+6€®\T and (B+06)— B ¢ &1\ {a} for all B’ € I\ {B};
(D) @ is contained in the linear space spanned by I.
Then Vsubreg(a) has no dense B-orbit.

Proof. In view of Proposition 5, it suffices to show the inclusion
(5) {y € pa:ly,2] =0} Cng.
So, let y € p, such that [y, x] = 0, write
Yy=h+yaty-o+y withheb, yo € ga, Y-a € §-a, ¥ € N,

and let us show that h = yo, = y_o = 0. Let 71 € I and v, € I be the elements
provided by conditions (A) and (B), respectively. First we see that

[yfoux] = [_h —Ya — ?Jlaﬂ S @ g’Y'
~yeIUI’
The vector [y_q,x~,] is the component of [y_q,z] in the root space g,,—o. Since
v —a ¢ ITUI', we must have [y_q,x,,] =0, hence y_, = 0. Next we see that

Y.zl =[~h—y.ale P o,

~elul’

and the condition v, 4+« ¢ I U I’ implies that [ya,2,] = 0; since 42 +  is a root,
this forces y, = 0. Thus the relation

(6) v,z =[~h,az] € Po,
yel

holds. We claim that [/, 2] = 0. Arguing by contradiction, say [v', ] # 0. Hence
there are roots v € I and § € @1 \ {a} such that [y}, z,] # 0, where yj is the
component of 3’ in the root space gs. By (6), this yields v := v+ § € I. Then, let
B € I be as in condition (C). Condition (C) implies that [yj, 23] is the component of
[v/, x] in the root space g5 and that it is nonzero. Since S+0 ¢ I, this contradicts
(6). Therefore [y, z] = 0 and in turn (again by (6)) [h, 2] = 0. The last relation
implies that i € [, c;ker~y, which, in view of condition (D), yields h = 0. The
proof of the lemma is complete. O

Hereafter we denote by {A, : a € I} the basis of the Cartan subalgebra ) which
is dual to the basis of h* formed by the simple roots.

By Ef’;) we denote the elementary n x n matrix with 1 in position (7,j) and
zeros elsewhere. By 'a we denote the transpose of a matrix a. For each classical Lie
algebra g considered below, we consider the root datum (®,®") corresponding to
the Cartan subalgebra ) C g formed by diagonal matrices and the Borel subalgebra
b C g formed by upper triangular matrices.

Proof of Theorem 2 in type A. Assume that G is a simple group of type A,,_1, i.e.,
g = sl,(K) is the space of n x n matrices of trace zero. The subregular orbit
Osubreg consists of all nilpotent matrices = € sl,(K) with Jordan form (n —1,1).
Let @ ={e; —¢j: 1 <i#j<n}and &t ={g; —¢; : 1 <i < j <n}. The
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matrix €ei—e; = EZ(?) is a root vector for the root €; —¢;. Let a; = &; — €441
(i=1,...,n—1) be the simple roots.

Let a simple root @ = ;. Up to automorphism of the Dynkin diagram, we may
suppose that 7 < n —1. The matrix = := eq,; yo;,; + Zjez{i,iﬂ} €q, is an element of
Ogubreg Mg, and the matrix i := Ao, —Aa,,; € Pa, \Rad(py, ) is such that [y, 2] = 0.
From Proposition 5, we conclude that Vsybreg(cvi) has a dense B-orbit. O

Proof of Theorem 2 in type B. Assume that G is a simple group of type B, with
m > 2, ie., g = 50,(K) with n = 2m + 1, seen as the subalgebra of s, (K) of
matrices which are skew symmetric with respect to the skew diagonal. The roots
are @ = {te; e, : 1 <i<j<mjU{te;:1<i<m}and ®" ={e;+¢;:1<
i<j<m}U{eg:1<i<m} and corresponding root vectors are

_ n) (n) _ pn) (n) S
Ceime; =Ly — By jnyi1oio €eite; = By — B for 1 <i<j<m,

e, = E(n) E(")

i1~ Ertipp1 for1<i<m, e o= te, forae ®T.
The simple roots are o; :=¢; —€;41, for i =1,...,m — 1, and a,, := €.
The subregular orbit Ogypreg consists of nilpotent matrices x € so,,(K) of Jordan

form (n —2,1,1). Fori € {1,...,m — 1}, the matrix

Ti = €q;4a;4y T Z €a;
j@{ii+1}
belongs t0 Ogubreg N Ma,. Moreover the matrix y; := Ao, — Aq;,, is an element of
Pa, \Rad(pa,) such that [y;, z;] = 0. From Proposition 5, it follows that Vsubreg (%)
has a dense B-orbit. Note that x,,_1 also belongs to Osubreg N Na,, and y,—1 also
belongs to pq,, \ Rad(p,,,), hence the orbital variety Vsuybreg(cum) has also a dense
B-orbit. We have shown that, in type B, all the orbital varieties of Ogypreg have a
dense B-orbit. ([l

Proof of Theorem 2 in type C. Assume G of type C,, with m > 3. We deal with
the following realization of g = sp,,(K) with n = 2m:

g= {( ZL _I;* ) :a,b,c are n x n matrices, b = b*, c:c*}

where x* stands for the transpose of x by the skew diagonal. In this case, we
have the roots ® = {£e; +¢; 1 1 < i < j < m}U{£2 : 1 < i < m} and
Ot ={e;te;:1<i<j<m}U{2;:1<1i<m}, and we consider the following
root vectors:

_ (n) (n) _ (n) (n) .
€eime; = Bij — Eniy_jnir—i €eite, = Byt Ejy forl<i<j<m,
€e, = EZ.(Z)Hﬂ. for1<i<m, e_o,="e, foracdt.
The simple roots are «; :==¢; —€;41, for i =1,...,m — 1, and «a,, := 2¢,,.

The subregular orbit Ogybreg C 8P, (K) consists of all nilpotent matrices = €
sp,,(K) of Jordan form (n — 2,2).

The element x; := eg., + Z;"ZQ €q, belongs to Osypreg M Na, and the element
Y1 i= €_q, e, e, belongs to ps, \Rad(p,,) and satisfies [y1,21] = 0. The element
Ty 1= €2e, _, + Z;n;ll eq,; belongs to Osupreg N M, and satisfies [e_q,,, Zm] = 0.
By applying Proposition 5, we get that Vybreg (1) and Vsybreg (i) contain a dense
B-orbit.
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Finally let us show that Vsybreg (%) has no dense B-orbit whenever ¢ € {2,...,m—
1}. In view of Corollary 2, arguing by induction on m > 3, we may assume that
i=2 Let I ={a;:j¢{2,3}}U{a + as,2e3} and set 20 = > . eq. Note that
22 € Ogubreg N Na,. Moreover, it is easy to see that the set I fulfills the conditions
(A)—(D) of Lemma 5. It follows that Viupreg(cr2) has no dense B-orbit. The proof
of the theorem is complete in type C. [l

Proof of Theorem 2 in type D. Assume G of type D,, for m > 4. Hence g = s0,,(K)
with n = 2m, seen as the subalgebra of sl,,(K) formed by matrices which are skew
symmetric by the skew diagonal. The roots are ® = {£e; £¢; : 1 <i < j < m}
and ®* = {g; £¢; : 1 <i < j < m} and we consider the root vectors

0o, = E™ — B

_ ) (n)
,J n+l—jn+1—i and Ceite; =E; E

in+l1—j5  “int+l—i

for 1 <i < j <m,and e_, = ‘e, for all @« € ®T. The simple roots are o; :=
€ —¢€it1, fori=1,...,m—1, and oy, := €y—1 +Em. The subregular orbit Ogybreg
is the set of nilpotent elements z € so0,,(K) of Jordan form (n — 3, 3).

The element z; := e, 4., —l—Z;":Z €q; belongs to Ogsubreg Mg, . The matrix y; :=
2€_q, —€cites —Cep—cp_1 —Cesz—c,, FEeste,, Delongs to p,, \Rad(ps, ) and commutes
with x1. By Proposition 5, we deduce that Vsybreg(v1) has a dense B-orbit. The
element x;m_1 = €c,_,4e,._, + Z#m_l eq,; belongs to Osubreg N Na,,_, and it
commutes with y,,—1 :=e_q,, , +€a,, € Pan_, \Rad(Pa,, ), hence Vsybreg(m—1)
contains a dense B-orbit. The symmetry of the Dynkin diagram guarantees that
Vsubreg ((m ) also contains a dense B-orbit.

Next we show that Vsubreg(@m—2) has no dense B-orbit. In view of Corollary
2, we may assume that m = 4. In this case x := eq, + €a14as + €astas + €ay IS
an element of Ogybreg N Mo, Then, Lemma 5 shows that Viypreg(a2) has no dense
B-orbit.

Finally assume that m > 5 and let us show that the orbital variety Vsubreg(ct:)
has no dense B-orbit for i € {2,...,m — 3}. Invoking again Corollary 2, we may
assume that i = 2. Letting I = {o; : j ¢ {2,3}} U{as+ a3, a3+... 4+ am_o+an},
it is easy to check that the set I fulfills conditions (A)—(D) of Lemma 5 and that the
element  := Y ; e, belongs to Ogubreg N Ny, Hence, by Lemma 5, Viubreg(ar2)
contains no dense B-orbit. The proof is complete in type D. (Il

4.3. Proof of Theorem 2 in exceptional cases. In this section, G is a simple
algebraic group of exceptional type. As in Section 4.2, we denote by {\, : a € IT}
the basis of the Cartan subalgebra h which is dual to the basis of h* formed by the
simple roots. Moreover for each exceptional type we have determined a Chevalley
basis of n = @4+ ga, i-e., the subbasis of a Chevalley basis of g. To this end, we
consider the following total ordering of the positive roots:

e In types G5 and Fy, the simple roots are ordered according to the following
Dynkin diagrams:

Go: ] <= o Fry: o —as=a3 — oy

In type Fg (and in type Eg, resp., F7), the simple roots are ordered ac-
cording to the numbering of the Dynkin diagram drawn above Theorem 2
(and its subdiagram of vertices ayq, ..., ag, T€sp., aq, ..., ar)

e Next each positive root is identified with the tuple of its coordinates in
the basis II. We consider the partial order determined by the height (i.e.,
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the sum of the coordinates) and we order the roots of same height by the
lexicographic order of the coordinates.

For instance here is the ordered list of the positive roots in type Gs, identified with
the couples of their coordinates in the basis (a1, as):

a1 = [1,0], Qo = [0, 1], a3 = [1,1], g = [2,1], a5 = [3,1], g = [3,2].

In each case let r be the number of simple roots, so ay,...,qa, are the simple
roots, and let n denote the number of positive roots. For i € {1,...,r}, we set
Ai i= Ag,. Finally let (eq,...,e,) be the Chevalley basis of n, numbered according
to the total ordering of the positive roots. We fix an element

n
T = E Tje; € n.
J=1

We consider the linear map b — n, y — [y, z], and we denote by A(x) the matrix
of this map between the bases (A1,...,Ar,e1,...,¢e,) and (eq,...,e,) of b and n,
respectively. Note that for every simple root o = «; (with ¢ € {1,...,r}), the
matrix M, (z) of Proposition 6 is obtained from the matrix A(z) by deleting the
i-th row of the matrix (i.e, the row of the matrix corresponding to e;) and replacing
all the coefficients x; by zeros. The explicit matrices A(z) corresponding to the
different exceptional cases are given in the Appendix.

Proof of Theorem 2 in type G2. On the one hand, for x € n,,, it is easy to see that
the matrix M,, (z) has rank at most 4 whereas it has five rows. By Proposition 6,
Vsubreg (1) has no dense B-orbit. On the other hand, the matrix M, (e1 + eg) has
five linearly independent rows. It follows from Proposition 6 that B - (e; + eg) is a
dense B-orbit of Vsubreg(v2). O

Proof of Theorem 2 in type Fy. The roots as, ag, oy generate a root system of type
Cs. Hence it follows from Corollary 2 and the proof of the theorem in type C' that
Vsubreg(v3) has no dense B-orbit.

For every x € ng,, the rows of the matrix M,,(z) corresponding to the root
vectors eq, es3,€y,...,€e19 are linearly dependent. By Proposition 6, it follows that
Vsubreg (@2) has no dense B-orbit.

For x € n,,, the rows of the matrix M,, (x) corresponding to the root vectors
ej for j € {1,...,16} \ {4} are linearly dependent, and this shows that Vsybreg(cta)
has no dense B-orbit.

Finally, it can be seen that the matrix M,, (es + e3 + e4 + e12) has linearly
independent rows, and this shows that B-(e2+e3+e4+€12) is dense in Vsybreg (a1)-
The proof is complete in type Fjy. O

Proof of Theorem 2 in types Fg, E7, Fs. In type Eg, the roots aq, ..., as generate
a root system of type D5 while the roots as, ..., ag generate a root system of type
D7. By comparing Corollary 2 and the proof of the theorem in type D, we deduce
that the orbital varieties of type Eg corresponding to as, ..., a7 have no dense B-
orbit. Arguing in the same way shows that the orbital varieties of type E; (resp.,
Eg) attached to the roots as, ..., (resp., as,...,as) have no dense B-orbit.

In type Ejg, letting x; := Z?:z €a; t €ajtastastas, it can be seen that the
matrix M,, (z1) has linearly independent rows. Therefore, Proposition 6 implies
that the element z; belongs to a dense B-orbit of Vsybreg(t1). In view of the
symmetry of the Dynkin diagram of type Eg, the orbital variety Vsubreg (cts) has also
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a dense B-orbit whose representative is Z?:l €a; T Caztastastas- BY combining
Corollary 2 and the proof of Theorem 2 in type D, we obtain that, if Viybreg(ar2)
has a dense B-orbit, then this orbit contains an element x € n,, whose natural
projection on the subalgebra g’ C g of type Ds corresponding to the set of simple
roots Il" = {aq,...,a5} is @' = eq, + €ay + €ay + €as + €astastas- FOr such an
element z, on can see that the matrix M,,(x) has linearly dependent rows (the row
corresponding to the root vector e,,+a,+a5+aq 1S @ linear combination of the rows
above it). By Proposition 6, this implies that Viupreg(c2) has no dense B-orbit.
This completes the proof of the theorem in type Fjs.

In type E7, the above proof of the theorem in type Fg and Corollary 2 imply
that Vsubreg(c2) has no dense B-orbit. It can be seen that the matrix M,,(x7)
corresponding to the element x7 := 2?21 €a; T Cagtar T Caztastastastar, Nas
linearly independent rows, hence Proposition 6 implies that B - x7 is a dense B-
orbit of Vsubreg(7). Finally, invoking again Corollary 2, we obtain that a dense
B-orbit of Vsybreg(c1) (if it exists) must contain an element = € n,, whose natural
projection on the Lie subalgebra g’ C g of type Eg corresponding to the set of
simple roots II' = {ay, ..., ag} is the element x; written above. However, for such
an element x, one can check that the row of the matrix M, (x) corresponding to
the root vector en, +as+astas+as+a; 1S a linear combination of the rows above it.
This implies that Vsubreg (1) has no dense B-orbit. This completes the proof of the
theorem in type FEx.

In type Eg, comparing Corollary 2 with the proof of the theorem in type FE7 given
above, we already deduce that Vsubreg(1) and Vaubreg(@2) have no dense B-orbit.
Invoking again Corollary 2 and the proof of the theorem in type D, we obtain that a
dense B-orbit of Viypreg (as) (if it exists) should have a representative « € n,, whose
natural projection x’ on the subalgebra g’ C g of type D7 corresponding to the
simple roots II" = {aw, ..., as} is given by o’ = 237‘:2 e; + eq3. However, a careful
calculation shows that for any such element x, the row of M, () corresponding to
the root vector egg is a linear combination of the rows above it. This implies that
Vsubreg (vg) has no dense B-orbit. The proof of the theorem is complete. O

Remark 1. Note that, in the proofs done in this section, in each case where
Vsubreg (@) has a dense B-orbit, we provide a representative of this orbit. This
element is in particular a Richardson element of the nilradical n,.

APPENDIX

In this appendix, g is a simple Lie algebra of exceptional type, (A1,..., ) is
the basis of the Cartan subalgebra h which is dual to the basis of h* formed by the
simple roots ag,...,q,, (e1,...,e,) is a Chevalley basis of the maximal nilpotent
subalgebra n (the numbering of the vectors corresponds to the total ordering of the
positive roots determined by the height, roots with the same height being ordered
according to the lexicographic order of their coordinates).

Given x = 2?21 xjej, we denote by A(z) the matrix of the linear map b — n,
y — [y, x] with respect to the bases (A1,...,Ar, €1,...,€,) of b and (eq,...,e,) of
n. In this appendix, we describe the matrix A(z) in the different exceptional cases.

In Figures 1 and 2, we give the matrix A(x) in types G2 and Fy, respectively. For
clarity, the zero coefficients are replaced by dots. In type Fj, we write the matrix
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in the form A(z) = ( A1 0 ) where A1, As1, and As 5 are the 12 x 14
A1 Ago ' ’ '
matrices described in Figure 2.
1
2
X3 X3 X2 —X1
21‘4 X4 2I3 . —21‘1
3335 x5 —3334 . . 3331
3rs 2x6 . —x5 —3x4 3T3 T2

FIGURE 1. The matrix A(z) in type G

] -
S zs .
. z3
. z4
5 Ts : © mp —xy
Al 1= e  Tg T3 —x2
» . . z7 w7 - . z4 —x3 - .
rg Ty 8 - w6 - —xy - w3 —@y
xg9 29 2xg —2x3
© %o ®i0 Ti0 - @7 © —®e - Ty —T2 : :
x11 ®11 2T11 . Tg . 2xg . . . . —2x3 —x1 .
T12 Ti12 T12 T12 T10 - - —xg w7 : —r5 w4 B 5
: z13 2x13 13 - ¢ m0 —®g : —x7 6 : z4 —x3
x14 2x14 2T14 . @11 . . —xzg9 23 . —2xg x5
r15 ®15 2T15 %15 ®13 - T12 —T11 : : g —x7 : :
. 16 2T16 2T16 - . . 2x13 . . —2x19 . . 2x7
r17 2217 2w17 X7 - ®15 - —T14 —TI3 T12 . —Z10 . g
A2 1= T8 =8 2x18 2w18 w16 - © 2x15 : © —2mi2 : :
’ z19 2x19 3w19 *19 - ©xT : © -5 —Ti4 T3 ®12 L1l
z20 2x20 2®20 2720 T18 - - 2wy7 —wie - : : —2z12
x21 2x21 3way 2®21 - © T20  Z19 . —T18 T17 16 . —x15
x22 2x22 4wgy 2w - © 2wy . . 2x19 . —z18
x23 3x23 4waz 2m23 - ®22 - . 221 —x20 2T19
2x24 3woq 4x24 2w24 xT23 - : : 22 : 2x21 :
.
T4 —x3 —T1
—2x4
—xg  Is T4 —x2 :
AQ 9 = . 2z . . —2x4 —x1
’ —®10 —xT9 —T8 T7 ze : —x3
. 2x10 . . . x5 —2x4 —xg
: 13 —®12 - ri0 —®g —IT7 g —x4 —I3 :
x16 . —2x15 . 2x13 —x11 . xg —2x7 . —2x3
: - —2x17 Tie : —®14 2®13 : —2z10 x9 —2xg —T2
—®20 2%19 : z18 —2w17 . 2x15 —x14 —2®12 w11 —2w8 —x5 —T1 -

FIGURE 2. The blocks A1, Aa1, Aa o of the matrix A(z) in type F,

In type Es, instead of drawing the matrix A(z), we give the list of the roots o,
for j =1,...,120. For each root o, we indicate its coordinates [¢; 1, ..., €;g] in the
basis (aq,...,as) and the couples (a,b) such that e; = +[eq, es] = —[ep, e,]. This
information is sufficient for characterizing the matrix A(x): the row of the matrix
corresponding to e; contains the coeflicient zje;; in the column corresponding to
A; for all ¢ € {1,...,8}, and for each one of the listed couples (a,b) it contains x;
in the column corresponding to e, and —x, in the column corresponding to e, and
these are all the nonzero coefficients in the j-th row of the matrix.

In type Eg (resp. FEr) the matrix A(z) is obtained from the matrix A(z) of
type Es by deleting the columns corresponding to A7 and Asg (resp., the column



corresponding to Ag) and by deleting the rows and the columns corresponding to
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e; whenever (e;7,€¢;8) # (0,0) (resp., whenever €; g # 0).

(31
@2
(%]

oy

ae
a7

g

=
=
=
=
a5 = [0,0,0,0,1,0,0,0].
=
=
=

1,0,0,0,0,0,0,0].
0,1,0,0,0,0,0,0].
0,0,1,0,0,0,0,0].
0,0,0,1,0,0,0,0].

0,0,0,0,0,1,0,0].
0,0,0,0,0,0,1,0].
0,0,0,0,0,0,0,1].

ag =[1,0,1,0,0,0,0,0]: (1,3).

51
52
@53
54
@55
56

as57
@58
@59
@60
a6l
@62
@63
64
@65
@66
@67

[ ]
[ J
[ |
[ |
[ ]
[ ]

[1,1,1,1,1,0,0,0]:
[1,0,1,1,1,1,0,0]:
[0,1,1,2,1,0,0,0]:
[0,1,1,1,1,1,0,0]:
[0,1,0,1,1,1,1,0]:
[0,0,1,1,1,1,1,0]:
[0,0,0,1,1,1,1,1]:

[1,1,1,2,1,0,0,0]:
[1,1,1,1,1,1,0,0]:
[1,0,1,1,1,1,1,0]:
[0,1,1,2,1,1,0,0]:
[0,1,1,1,1,1,1,0]:
[0,1,0,1,1,1,1,1]:
[0,0,1,1,1,1,1,1]:

[1,1,2,2,1,0,0,0]:
[1,1,1,2,1,1,0,0]:
[1,1,1,1,1,1,1,0]:
[1,0,1,1,1,1,1,1]:
[0,1,1,2,2,1,0,0]:
[0,1,1,2,1,1,1,0]:
0,1,1,1,1,1,1,1]:

[1,1,2,2,1,1,0,0]:
[1,1,1,2,2,1,0,0]:
[1,1,1,2,1,1,1,0]:
1,1,1,1,1,1,1,1

]
]
]
]
]
]

[
[

[1,1,2,2,2,1,0,0]:
[1,1,2,2,1,1,1,0]:
1,1,1,2,2,1,1,0]:

|
]
( |
( ]
[ ]
[ ]

[1,1,2,3,2,1,0,0]:
[1,1,2,2,2,1,1,0]:
[1,1,2,2,1,1,1,1]:
1,1,1,2,2,2,1,0]:
1,1,1,2,2,1,1,1]:

0,1,0,1,0,0,0,0]:
0,0,1,1,0,0,0,0]:
0,0,0,1,1,0,0,0]:
0,0,0,0,1,1,0,0]:

@16 =

[ ]
@17 =[0,1,1,1,0,0,0,0]:
a1s = [0,1,0,1,1,0,0,0]:
atg = [0,0,1,1,1,0,0,0]:
[ ]
[ ]
[ ]

1,0,1,1,0,0,0,0]:

(1,11), (9,4).
(2,11), (3, 10).
(2,12), (10, 5).
(3,12), (11,5).

0,0,0,0,0,1,1,0]:
0,0,0,0,0,0,1,1]:

0,1,1,2,2,1,1,0]:
0,1,1,2,1,1,1,1

1,1,1,2,1,1,1,1
0,1,1,2,2,2,1,0]:
0,1,1,2,2,1,1,1

aso = [0,0,0,1,1,1,0,0]: (4,13), (12,6).

asy = [0,0,0,0,1,1,1,0]: (5,14), (13,7).

ass = [0,0,0,0,0,1,1,1]: (6,15), (14,8).

ass = [1,1,1,1,0,0,0,0]: (1,17), (2,16), (9,10).

agy =[1,0,1,1,1,0,0,0]: (1,19), (9,12), (16, 5).
(2,4). ass =[0,1,1,1,1,0,0,0]: (2,19), (3,18), (17, 5).
(3,4). ase = [0,1,0,1,1,1,0,0]: (2,20), (10,13), (18, 6).
(4,5). asy =[0,0,1,1,1,1,0,0]: (3,20), (11,13), (19, 6).
(5,6). asg = [0,0,0,1,1,1,1,0]: (4,21), (12,14), (20, 7).
(6,7). agg = [0,0,0,0,1,1,1,1]: (5,22), (13,15), (21, 8).
(7,8).

(1,25), (2,24), (9, 18), (23,5).
(1,27), (9, 20), (16,13), (24,6).
(4,25), (17,12), (18, 11), (19, 10).
(2,27), (3,26), (17,13), (25,6).
(2,28), (10,21), (18, 14), (26, 7).
(3,28), (11,21), (19, 14), (27, 7).
(4,29), (12,22), (20, 15), (28, 8).

(1,32), (4,30), (18,16), (23,12), (24, 10).
(1,33), (2,31), (9,26), (23,13), (30, 6).

(1,35), (9,28), (16,21), (24, 14), (31, 7).
(4,33), (17,20), (26, 11), (27, 10), (32, 6).
(2,35), (3,34), (17,21), (25, 14), (33, 7).
(2,36), (10,29), (18,22), (26, 15), (34, 8).
(3,36), (11,29), (19, 22), (27, 15), (35, 8).

(3,37), (11,30), (23, 19), (24, 17), (25, 16), (32,9).
(1,40), (4, 38), (23, 20), (26, 16), (31, 10), (37, 6).
(1,41), (2,39), (9, 34), (23,21), (30,14), (38,7).
(1,43), (9, 36), (16,29), (24,22), (31, 15), (39, 8).
(5,40), (18,27), (19, 26), (20, 25), (32,13), (33,12).
(4,41), (17,28), (32, 14), (34, 11), (35, 10), (40, 7).
(2,43), (3,42), (17,29), (25,22), (33, 15), (41,8).

(3,45), (11,38), (23,27), (31,17), (33,16), (40, 9), (44, 6).
(1,48), (5,45), (18,31), (20, 30), (24, 26), (37,13), (38, 12).
(1,49), (4, 46), (23,28), (34, 16), (37, 14), (39, 10), (45, 7).
(1,50), (2,47), (9,42), (23,29), (30,22), (38, 15), (46, 8).

(5,49), (18, 35), (19, 34), (28, 25), (32,21), (41,12), (48, 7).
(4,50), (17, 36), (32, 22), (40, 15), (42, 11), (43, 10), (49, 8).

(3,52), (5,51), (24,33), (25, 31), (27, 30), (38,19), (44, 13), (48,9).
(3,53), (11,46), (23, 35), (39, 17), (41, 16), (44, 14), (49, 9), (51,7).
(1,55), (5,53), (18,39), (24, 34), (28, 30), (37, 21), (46, 12), (52,7).
(1,56), (4, 54), (23,36), (37,22), (42, 16), (45, 15), (47, 10), (53, 8).
(6,55), (20,41), (21, 40), (33, 28), (34, 27), (35, 26), (48, 14), (49, 13).
(5,56), (18,43), (19, 42), (32, 29), (36,25), (48,15), (50, 12), (55, 8).

(4,57), (12,51), (16, 48), (24, 40), (27, 37), (32, 31), (44, 20), (45, 19), (52,11).
(3,59), (5,58), (24,41), (25, 39), (35, 30), (44, 21), (46, 19), (55,9), (57, 7).
(3,60), (11,54), (23,43), (44, 22), (47,17), (50, 16), (51, 15), (56, 9), (58, 8).
(1,61), (6,59), (20,46), (21,45), (34,31), (38,28), (39, 26), (52, 14), (53, 13).
(1,62), (5,60), (18,47), (24, 42), (36, 30), (37,29), (52, 15), (54, 12), (59, 8).
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agg = [0,1,1,2,2,2,1,1]:
age = [1,2,2,3,2,1,0,0]:
aro =[1,1,2,3,2,1,1,0]:
ar =[1,1,2,2,2,2,1,0]:
ary =[1,1,2,2,2,1,1,1]:
arzs =[1,1,1,2,2,2,1,1]:
a7y =[0,1,1,2,2,2,2,1]:
ars =[1,2,2,3,2,1,1,0]:
(69, 7).

aze = [1,1,2,3,2,2,1,0]:
(66,11).

az7 =[1,1,2,3,2,1,1,1]:
(70, 8).

azg =[1,1,2,2,2,2,1,1]:
(71, 8).

arg =[1,1,1,2,2,2,2,1]:
(67, 14).

ago = [1,2,2,3,2,2,1,0:
(66, 17), (69, 14).

agy =[1,2,2,3,2,1,1,1]:
(69,15), (75, 8).

agz =[1,1,2,3,3,2,1,0:
(64, 20, (71, 12).

agz = [1,1,2,3,2,2,1,1]:
(73,11), (76, 8).

agq = [1,1,2,2,2,2,2,1]:
(72, 14), (74, 9).

ags = [1,2,2,3,3,2,1,0]:

(64, 26), (69,21), (71,18).

age = [1,2,2,3,2,2,1,1]:
(69, 22), (73, 17), (80, 8).
agr =[1,1,2,3,3,2,1,1]:
(72, 20), (78,12), (82,8).
agg = [1,1,2,3,2,2,2,1]:

(76,15), (77,14), (79, 11).

agg =[1,2,2,4,3,2,1,0]:

(69,28), (70,26), (76,18),

ago = [1,2,2,3,3,2,1,1]:

(69, 29), (72,26), (78,18),

agy = [1,2,2,3,2,2,2,1]:

(60, 41), (79, 17), (80, 15),

agz = [1,1,2,3,3,2,2,1]:

(74,24), (77,21), (82,15),

ags =[1,2,3,4,3,2,1,0]:

(61,44), (69, 35), (70, 33),

agy =[1,2,2,4,3,2,1,1]:

(69,36), (77,26), (83,18),

ags =[1,2,2,3,3,2,2,1]:

(67,41), (74,30), (81,21),

age = [1,1,2,3,3,3,2,1]:

(73,35), (79,27), (82,22),
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(6,62), (20, 50), (29,40), (33,36), (42,27), (43, 26), (48,22), (56, 13), (61, 8).

(2,63), (10,57), (18, 51), (23, 48), (30, 40), (32, 38), (33, 37), (44, 26), (45, 25), (52, 17).
(4,64), (12, 58), (16, 55), (24,49), (32, 39), (35,37), (44, 28), (53, 19), (59, 11), (63, 7).
(3,66), (6,64), (21,51), (27, 46), (38, 35), (39, 33), (41, 31), (57, 14), (58, 13), (61,9).
(3,67), (5,65), (24,50), (25,47), (43, 30), (44, 29), (54, 19), (57, 15), (62, 9), (64, 8).

(1,68), (6,67), (20,54), (29, 45), (38, 36), (42, 31), (47, 26), (52, 22), (60, 13), (66, 8).
(7,68), (21, 56), (22, 55), (34, 43), (35, 42), (36, 41), (49, 29), (50, 28), (61, 15), (62, 14).

(2,70), (10,64), (18, 58), (23, 55), (30, 49), (32, 46), (41, 37), (44, 34), (53, 25), (59,17),

(4,71), (6,70), (16, 61), (27, 53), (28,51), (39, 40), (45, 35), (49, 31), (58, 20), (63, 14),

(4,72), (12, 65), (16, 62), (24, 56), (32, 47), (43, 37), (44, 36), (60, 19), (63, 15), (67, 11),

(3,73), (6,72), (27, 54), (29,51), (38,43), (47,33), (50,31), (57,22), (65,13), (68,9),

(1,74), (7,73), (21, 60), (22, 59), (34,47), (36, 46), (39, 42), (53, 29), (54, 28), (66, 15),

(2,76), (6,75), (10,71), (23, 61), (33,53), (34, 51), (45, 41), (46, 40), (49, 38), (58, 26),

(2,77), (10, 72), (18, 65), (23, 62), (30, 56), (32, 54), (44, 42), (50, 37), (60, 25), (67, 17),

(5,76), (13, 70), (19, 66), (27,59), (28,57), (39, 48), (52, 35), (55, 31), (61, 24), (63,21),

(4,78), (6,77), (16,68), (27,60), (36,51), (45, 43), (47, 40), (56,31), (63, 22), (65, 20),

(3,79), (7,78), (21, 65), (22, 64), (39,50), (41, 47), (43, 46), (54, 35), (58, 29), (71, 15),

(2,82), (5,80), (13,75), (25,66), (33,59), (34, 57), (46,48), (52,41), (55, 38), (61, 30),

(2, 83), (6,81), (10, 78), (23, 68), (33,60), (42,51), (45, 50), (54, 40), (56, 38), (65, 26),

(5,83), (13,77), (19,73), (27, 67), (36, 57), (47,48), (52,43), (62, 31), (63, 29), (68, 24),

(4,84), (7,83), (16,74), (22, 70), (28,65), (39, 56), (43, 53), (49,47), (58, 36), (60, 35),

(4, 85), (12, 80), (20, 75), (32, 66), (34, 63), (40, 59), (52,49), (53,48), (55,45), (61, 37),
(82, 10).

(2,87), (5,86), (13,81), (25,73), (33,67), (42, 57), (52, 50), (54, 48), (62, 38), (68, 30),
(85, 8).

(2,88), (7,86), (10, 84), (22,75), (23, 74), (34, 65), (46, 56), (49, 54), (50, 53), (58, 42),
(81, 14).

(5,88), (7,87), (19, 79), (28,72), (29, 70), (39, 62), (43, 59), (55,47), (64, 36), (67, 35),
(84,12).

(3,89), (11, 85), (19, 80), (27, 75), (32, 71), (40, 64), (41, 63), (55, 51), (57, 49), (58, 48),
(76, 25), (82, 17).

(4,90), (12, 86), (20,81), (32,73), (40, 67), (42, 63), (52, 56), (60, 48), (62,45), (68, 37),
(87, 10), (89, 8).

(2,92), (5,91), (7,90), (25,79), (29, 75), (34, 72), (46,62), (50, 59), (55, 54), (64,42),
(84, 18), (85,15).

(6,92), (14, 87), (20, 84), (28, 78), (29, 76), (31, 74), (39, 68), (43, 66), (61, 47), (71, 36),
(83,21), (88, 13).
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agr =[2,2,3,4,3,2,1,0]: (1,93), (9,89), (16,85), (24, 80), (31, 75), (37, 71), (45,64), (46,63), (57, 53), (58, 52),
(59, 51), (66,44), (69, 39), (70, 38), (76, 30), (82, 23).
ags =[1,2,3,4,3,2,1,1]: (3,94), (11, 90), (19, 86), (27, 81), (32, 78), (40, 72), (50, 63), (57, 56), (62, 51), (65, 48),

(68, 44), (69, 43), (77,33), (83,25), (87, 17), (93, 8).
age = [1,2,2,4,3,2,2,1]: (4,95), (7,94), (12,91), (32,79), (34, 77), (36, 75), (53, 62), (55, 60), (56, 59), (67, 49),

(70, 42), (74,37), (81,28), (88, 18), (89, 15), (92, 10).

100 = [1,2,2,3,3,3,2,1]: (2,96), (6,95), (14, 90), (26, 84), (29, 80), (34, 78), (38, 74), (46, 68), (50, 66), (61, 54),
(71,42), (73, 41), (79, 33), (85, 22), (86, 21), (91,13).

@101 = [2,2,3,4,3,2,1,1]: (1,98), (9,94), (16,90), (24, 86), (31,81), (37, 78), (45, 72), (54, 63), (57, 60), (65, 52),
(67,51), (69,47), (73,44), (77, 38), (83, 30), (87,23), (97,8).

a2 = [1,2,3,4,3,2,2,1]: (3,99), (7,98), (11,95), (19,91), (32,84), (41,77), (43, 75), (55, 65), (56, 64), (58, 62),
(70, 50), (72,49), (74,44), (81, 35), (88, 25), (92, 17), (93, 15).

a0z = [1,2,2,4,3,3,2,1]: (4,100), (6,99), (14,94), (26,88), (34,83), (36,80), (45,74), (53,68), (56,66),

(61, 60), (73, 49), (76,42), (79, 40), (86, 28), (89,22), (91, 20), (96, 10).
aloa = [2,2,3,4,38,2,2,1]: (1,102), (7,101), (9,99), (16,95), (24,91), (37,84), (46,77), (47,75), (58,67),

(59, 65), (60,64), (70,54), (72,53), (79, 44), (81, 39), (88,30), (92, 23), (97, 15).
aios = [1,2,3,4,3,3,2,1]: (3,103), (6,102), (11,100), (14,98), (33,88), (41, 83), (43,80), (51,74), (56,71),

(58, 68), (61,65), (76,50), (78,49), (84, 40), (86, 35), (91,27), (93,22), (96, 17).
a1o6 = [1,2,2,4,4,3,2,1]: (5,103), (13,99), (18,96), (21,94), (26,92), (34,87), (36,85), (52,74), (59,68),

(61, 67), (62,66), (73,55), (79,48), (82, 42), (89, 29), (90, 28), (95, 20), (100,12).
o107 = [2,2,3,4,3,3,2,1]: (1,105), (6,104), (9,103), (14,101), (16,100), (38,88), (46,83), (47,80), (51,79),

(58, 73), (60, 71), (66,65), (76,54), (78, 53), (84,45), (86,39), (91, 31), (96, 23), (97, 22).
aos = [1,2,3,4,4,3,2,1]: (3,106), (5,105), (13,102), (21,98), (25,96), (33,92), (41,87), (43,85), (57, 74),

(61,72), (62,71), (64,68), (78,55), (82, 50), (84,48), (90, 35), (93, 29), (95,27), (100, 19).
aloe = [2,2,3,4,4,3,2,1]: (1,108), (5,107), (9,106), (13,104), (21,101), (30,96), (38,92), (46,87), (47, 85),

(57,79), (64,73), (66,72), (67,71), (78, 59), (82,54), (84,52), (90,39), (95, 31), (97, 29), (100, 24).
a0 = [1,2,3,5,4,3,2,1]: (4,108), (12, 105), (20, 102), (28, 98), (32,96), (40,92), (43,89), (49,87), (61,77),

(62, 76), (63,74), (70,68), (82,56), (83,55), (88,48), (93, 36), (94, 35), (99, 27), (103,19), (106, 11).
a1 = [2,2,3,5,4,3,2,1]: (1,110), (4,109), (12,107), (20,104), (28,101), (37,96), (45,92), (47,89), (53,87),

(63, 79), (66,77), (67,76), (70,73), (82, 60), (83,59), (88,52), (94,39), (97, 36), (99, 31), (103, 24), (106, 16).
ajie = [1,3,3,5,4,3,2,1]: (2,110), (10, 108), (18, 105), (26, 102), (32, 100), (34, 98), (40, 95), (49, 90), (50, 89),

(61, 81), (62, 80), (69,74), (75,68), (85, 56), (86,55), (91, 48), (93,42), (94,41), (99, 33), (103, 25), (106, 17).
a1z = [2,3,3,5,4,3,2,1]: (1,112), (2,111), (10, 109), (18, 107), (26, 104), (34, 101), (37, 100), (45, 95), (53, 90),
(54, 89), (66,81), (67,80), (69,79), (75,73), (85,60), (86,59), (91,52), (94,46), (97,42), (99,38), (103,30),
(106, 23).

14 = [2,2,4,5,4,3,2,1]: (3,111), (11, 109), (19, 107), (27, 104), (35, 101), (44, 96), (47, 93), (51,92), (58, 87),
(63, 84), (70,78), (71,77), (72,76), (82,65), (83,64), (88,57), (97,43), (98,39), (102,31), (105,24), (108, 16),
(110, 9).

ai1s = [2,3,4,5,4,3,2,1]: (2,114), (3,113), (17, 109), (25, 107), (33,104), (41, 101), (44, 100), (51, 95), (54, 93),
(58,90), (69,84), (71,81), (72,80), (75,78), (85,65), (86,64), (91,57), (97,50), (98,46), (102,38), (105, 30),
(108, 23), (112, 9).

ai1s = [2,3,4,6,4,3,2,1]: (4,115), (16,112), (17,111), (32, 107), (40, 104), (44, 103), (49, 101), (51, 99), (58, 94),
(60, 93), (69,88), (75,83), (76,81), (77,80), (86,70), (89,65), (91,63), (97,56), (98,53), (102,45), (105,37),
(110, 23), (113,11), (114, 10).

a7 = [2,3,4,6,5,3,2,1]: (5,116), (18,114), (19,113), (30, 110), (32,109), (44,106), (48,104), (55,101),
(57,99), (64,94), (67,93), (69,92), (75,87), (77,85), (82,81), (89,72), (90,70), (95,63), (97,62), (98,59),
(102, 52), (108, 37), (111, 25), (112,24), (115, 12).

ajls = [2,3,4,6,5,4,2,1]: (6,117), (20,115), (31,112), (33,111), (45,108), (48,107), (57,103), (61,101),
(69,96), (71,94), (73,93), (80,87), (82,86), (83,85), (89,78), (90,76), (97,68), (98,66), (100,63), (105,52),
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(106, 51), (109, 40), (110, 38), (113, 27), (114, 26), (116, 13).

ajie = [2,3,4,6,5,4,3,1]: (7,118), (21,116), (34,114), (35,113), (46,110), (49,109), (58,106), (59,105),
(61,104), (70,100), (71,99), (79,93), (80,92), (82,91), (88,85), (89,84), (95,76), (96,75), (97,74), (102, 66),
(103, 64), (107, 55), (108, 53), (111,41), (112,39), (115, 28), (117, 14).

a1o0 = [2,3,4,6,5,4,3,2]: (8,119), (22,117), (36,115), (47,112), (50,111), (60,108), (62,107), (72,103),
(73,102), (74,101), (81, 96), (83,95), (84,94), (90, 88), (91, 87), (92,86), (98,79), (99, 78), (100, 77), (104, 68),
(105, 67), (106, 65), (109, 56), (110, 54), (113,43), (114, 42), (116,29), (118, 15).
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