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The intersection between a nilpotent orbit of a simple Lie algebra and a Borel subalgebra is always equidimensional. Its irreducible components are called orbital varieties. Orbital varieties belonging to different nilpotent orbits may have quite different behaviours. The orbital varieties of the subregular nilpotent orbit are always smooth but they have in general infinitely many B-orbits. At the opposite, the minimal nilpotent orbit is spherical but its orbital varieties may have singularities. In this paper, we characterize the orbital varieties of the subregular nilpotent orbit which have a finite number of B-orbits and we give a smoothness criterion for the orbital varieties of the minimal nilpotent orbit.

1. Introduction 1.1. Nilpotent orbits. Let G be a connected simple algebraic group over K (an algebraically closed field of characteristic zero). By g we denote the Lie algebra of G, by (g, x) → g • x we denote the adjoint action. Let B ⊂ G be a Borel subgroup and let n ⊂ g be the nilpotent radical of the Lie algebra of B.

An adjoint orbit O = G • x := {g • x : g ∈ G} is called nilpotent if the intersection O ∩ n is nonempty. The set N := G • n is the nilpotent cone. It consists of a finite number of nilpotent orbits. We emphasize four of them:

• The regular nilpotent elements form a single orbit O reg , called the regular nilpotent orbit, which is dense in N . • There is a single orbit O subreg , called the subregular nilpotent orbit, which is dense in N \ O reg . • There is a single nontrivial nilpotent orbit O min of minimal dimension, called the minimal nilpotent orbit; it lies in the closure of every nontrivial nilpotent orbit. • The only closed nilpotent orbit is the trivial orbit O triv = {0}.

1.2. Orbital varieties. Every nilpotent orbit O ⊂ N has a structure of symplectic variety, in particular its dimension dim O is even. The intersection O ∩ n is a quasi-affine variety, which is in fact equidimensional of dimension 1 2 dim O (see [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF]). The irreducible components of O ∩ n are called orbital varieties. They are B-stable, Lagrangian subvarieties of O. Orbital varieties arise in geometric representation theory, in relation with associated varieties of simple highest weight modules. We refer to the works of A. Joseph [START_REF] Joseph | On the variety of a highest weight module[END_REF][START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF] and references therein. In [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF], the orbital varieties of the minimal nilpotent orbit are studied with respect to their quantization properties.

Orbital varieties may be singular and may have an infinite number of B-orbits, and they have a complicated intersection pattern. There is no general classification of orbital varieties with respect to their geometrical or topological properties. We refer to [START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF] for some partial classifications, mainly in type A.

In this paper we study some properties of orbital varieties for an arbitrary simple algebraic group G, but in the case of the particular nilpotent orbits mentioned above.

There is not much to say about the trivial nilpotent orbit O triv = {0} and its sole orbital variety O triv ∩ n = {0}. In the case of the regular nilpotent orbit, the intersection O reg ∩ n is a single B-orbit, hence a single B-homogeneous (and therefore smooth) orbital variety. For the remaining two extremal nilpotent orbits O min and O subreg , the situation is not so straightforward. We stress the following facts:

• The minimal nilpotent orbit O min is spherical, hence every orbital variety of O min has a finite number of B-orbits. Moreover O min ∩ n contains a unique closed B-orbit, which therefore lies in every orbital variety. However the orbital varieties of O min may be singular.

In this paper, we characterize the singular orbital varieties of O min .

• At the opposite, in the subregular nilpotent orbit O subreg , every orbital variety is smooth; in fact it is open in the nilradical of some minimal parabolic subalgebra. However an orbital variety of O subreg does not always contain a dense B-orbit, and two orbital varieties of O subreg rarely intersect.

In this paper, we characterize the orbital varieties of O subreg which have a dense B-orbit (resp. a finite number of B-orbits), and we characterize the pairs of orbital varieties of O subreg which intersect.

In particular, the results shown in this paper illustrate how orbital varieties belonging to different nilpotent orbits may have different properties. Our main results are stated in terms of roots, simple roots and biggest root: see Section 2.2. The orbital varieties of O subreg can indeed be parameterized by the simple roots whereas the orbital varieties of O min can be parameterized by the simple long roots. These parameterizations are explained in Section 2.1.

Main results

2.1. Parameterization of orbital varieties. Hereafter we fix a maximal torus T ⊂ B and let h ⊂ g denote the corresponding Cartan subalgebra. We then consider the root system Φ = Φ(g, h), the root space decomposition

g = h ⊕ α∈Φ g α ,
and the subset of positive roots Φ + corresponding to the choice of B and n, i.e., such that n = α∈Φ + g α . Let Π ⊂ Φ + be the set of simple roots.

Let W = W (G, T ) be the Weyl group. By [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF] there is a surjective map from W onto the set of orbital varieties of N : for every w ∈ W , there is a unique nilpotent orbit O w which intersects the linear space n ∩ (w • n) densely; then, the set V w := B • (n ∩ (w • n)) ∩ O w is an orbital variety, and every orbital variety is obtained in this way. In particular

O e = O reg , V e = O reg ∩ n, V w0 = O w0 = {0}
, where e, w 0 ∈ W respectively stand for the neutral element and the longest element.

The orbital varieties contained in the nilpotent orbits O min and O subreg have an alternative, handy parameterization, obtained as follows.

Every simple root α ∈ Π gives rise to a minimal parabolic subgroup P α and a nilradical n α = γ∈Φ + \{α} g γ . By [5, §4.1], we have

n \ O reg = α∈Π n α , hence O subreg ∩ n = α∈Π O subreg ∩ n α .
By [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]Theorem 7.1.1], for every α ∈ Π, the intersection O subreg ∩ n α is P αhomogeneous (thus irreducible, smooth) and dense in n α . This yields:

Proposition 1.
(a) The subsets V subreg (α) := O subreg ∩ n α , for α ∈ Π, are exactly the irreducible components of O subreg ∩ n, i.e., the orbital varieties of O subreg . (b) V subreg (α) is P α -homogeneous (thus smooth) and its closure is the linear space n α (thus this closure is also smooth). (c) For α, α ∈ Π, the orbital varieties V subreg (α) and V subreg (α ) intersect if and only if the roots α, α are not orthogonal. 

(d) V subreg (α) = V sα ,
n α ∩ n α is 2 dim n α ∩ n α < 2 dim n α = dim O subreg . Hence V subreg (α) ∩ V subreg (α ) = O subreg ∩ n α ∩ n α = ∅.
We have shown that two orbital varieties of O subreg have an empty intersection if they correspond to simple roots which are orthogonal, i.e., which are not connected by an edge in the Dynkin diagram. By [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF], the variety O subreg ∩ n is connected. This implies that V subreg (α) and V subreg (α ) must intersect if there is an edge between α and α in the Dynkin diagram.

For every root α ∈ Φ + we fix a root vector e α ∈ g α \ {0}. In the simply laced cases, we say that all the roots are long. In general, let Φ (resp., Φ + ) stand for the set of long roots (resp., positive long roots) and let Π ⊂ Π be the subset of simple long roots. Let be the usual partial order on the root system Φ determined by the choice of the set of positive roots Φ + . Let β max ∈ Φ + be the biggest root, i.e., the biggest element of Φ with respect to the order . It is always a long root, and the root vector e βmax is a representative of the minimal nilpotent orbit O min . Note that

B • e βmax = g βmax \ {0}, hence O min = G • e βmax = w∈W B • e w(βmax) ,
where the last equality follows from the Bruhat decomposition G = w∈W BwB, whence 

β max = α∈Π n(α)α,
where the coefficients n(α) are positive integers.

Our first main result is a smoothness criterion for the orbital varieties of the minimal nilpotent orbit. The proof is given in Section 3.3.

Theorem 1. Let α ∈ Π be a simple long root and let V min (α) = B • e α ∩ O min be the corresponding orbital variety of the minimal nilpotent orbit O min . Then:

V min (α) is smooth if and only if n(α) = 1.
Our second main result is a criterion of finiteness of number of B-orbits / existence of dense B-orbit for the orbital varieties of the subregular nilpotent orbit. In the result below we say that a simple root α is extremal if it belongs to only one (possibly multiple) edge of the Dynkin diagram (i.e., there is only one simple root which is not orthogonal to α). In types E 6 , E 3. Proof of Theorem 1

3.1. Notation. Recall that the root system Φ is endowed with the partial order defined by letting α β if β -α is a sum of simple roots, and β max stands for the biggest element of Φ relatively to this order. Given two positive roots α, β, we write:

• α β if β -α ∈ Φ + ; • α < β if β = α +
kη for some η ∈ Φ + and some positive integer k.

Moreover we consider the set

M max := {α ∈ Φ + : α β max }.
The following technical lemmas can be checked case by case. The first lemma is immediate in the simply laced case (where by convention we say that all the roots are long, i.e., there is no short root).

Lemma 1. Let γ be a short positive root such that the set {β ∈ Φ + long : β γ} is nonempty. Then, this set contains a biggest element β 0 relatively to the order , and we have β 0 < γ.

Moreover, let us suppose that γ ∈ M max , so that β max -γ ∈ Φ + . Then, the following alternative holds:

(i) Either γ -β 0 = β max -γ, (ii) Or, for all root β such that β 0 β ≺ γ, we have β + β max -γ / ∈ Φ.
Lemma 2. Let α be a simple long root such that n(α) ≥ 2. Then there is a couple (γ, γ ) of positive roots such that α γ, α γ , and γ + γ = β max .

For every root α, we fix a morphism of algebraic groups u α : K → G such that hu α (s)h -1 = u α (α(h)s) for all h ∈ T and Im du α = g α (see [START_REF] Springer | Linear algebraic groups[END_REF]Lemma 7.3.3]). Note that there is a nonzero root vector x α ∈ g α \ {0} such that [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF] Ad u α (s) = exp(s ad x α ) for all s ∈ K where Ad : G → GL(g) and ad : g → gl(g) stand for the adjoint representations. Since dim O min = dim g -dim z g (e βmax ), the verification of (3) is complete.

In view of (3), for showing the proposition, it suffices to show the inclusion (4)

g βmax ⊕ [g βmax , g -βmax ] ⊕ γ∈Mmax g γ ⊂ T e βmax O min .
There is a cocharacter λ : K * → T such that λ(K 

g γ = K[x -γ , e βmax ] = T e βmax u -γ (K) • e βmax ⊂ T e βmax O min
holds. Altogether we get (4). The proof is complete.

3.3.

Tangent space of orbital varieties of the minimal nilpotent orbit at the biggest root vector. Theorem 1 is implied by Proposition 4 (b) below. We need two preparatory lemmas.

Lemma 3. For every x ∈ O min , we have K * x ⊂ B • x.
Proof. By (1), there is a long root vector e β and an element b ∈ B such that

x = b • e β . For every s ∈ K * , we can find h ∈ T such that h • e β = se β , whence sx = (bh) • e β ∈ B • e β = B • x.
Recall that for every positive long root α, the root vector e α belongs to the minimal nilpotent orbit O min and the biggest long root vector e βmax belongs to the closure of B • e α (see Proposition 2 (a)). (a) Assume that the root γ is long. Then g γ ⊂ T e βmax B • e γ . (b) Assume that γ is short and such that the set {β ∈ Φ + long : β γ} is nonempty, hence contains a biggest element β 0 (see Lemma 1). Then

g γ ⊂ T e βmax B • e β0 .
Proof. Let γ := β max -γ, which is a positive root. First we show part (a) of the lemma. In view of (2), there is an element x γ ∈ g γ \ {0} such that

e γ + s -1 [x γ , e γ ] = u γ (s -1 ) • e γ ∈ B • e γ for all s ∈ K * . Note that [x γ , e γ ] ∈ g βmax \ {0} = K * e βmax . By Lemma 3, we get e βmax + se γ ∈ B • e γ for all s ∈ K * . Whence the inclusion g γ ⊂ T e βmax B • e γ .
Next let us show part (b) of the lemma. First assume that condition (i) of Lemma 1 holds, so that γ = β 0 + γ and β max = β 0 + 2γ . In view of (2), we have in this case

e β0 + s -1 [x γ , e β0 ] + 1 2 s -2 [x γ , [x γ , e β0 ]] = u γ (s -1 ) • e β0 ∈ B • e β0 for all s ∈ K * for some x γ ∈ g γ \ {0}. Note that [x γ , e β0 ] ∈ g γ \ {0} while [x γ , [x γ , e β0 ]] ∈ g βmax \ {0}, hence [x γ , [x γ , e β0 
]] = s -1 0 e βmax for some s 0 ∈ K * . Invoking also Lemma 3, this yields

e βmax + 2ss 0 [x γ , e β0 ] + 2s 2 s 0 e β0 ∈ B • e β0 for all s ∈ K * . Whence the inclusion g γ = K[x γ , e β0 ] ⊂ T e βmax B • e β0 .
Finally assume that condition (ii) of Lemma 1 holds. By Lemma 1, there is a positive root η and a positive integer k such that γ = β 0 + kη. Let r ≥ k be the integer such that γ := β 0 + η is a root for all ∈ {0, 1, . . . , r} and is not a root whenever > r. By (2), there are root vectors e γ ∈ g γ \ {0} (for = 0, 1, . . . , r) such that

u η (t) • e β0 = r =0
t e γ for all t ∈ K.

By assumption, γ + γ is a root if and only if = k, and γ k + γ = γ + γ = β max . Applying again (2), we get

t k s -1 s -1 0 e βmax + r =0 t e γ = u γ (s -1 )u η (t) • e β0 for all t ∈ K, all s ∈ K * ,
for some s 0 ∈ K * . Whence (by Lemma 3)

e βmax + ss 0 t -k r =0 t e γ ∈ B • e β0 for all t ∈ K, all s ∈ K * .
We deduce that r =0 t e γ ∈ T e βmax B • e β0 for all t ∈ K and therefore

g γ ⊂ r =0 g γ ⊂ T e βmax B • e β0 .
The proof of the lemma is complete.

Proposition 4. Let α be a simple long root, so that V min (α

) := B • e α ∩ O min is an orbital variety of O min and B • e βmax is the unique closed B-orbit of V min (α) (see Proposition 2). (a) T e βmax V min (α) = g βmax ⊕ γ∈Mmax, γ α g γ . (b)
The following conditions are equivalent:

(i) V min (α) is singular; (ii) |{γ ∈ M max : γ α}| > 1 2 |M max |; (iii) there exists a couple (γ, γ ) of positive roots such that γ α, γ α, γ + γ = β max ; (iv) n(α) ≥ 2.
Proof. First we show the inclusion ⊃ in (a). Since Lemma 4 (a). Assume now that γ is a short root and let β 0 be as in Lemmas 1 and 4 (b). The maximality property of β 0 implies that β 0 α, whence B • e β0 ⊂ V min (α) (by Proposition 2). In view of Lemma 4 (b), this yields g γ ⊂ T e βmax V min (α). Altogether we get the inclusion ⊃ in (a).

g βmax \{0} = B •e βmax ⊂ V min (α), we have g βmax ⊂ T e βmax V min (α). Next let γ ∈ M max such that γ α. If γ is a long root, then we have B • e γ ⊂ V min (α) by Proposition 2, hence g γ ⊂ T e βmax V min (α) by
In view of the inclusion V min (α) ⊂ B • e α ⊂ γ α g γ and of Proposition 3, we also have

T e βmax V min (α) ⊂ γ α g γ ∩ T e βmax O min = g βmax ⊕ γ∈Mmax, γ α g γ ,
and this completes the proof of part (a).

On the one hand, part (a) and Proposition 3 yield

dim T e βmax V min (α) = 1 + |{γ ∈ M max : γ α}| and dim V min (α) = 1 2 dim O min = 1 + 1 2 |M max |
(recall from Section 1.2 that we have dim V = 1 2 dim O whenever V is an orbital variety of a nilpotent orbit O). On the other hand, since B • e βmax is the unique closed B-orbit in V min (α), we know that V min (α) is singular if and only if dim T e βmax V min (α) > dim V min (α). The equivalence between conditions (i) and (ii) of part (b) ensues.

Since α necessarily occurs in the decomposition of β max as a sum of simple roots, for every γ ∈ M max we must have γ α or β max -γ α. Whence |{γ ∈ M max : γ α}| ≥ 1 2 |M max | with strict inequality if and only if there is an element γ ∈ M max such that γ α and β max -γ α, which is equivalent to the existence of a couple (γ, γ ) as in (iii). Conditions (ii) and (iii) of part (b) are therefore equivalent.

The implication (iii)⇒(iv) is immediate while the inverse implication (iv)⇒(iii) follows from Lemma 2. The proof of part (b) of the statement is now complete.

Proof of Theorem 2

As in Section 2.1, for every simple root α, we denote by P α the corresponding standard minimal parabolic subgroup and by n α the nilpotent radical of its Lie algebra.

As noted in Proposition 1 (b), the orbital variety V subreg (α) := O subreg ∩ n α of O subreg attached to α is P α -homogeneous. In view of well-known properties of spherical varieties [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF][START_REF] Vinberg | Complexity of actions of reductive groups[END_REF] (see also [6, Lemma 1]), this fact already guarantees the equivalence between parts (i) and (ii) of Theorem 2. The purpose of this section is to prove the equivalence between parts (ii) and (iii) of Theorem 2.

4.1. Criteria of existence of dense B-orbit. For a simple root α, we also denote by p α the Lie algebra of the minimal parabolic subgroup P α and by Rad(p α ) its radical, i.e., the intersection of the Borel subalgebras of p α ; in other words

Rad(p α ) = {h ∈ h : α(h) = 0} ⊕ n α . Proposition 5. Let α be a simple root. Let x ∈ V subreg (α) = O subreg ∩ n α .
The following conditions are equivalent:

(i) V subreg (α) has a dense B-orbit; (ii) {y ∈ p α : [y, x] = 0} ⊂ Rad(p α ).
Proof. The orbital variety V subreg (α) (which coincides with the P α -orbit of x) has a dense B-orbit if and only if there exists an element

g ∈ P α such that dim B •(g •x) = dim V subreg (α)
. By b we denote the Lie algebra of the Borel subgroup B. Note that

dim B • (g • x) = dim B -dim{y ∈ b : [y, g • x] = 0} = dim B -dim{y ∈ g -1 • b : [y, x] = 0} and dim V subreg (α) = dim P α • x = dim P α -dim{y ∈ p α : [y, x] = 0} hence dim V subreg (α)-dim B•(g•x) = 1-dim{y ∈ p α : [y, x] = 0}/{y ∈ g -1 •b : [y, x] = 0}.
Therefore the existence of a dense B-orbit in V subreg (α) is equivalent to the existence of a Borel subalgebra b = g -1 • b ⊂ p α such that {y ∈ p α : [y, x] = 0} ⊂ b . This property is equivalent to condition (ii) of the statement. The proof is complete.

Proposition 5 is an efficient criterion of existence of dense B-orbit once we know a representative x of the orbital variety V subreg (α), i.e., an element x of the intersection O subreg ∩n α . Such an element x is called a Richardson element of the nilradical n α . In the classical cases, due to the combinatorial classification of nilpotent orbits in terms of Jordan forms, it is possible to construct Richardson elements for many parabolic subalgebras; see [START_REF] Baur | Richardson elements for classical Lie algebras[END_REF]. In the classical cases, our proof of Theorem 2 relies on Proposition 5. In particular we construct Richardson elements for nilradicals of the form n α (the constructions made in [START_REF] Baur | Richardson elements for classical Lie algebras[END_REF] do not apply to all the nilradicals of this form).

In the exceptional cases, out of our knowledge, there is no construction of Richardson elements. For this reason, we cannot use Proposition 5 for proving Theorem 2 in the exceptional cases (however, as a byproduct of our proof, we provide Richardson elements for certain nilradicals n α ; see also Remark 1 below). We rely on the construction of Chevalley bases and on the following criterion. Proof. Part (a) is obtained as follows,

dim B • x = dim B -dim{y ∈ b : [y, x] = 0} = dim b -dim ker M α (x) = rank M α (x).
From part (a), it follows that if the rows of M α (x) are linearly independent, i.e., rank M α (x) = dim n α , then B • x is a dense, open subset of n α , which implies that its intersection with O subreg ∩ n α is nonempty; in fact this ensures that x belongs to O subreg ∩ n α (i.e., to V subreg (α)) since this set is B-stable. The equivalence in part (b) immediately follows from part (a) and this observation.

Corollary 2. We consider a connected subdiagram of the Dynkin diagram of g, which corresponds to a subset of simple roots Π ⊂ Π. Let G ⊂ G be the connected simple algebraic subgroup corresponding to Π , let g ⊂ g be its Lie algebra, and let B ⊂ G be the standard Borel subgroup.

In this way, in addition to the orbital variety V subreg (α) (relative to g), a simple root α ∈ Π determines an orbital variety V subreg (α) relative to g , contained in the subregular nilpotent orbit of g .

If V subreg (α) has no dense B -orbit, then V subreg (α) has no dense B-orbit.

More precisely, if B := B • x is a dense orbit of V subreg (α), denoting by x the natural projection of x onto g , we have that B := B • x is a dense orbit of V subreg (α ). Moreover, the map B → B , x → x is then surjective.

Proof. Let Φ ⊂ Φ be the root system generated by Π , i.e., the subset of roots which are linear combinations of the elements of Π . Let Φ + := Φ ∩ Φ + be the subset of positive roots. Let b be the Lie algebra of B , let n α ⊂ b be the nilradical corresponding to α, let h be the standard Cartan subalgebra of g . Thus

b = h ⊕ γ∈Φ + g γ and n α = γ∈Φ + \{α} g γ .
Recall that for each root γ ∈ Φ + we consider a root vector e γ ∈ g γ \ {0}. Let {λ γ : γ ∈ Π } ⊂ h and {λ γ : γ ∈ Π} ⊂ h be the dual bases of Π ⊂ h * and Π ⊂ h * , respectively. Let an element x ∈ n α and let x ∈ n α be its image by the projection relative to the decomposition n α = n α ⊕ γ∈Φ + \Φ + g γ . Let M α (x) be the matrix of the linear map b → n α , y → [y, x] in the bases {λ γ : γ ∈ Π} ∪ {e γ : γ ∈ Φ + } (of b) and {e γ : γ ∈ Φ + \ {α}} (of n α ). Let M α (x ) be the matrix of the map b → n α , y → [y, x ] in the bases {λ γ : γ ∈ Π }∪{e γ : γ ∈ Φ + } (of b ) and {e γ : γ ∈ Φ + \{α}} (of n α ). Then (up to adding columns of zeros) the matrix M α (x ) coincides with the submatrix of M α (x) formed by the rows corresponding to the basis vectors e γ for γ ∈ Φ + \ {α}. Therefore, if the rows of M α (x ) are linearly dependent, then so are the rows of M α (x). The corollary now follows from Proposition 6 (b) (the last claim follows from the fact that the map x → x is B -equivariant). So, let y ∈ p α such that [y, x] = 0, write

y = h + y α + y -α + y with h ∈ h, y α ∈ g α , y -α ∈ g -α , y ∈ n α ,
and let us show that h = y α = y -α = 0. Let γ 1 ∈ I and γ 2 ∈ I be the elements provided by conditions (A) and (B), respectively. First we see that

[y -α , x] = [-h -y α -y , x] ∈ γ∈I∪I g γ .
The vector [y -α , x γ1 ] is the component of [y -α , x] in the root space g γ1-α . Since

γ 1 -α / ∈ I ∪ I , we must have [y -α , x γ1 ] = 0, hence y -α = 0. Next we see that [y α , x] = [-h -y , x] ∈ γ∈I∪ Î g γ
and the condition γ 2 + α / ∈ I ∪ Î implies that [y α , x γ2 ] = 0; since γ 2 + α is a root, this forces y α = 0. Thus the relation [START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF] [y , x] = [-h, x] ∈ γ∈I g γ holds. We claim that [y , x] = 0. Arguing by contradiction, say [y , x] = 0. Hence there are roots γ ∈ I and δ ∈ Φ + \ {α} such that [y δ , x γ ] = 0, where y δ is the component of y in the root space g δ . By [START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF], this yields γ := γ + δ ∈ I. Then, let β ∈ I be as in condition (C). Condition (C) implies that [y δ , x β ] is the component of [y , x] in the root space g β+δ and that it is nonzero. Since β +δ / ∈ I, this contradicts [START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF]. Therefore [y , x] = 0 and in turn (again by ( 6)) [h, x] = 0. The last relation implies that h ∈ γ∈I ker γ, which, in view of condition (D), yields h = 0. The proof of the lemma is complete.

Hereafter we denote by {λ α : α ∈ Π} the basis of the Cartan subalgebra h which is dual to the basis of h * formed by the simple roots. By E

(n)

i,j we denote the elementary n × n matrix with 1 in position (i, j) and zeros elsewhere. By t a we denote the transpose of a matrix a. For each classical Lie algebra g considered below, we consider the root datum (Φ, Φ + ) corresponding to the Cartan subalgebra h ⊂ g formed by diagonal matrices and the Borel subalgebra b ⊂ g formed by upper triangular matrices.

Proof of Theorem 2 in type A. Assume that G is a simple group of type A n-1 , i.e., g = sl n (K) is the space of n × n matrices of trace zero. The subregular orbit O subreg consists of all nilpotent matrices x ∈ sl n (K) with Jordan form (n -1, 1). Let Φ = {ε i -ε j : 1 ≤ i = j ≤ n} and Φ + = {ε i -ε j : 1 ≤ i < j ≤ n}. The matrix e εi-εj := E (n) i,j is a root vector for the root ε i -ε j . Let α i := ε i -ε i+1 (i = 1, . . . , n -1) be the simple roots.

Let a simple root α = α i . Up to automorphism of the Dynkin diagram, we may suppose that i < n -1. The matrix x := e αi+αi+1 + j / ∈{i,i+1} e αj is an element of O subreg ∩n αi and the matrix y := λ αi -λ αi+1 ∈ p αi \Rad(p αi ) is such that [y, x] = 0. From Proposition 5, we conclude that V subreg (α i ) has a dense B-orbit.

Proof of Theorem 2 in type B. Assume that G is a simple group of type B m with m ≥ 2, i.e., g = so n (K) with n = 2m + 1, seen as the subalgebra of sl n (K) of matrices which are skew symmetric with respect to the skew diagonal. The roots are Φ = {±ε i ± ε j : 1 ≤ i < j ≤ m} ∪ {±ε i : 1 ≤ i ≤ m} and Φ + = {ε i ± ε j : 1 ≤ i < j ≤ m} ∪ {ε i : 1 ≤ i ≤ m} and corresponding root vectors are

e εi-εj = E (n) i,j -E (n) n+1-j,n+1-i , e εi+εj = E (n) i,n+1-j -E (n) j,n+1-i for 1 ≤ i < j ≤ m, e εi = E (n) i,m+1 -E (n) m+1,n+1-i for 1 ≤ i ≤ m, e -α = t e α for α ∈ Φ + .
The simple roots are α i := ε i -ε i+1 , for i = 1, . . . , m -1, and α m := ε m .

The subregular orbit O subreg consists of nilpotent matrices x ∈ so n (K) of Jordan form (n -2, 1, 1). For i ∈ {1, . . . , m -1}, the matrix

x i := e αi+αi+1 + j / ∈{i,i+1}
e αj belongs to O subreg ∩ n αi . Moreover the matrix y i := λ αi -λ αi+1 is an element of p αi \ Rad(p αi ) such that [y i , x i ] = 0. From Proposition 5, it follows that V subreg (α i ) has a dense B-orbit. Note that x m-1 also belongs to O subreg ∩ n αm and y m-1 also belongs to p αm \ Rad(p αm ), hence the orbital variety V subreg (α m ) has also a dense B-orbit. We have shown that, in type B, all the orbital varieties of O subreg have a dense B-orbit. where x * stands for the transpose of x by the skew diagonal. In this case, we have the roots Φ = {±ε i ± ε j : 1 ≤ i < j ≤ m} ∪ {±2ε i : 1 ≤ i ≤ m} and Φ + = {ε i ± ε j : 1 ≤ i < j ≤ m} ∪ {2ε i : 1 ≤ i ≤ m}, and we consider the following root vectors: Finally let us show that V subreg (α i ) has no dense B-orbit whenever i ∈ {2, . . . , m-1}. In view of Corollary 2, arguing by induction on m ≥ 3, we may assume that i = 2. Let I = {α j : j / ∈ {2, 3}} ∪ {α 2 + α 3 , 2ε 3 } and set x 2 = α∈I e α . Note that x 2 ∈ O subreg ∩ n α2 . Moreover, it is easy to see that the set I fulfills the conditions (A)-(D) of Lemma 5. It follows that V subreg (α 2 ) has no dense B-orbit. The proof of the theorem is complete in type C.

Proof of

e εi-εj = E (n) i,j -E (n) n+1-j,n+1-i , e εi+εj = E (n) i,n+1-j + E (n) j,n+1-i for 1 ≤ i < j ≤ m, e 2εi = E (n) i,n+1-i for 1 ≤ i ≤ m, e -α = t e α for α ∈ Φ + . The simple roots are α i := ε i -ε i+1 , for i = 1, . . . , m -1,
Proof of Theorem 2 in type D. Assume G of type D m for m ≥ 4. Hence g = so n (K) with n = 2m, seen as the subalgebra of sl n (K) formed by matrices which are skew symmetric by the skew diagonal. The roots are Φ = {±ε i ± ε j : 1 ≤ i < j ≤ m} and Φ + = {ε i ± ε j : 1 ≤ i < j ≤ m} and we consider the root vectors

e εi-εj = E (n) i,j -E (n) n+1-j,n+1-i and e εi+εj = E (n) i,n+1-j -E (n) j,n+1-i
for 1 ≤ i < j ≤ m, and e -α = t e α for all α ∈ Φ + . The simple roots are α i := ε i -ε i+1 , for i = 1, . . . , m -1, and α m := ε m-1 + ε m . The subregular orbit O subreg is the set of nilpotent elements x ∈ so n (K) of Jordan form (n -3, 3).

The element x 1 := e ε1+εm + m j=2 e αj belongs to O subreg ∩n α1 . The matrix y 1 := 2e -α1 -e ε1+ε4 -e ε2-εm-1 -e ε3-εm +e ε3+εm belongs to p α1 \Rad(p α1 ) and commutes with x 1 . By Proposition 5, we deduce that V subreg (α 1 ) has a dense B-orbit. The element x m-1 := e εm-2+εm-1 + j =m-1 e αj belongs to O subreg ∩ n αm-1 and it commutes with y m-1 := e -αm-1 + e αm ∈ p αm-1 \ Rad(p αm-1 ), hence V subreg (α m-1 ) contains a dense B-orbit. The symmetry of the Dynkin diagram guarantees that V subreg (α m ) also contains a dense B-orbit.

Next we show that V subreg (α m-2 ) has no dense B-orbit. In view of Corollary 2, we may assume that m = 4. In this case x := e α1 + e α1+α2 + e α2+α3 + e α4 is an element of O subreg ∩ n α2 . Then, Lemma 5 shows that V subreg (α 2 ) has no dense B-orbit.

Finally assume that m ≥ 5 and let us show that the orbital variety V subreg (α i ) has no dense B-orbit for i ∈ {2, . . . , m -3}. Invoking again Corollary 2, we may assume that i = 2. Letting I = {α j : j / ∈ {2, 3}} ∪ {α 2 + α 3 , α 3 + . . . + α m-2 + α m }, it is easy to check that the set I fulfills conditions (A)-(D) of Lemma 5 and that the element x := α∈I e α belongs to O subreg ∩ n α2 . Hence, by Lemma 5, V subreg (α 2 ) contains no dense B-orbit. The proof is complete in type D.

4.3.

Proof of Theorem 2 in exceptional cases. In this section, G is a simple algebraic group of exceptional type. As in Section 4.2, we denote by {λ α : α ∈ Π} the basis of the Cartan subalgebra h which is dual to the basis of h * formed by the simple roots. Moreover for each exceptional type we have determined a Chevalley basis of n = α∈Φ + g α , i.e., the subbasis of a Chevalley basis of g. To this end, we consider the following total ordering of the positive roots:

• In types G 2 and F 4 , the simple roots are ordered according to the following Dynkin diagrams:

G 2 : α 1 j t α 2 F 4 : α 1 α 2 + 3 α 3 α 4
In type E 8 (and in type E 6 , resp., E 7 ), the simple roots are ordered according to the numbering of the Dynkin diagram drawn above Theorem 2 (and its subdiagram of vertices α 1 , . . . , α 6 , resp., α 1 , . . . , α 7 ) • Next each positive root is identified with the tuple of its coordinates in the basis Π. We consider the partial order determined by the height (i.e., the sum of the coordinates) and we order the roots of same height by the lexicographic order of the coordinates. For instance here is the ordered list of the positive roots in type G 2 , identified with the couples of their coordinates in the basis (α 1 , α 2 ):

α 1 = [1, 0], α 2 = [0, 1], α 3 = [1, 1], α 4 = [2, 1], α 5 = [3, 1], α 6 = [3, 2].
In each case let r be the number of simple roots, so α 1 , . . . , α r are the simple roots, and let n denote the number of positive roots. For i ∈ {1, . . . , r}, we set λ i := λ αi . Finally let (e 1 , . . . , e n ) be the Chevalley basis of n, numbered according to the total ordering of the positive roots. We fix an element

x = n j=1
x j e j ∈ n.

We consider the linear map b → n, y → [y, x], and we denote by A(x) the matrix of this map between the bases (λ 1 , . . . , λ r , e 1 , . . . , e n ) and (e 1 , . . . , e n ) of b and n, respectively. Note that for every simple root α = α i (with i ∈ {1, . . . , r}), the matrix M α (x) of Proposition 6 is obtained from the matrix A(x) by deleting the i-th row of the matrix (i.e, the row of the matrix corresponding to e i ) and replacing all the coefficients x i by zeros. The explicit matrices A(x) corresponding to the different exceptional cases are given in the Appendix.

Proof of Theorem 2 in type G 2 . On the one hand, for x ∈ n α1 , it is easy to see that the matrix M α1 (x) has rank at most 4 whereas it has five rows. By Proposition 6, V subreg (α 1 ) has no dense B-orbit. On the other hand, the matrix M α2 (e 1 + e 6 ) has five linearly independent rows. It follows from Proposition 6 that B • (e 1 + e 6 ) is a dense B-orbit of V subreg (α 2 ).

Proof of Theorem 2 in type F 4 . The roots α 2 , α 3 , α 4 generate a root system of type C 3 . Hence it follows from Corollary 2 and the proof of the theorem in type C that V subreg (α 3 ) has no dense B-orbit.

For every x ∈ n α2 , the rows of the matrix M α2 (x) corresponding to the root vectors e 1 , e 3 , e 4 , . . . , e 10 are linearly dependent. By Proposition 6, it follows that V subreg (α 2 ) has no dense B-orbit.

For x ∈ n α4 , the rows of the matrix M α4 (x) corresponding to the root vectors e j for j ∈ {1, . . . , 16} \ {4} are linearly dependent, and this shows that V subreg (α 4 ) has no dense B-orbit.

Finally, it can be seen that the matrix M α1 (e 2 + e 3 + e 4 + e 12 ) has linearly independent rows, and this shows that B • (e 2 + e 3 + e 4 + e 12 ) is dense in V subreg (α 1 ). The proof is complete in type F 4 .

Proof of Theorem 2 in types E 6 , E 7 , E 8 . In type E 8 , the roots α 1 , . . . , α 5 generate a root system of type D 5 while the roots α 2 , . . . , α 8 generate a root system of type D 7 . By comparing Corollary 2 and the proof of the theorem in type D, we deduce that the orbital varieties of type E 8 corresponding to α 3 , . . . , α 7 have no dense Borbit. Arguing in the same way shows that the orbital varieties of type E 7 (resp., E 6 ) attached to the roots α 3 , . . . , α 6 (resp., α 3 , . . . , α 5 ) have no dense B-orbit.

In type E 6 , letting x 1 := 6 j=2 e αj + e α1+α3+α4+α5 , it can be seen that the matrix M α1 (x 1 ) has linearly independent rows. Therefore, Proposition 6 implies that the element x 1 belongs to a dense B-orbit of V subreg (α 1 ). In view of the symmetry of the Dynkin diagram of type E 6 , the orbital variety V subreg (α 6 ) has also a dense B-orbit whose representative is 5 j=1 e αj + e α3+α4+α5+α6 . By combining Corollary 2 and the proof of Theorem 2 in type D, we obtain that, if V subreg (α 2 ) has a dense B-orbit, then this orbit contains an element x ∈ n α2 whose natural projection on the subalgebra g ⊂ g of type D 5 corresponding to the set of simple roots Π = {α 1 , . . . , α 5 } is x = e α1 + e α3 + e α4 + e α5 + e α2+α4+α5 . For such an element x, on can see that the matrix M α2 (x) has linearly dependent rows (the row corresponding to the root vector e α2+α4+α5+α6 is a linear combination of the rows above it). By Proposition 6, this implies that V subreg (α 2 ) has no dense B-orbit. This completes the proof of the theorem in type E 6 .

In type E 7 , the above proof of the theorem in type E 6 and Corollary 2 imply that V subreg (α 2 ) has no dense B-orbit. It can be seen that the matrix M α7 (x 7 ) corresponding to the element x 7 := 6 j=1 e αj + e α6+α7 + e α3+α4+α5+α6+α7 has linearly independent rows, hence Proposition 6 implies that B • x 7 is a dense Borbit of V subreg (α 7 ). Finally, invoking Corollary 2, we obtain that a dense B-orbit of V subreg (α 1 ) (if it exists) must contain an element x ∈ n α1 whose natural projection on the Lie subalgebra g ⊂ g of type E 6 corresponding to the set of simple roots Π = {α 1 , . . . , α 6 } is the element x 1 written above. However, for such an element x, one can check that the row of the matrix M α1 (x) corresponding to the root vector e α1+α3+α4+α5+α6+α7 is a linear combination of the rows above it. This implies that V subreg (α 1 ) has no dense B-orbit. This completes the proof of the theorem in type E 7 .

In type E 8 , comparing Corollary 2 with the proof of the theorem in type E 7 given above, we already deduce that V subreg (α 1 ) and V subreg (α 2 ) have no dense B-orbit. Invoking again Corollary 2 and the proof of the theorem in type D, we obtain that a dense B-orbit of V subreg (α 8 ) (if it exists) should have a representative x ∈ n α8 whose natural projection x on the subalgebra g ⊂ g of type D 7 corresponding to the simple roots Π = {α 2 , . . . , α 8 } is given by x = 7 j=2 e j + e 43 . However, a careful calculation shows that for any such element x, the row of M α8 (x) corresponding to the root vector e 68 is a linear combination of the rows above it. This implies that V subreg (α 8 ) has no dense B-orbit. The proof of the theorem is complete.

Remark 1. Note that, in the proofs done in this section, in each case where V subreg (α) has a dense B-orbit, we provide a representative of this orbit. This element is in particular a Richardson element of the nilradical n α . in the form A

(x) = A 1,1 0 A 2,1 A 2,2
where A 1,1 , A 2,1 , and A 2,2 are the 12 × 14 matrices described in Figure 2. 
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In type E 8 , instead of drawing the matrix A(x), we give the list of the roots α j , for j = 1, . . . , 120. For each root α j , we indicate its coordinates [ j,1 , . . . , j,8 ] in the basis (α 1 , . . . , α 8 ) and the couples (a, b) such that e j = +[e a , e b ] = -[e b , e a ]. This information is sufficient for characterizing the matrix A(x): the row of the matrix corresponding to e j contains the coefficient x j j,i in the column corresponding to λ i for all i ∈ {1, . . . , 8}, and for each one of the listed couples (a, b) it contains x b in the column corresponding to e a and -x a in the column corresponding to e b , and these are all the nonzero coefficients in the j-th row of the matrix.

In type E 6 (resp. E 7 ) the matrix A(x) is obtained from the matrix A(x) of type E 8 by deleting the columns corresponding to λ 7 and λ 8 (resp., the column corresponding to λ 8 ) and by deleting the rows and the columns corresponding to e j whenever ( j,7 , j,8 ) = (0, 0) (resp., whenever j,8 = 0). α 1 = [1, 0, 0, 0, 0, 0, 0, 0]. α 2 = [0, 1, 0, 0, 0, 0, 0, 0]. α 3 = [0, 0, 1, 0, 0, 0, 0, 0]. α 4 = [0, 0, 0, 1, 0, 0, 0, 0]. α 5 = [0, 0, 0, 0, 1, 0, 0, 0]. α 6 = [0, 0, 0, 0, 0, 1, 0, 0]. α 7 = [0, 0, 0, 0, 0, 0, 1, 0]. α 8 = [0, 0, 0, 0, 0, 0, 0, 1]. α 9 = [1, 0, 1, 0, 0, 0, 0, 0]: [START_REF] Baur | Richardson elements for classical Lie algebras[END_REF][START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF]. α 10 = [0, 1, 0, 1, 0, 0, 0, 0]: [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF][START_REF] Braverman | The minimal realization from deformation theory[END_REF]. α 11 = [0, 0, 1, 1, 0, 0, 0, 0]: [START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF][START_REF] Braverman | The minimal realization from deformation theory[END_REF]. α 12 = [0, 0, 0, 1, 1, 0, 0, 0]: [START_REF] Braverman | The minimal realization from deformation theory[END_REF][START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. α 13 = [0, 0, 0, 0, 1, 1, 0, 0]: [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF][START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF]. α 14 = [0, 0, 0, 0, 0, 1, 1, 0]: [START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF][START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF].

α 15 = [0, 0, 0, 0, 0, 0, 1, 1]: [START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF][START_REF] Joseph | On the variety of a highest weight module[END_REF].

α 16 = [1, 0, 1, 1, 0, 0, 0, 0]: [START_REF] Baur | Richardson elements for classical Lie algebras[END_REF][START_REF] Springer | Linear algebraic groups[END_REF], [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF][START_REF] Braverman | The minimal realization from deformation theory[END_REF]. α 17 = [0, 1, 1, 1, 0, 0, 0, 0]: [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF][START_REF] Springer | Linear algebraic groups[END_REF], [START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF][START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF].

α 18 = [0, 1, 0, 1, 1, 0, 0, 0]: [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF][START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF], [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF][START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF].

α 19 = [0, 0, 1, 1, 1, 0, 0, 0]: [START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF][START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF], [START_REF] Springer | Linear algebraic groups[END_REF][START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF].

α 20 = [0, 0, 0, 1, 1, 1, 0, 0]: (4, 13), [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF][START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF].

α 21 = [0, 0, 0, 0, 1, 1, 1, 0]: [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]14), [START_REF] Vinberg | Complexity of actions of reductive groups[END_REF][START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF].

α 22 = [0, 0, 0, 0, 0, 1, 1, 1]: (6, 15), (14,[START_REF] Joseph | On the variety of a highest weight module[END_REF]. [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF]16), [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF][START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF]. [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF][START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF], (16,[START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. [START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF]18), (17,[START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF][START_REF] Vinberg | Complexity of actions of reductive groups[END_REF], (18,[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF]. [START_REF] Springer | Linear algebraic groups[END_REF][START_REF] Vinberg | Complexity of actions of reductive groups[END_REF], (19,[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF].

α 23 = [1, 1, 1, 1, 0, 0, 0, 0]: (1, 17),
α 24 = [1, 0, 1, 1, 1, 0, 0, 0]: (1, 19),
α 25 = [0, 1, 1, 1, 1, 0, 0, 0]: (2, 19),
α 26 = [0, 1, 0, 1, 1, 1, 0, 0]: (2, 20),
α 27 = [0, 0, 1, 1, 1, 1, 0, 0]: (3, 20),
α 28 = [0, 0, 0, 1, 1, 1, 1, 0]: (4, 21), [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]14), (20, 7). α 29 = [0, 0, 0, 0, 1, 1, 1, 1]: (5, 22), [START_REF] Vinberg | Complexity of actions of reductive groups[END_REF]15), (21,[START_REF] Joseph | On the variety of a highest weight module[END_REF]. [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF]24), (9, 18), (23,[START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]. [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF]20), (16, 13), (24, 6). α 32 = [0, 1, 1, 2, 1, 0, 0, 0]: (4, 25), (17, 12), (18, 11), (19,[START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF]. [START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF]26), (17, 13), (25,[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF]. [START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF]21), (18, 14), (26, 7). [START_REF] Springer | Linear algebraic groups[END_REF]21), (19, 14), (27, 7). α 36 = [0, 0, 0, 1, 1, 1, 1, 1]: (4, 29), [START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]22), (20, 15), (28, 8). α 37 = [1, 1, 1, 2, 1, 0, 0, 0]: (1, 32), (4, 30), (18, 16), (23, 12), (24, 10). [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF]31), [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF]26), (23, 13), (30,[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF]. α 52 = [1, 1, 1, 2, 2, 1, 0, 0]: (1, 48), (5, 45), (18, 31), (20, 30), (24, 26), (37, 13), (38,[START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]. [START_REF] Braverman | The minimal realization from deformation theory[END_REF]46), (23, 28), (34, 16), (37, 14), (39, 10), (45, 7). [START_REF] Springer | Linear algebraic groups[END_REF]46), (23, 35), (39, 17), (41, 16), (44, 14), (49, 9), (51, 7). [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF]53), (18, 39), (24, 34), (28, 30), (37, 21), (46, 12), (52, 7). 

α 30 = [1, 1, 1, 1, 1, 0, 0, 0]: (1, 25),
α 31 = [1, 0, 1, 1, 1, 1, 0, 0]: (1, 27),
α 33 = [0, 1, 1, 1, 1, 1, 0, 0]: (2, 27),
α 34 = [0, 1, 0, 1, 1, 1, 1, 0]: (2, 28),
α 35 = [0, 0, 1, 1, 1, 1, 1, 0]: (3, 28),
α 38 = [1, 1, 1, 1, 1, 1, 0, 0]: (1, 33),
α 39 = [1, 0, 1, 1, 1, 1, 1, 0]: (1,
α 53 = [1, 1, 1, 2, 1, 1, 1, 0]: (1, 49),
α 54 = [1, 1, 1, 1, 1, 1, 1, 1]: (1,
α 58 = [1, 1, 2, 2, 1, 1, 1, 0]: (3, 53),
α 59 = [1, 1, 1, 2, 2, 1, 1, 0]: (1, 55),
α 60 = [1, 1, 1, 2, 1, 1, 1, 1]: (1,

  where s α ∈ W is the simple reflection attached to the root α. Proof. Parts (a) and (b) follow from the previous discussion. Part (d) follows from the definitions of V subreg (α) and V sα . Let us show part (c). If the simple roots α and α are orthogonal, then the intersection n α ∩ n α is the nilradical of a parabolic subalgebra. By [5, Theorem 7.1.1], the maximal dimension of a nilpotent orbit intersecting

( 1 )

 1 O min = α∈Φ B • e α and O min ∩ n = α∈Φ + B • e α since the Weyl group W acts transitively on the set of long roots. The next statement follows from [4, 8] and [3, §6.1]. Proposition 2.(a) For every α ∈ Φ + , we haveB • e α ∩ O min = γ α B • e γwhere the union is taken over all long roots γ ∈ Φ + satisfying γ α. (b) Thus, the subsetsV min (α) := B • e α ∩ O min , for α ∈ Π ,are exactly the irreducible components of O min ∩n, i.e., the orbital varieties of O min . Every orbital variety contains in particular the orbit B • e βmax . (c) Every orbital variety V min (α) (for α ∈ Π ) is normal, Cohen-Macaulay, and has rational singularities. (d) V min (α) = V sαw0 . 2.2. Statement of main results. As in Section 2.1, β max stands for the biggest root. It decomposes as a sum of simple roots

Lemma 4 .

 4 Let γ ∈ M max .

Proposition 6 .

 6 Let α be a simple root and let V subreg (α) = O subreg ∩ n α be the corresponding orbital variety of O subreg . Let x ∈ n α and let M α (x) be the matrix of the linear transformation b → n α , y → [y, x] (relatively to some bases of b and n α , e.g., subbases of a Chevalley basis of g). Then (a) dim B • x = rank M α (x). (b) V subreg (α) has a dense B-orbit if and only if for some x ∈ n α the rows of M α (x) are linearly independent.

4. 2 .Lemma 5 .

 25 Proof of Theorem 2 in classical cases. We rely on a technical lemma: Let α be a simple root. Assume that there is an element x ∈ O subreg ∩n α of the formx = γ∈I x γ with x γ ∈ g γ \ {0}where I is a subset of Φ + \ {α} satisfying the following conditions: (A) There is γ ∈ I such that γ -α ∈ Φ \ (I ∪ I ) where I = I + Φ + ; (B) There is γ ∈ I such that γ + α ∈ Φ \ (I ∪ Î ) where Î = I + (Φ + \ {α}); (C) For every δ ∈ {γ -γ : γ, γ ∈ I} ∩ Φ + \ {α}, there is β ∈ I such that β + δ ∈ Φ \ I and (β + δ) -β / ∈ Φ + \ {α} for all β ∈ I \ {β}; (D) Φ is contained in the linear space spanned by I. Then V subreg (α) has no dense B-orbit.Proof. In view of Proposition 5, it suffices to show the inclusion[START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF] {y ∈ p α : [y, x] = 0} ⊂ n α .

  Theorem 2 in type C. Assume G of type C m with m ≥ 3. We deal with the following realization of g = sp n (K) with n = 2m: g = a b c -a * : a, b, c are n × n matrices, b = b * , c = c *

  and α m := 2ε m . The subregular orbit O subreg ⊂ sp n (K) consists of all nilpotent matrices x ∈ sp n (K) of Jordan form (n -2, 2). The element x 1 := e 2ε1 + m j=2 e αj belongs to O subreg ∩ n α1 and the element y 1 := e -α1 +e ε1+ε3 belongs to p α1 \Rad(p α1 ) and satisfies [y 1 , x 1 ] = 0. The element x m := e 2εm-1 + m-1 j=1 e αj belongs to O subreg ∩ n αm and satisfies [e -αm , x m ] = 0. By applying Proposition 5, we get that V subreg (α 1 ) and V subreg (α m ) contain a dense B-orbit.

  35),[START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF] 28), (16, 21), (24, 14),(31,[START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF].α 40 = [0, 1, 1, 2, 1, 1, 0, 0]:[START_REF] Braverman | The minimal realization from deformation theory[END_REF] 33),(17, 20),(26,[START_REF] Springer | Linear algebraic groups[END_REF], (27, 10),(32,[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF].α 41 = [0, 1, 1, 1, 1, 1, 1, 0]: (2, 35),[START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF] 34), (17, 21), (25, 14), (33, 7). α 42 = [0, 1, 0, 1, 1, 1, 1, 1]: (2, 36), (10, 29), (18, 22), (26, 15),(34,[START_REF] Joseph | On the variety of a highest weight module[END_REF].α 43 = [0, 0, 1, 1, 1, 1, 1, 1]: (3, 36),[START_REF] Springer | Linear algebraic groups[END_REF] 29), (19, 22), (27, 15), (35, 8). α 44 = [1, 1, 2, 2, 1, 0, 0, 0]: (3, 37), (11, 30), (23, 19), (24, 17), (25, 16), (32, 9). α 45 = [1, 1, 1, 2, 1, 1, 0, 0]: (1, 40), (4, 38), (23, 20), (26, 16), (31, 10), (37, 6). α 46 = [1, 1, 1, 1, 1, 1, 1, 0]: (1, 41), (2, 39), (9, 34), (23, 21), (30, 14), (38, 7). α 47 = [1, 0, 1, 1, 1, 1, 1, 1]: (1, 43), (9, 36), (16, 29), (24, 22), (31, 15), (39, 8).α 48 = [0, 1, 1, 2, 2, 1, 0, 0]: (5, 40), (18, 27), (19, 26), (20, 25), (32, 13),(33,[START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF]. α 49 = [0, 1, 1, 2, 1, 1, 1, 0]: (4, 41), (17, 28), (32, 14), (34, 11), (35, 10),(40,[START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF].α 50 = [0, 1, 1, 1, 1, 1, 1, 1]: (2, 43),[START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF] 42), (17, 29), (25, 22), (33, 15), (41, 8). α 51 = [1, 1, 2, 2, 1, 1, 0, 0]:[START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF] 45),[START_REF] Springer | Linear algebraic groups[END_REF] 38), (23, 27), (31, 17), (33, 16), (40, 9), (44, 6).

α

  82 = [1, 1, 2, 3, 3, 2, 1, 0]: (5, 76), (13, 70), (19, 66), (27, 59), (28, 57), (39, 48), (52, 35), (55, 31), (61, 24), (63, 21), (64, 20), (71, 12).

α

  83 = [1, 1, 2, 3, 2, 2, 1, 1]: (4, 78), (6, 77), (16, 68), (27, 60), (36, 51), (45, 43), (47, 40), (56, 31), (63, 22), (65, 20), (73, 11), (76, 8).

α

  84 = [1, 1, 2, 2, 2, 2, 2, 1]: (3, 79), (7, 78), (21, 65), (22, 64), (39, 50), (41, 47), (43, 46), (54, 35), (58, 29), (71, 15), (72, 14), (74, 9).

α

  85 = [1, 2, 2, 3, 3, 2, 1, 0]: (2, 82),[START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF] 80),[START_REF] Vinberg | Complexity of actions of reductive groups[END_REF] 75), (25, 66), (33, 59), (34, 57), (46, 48), (52, 41), (55, 38), (61, 30), (64, 26), (69, 21),(71, 18).α 86 = [1, 2, 2,3, 2, 2, 1, 1]: (2, 83), (6, 81), (10, 78), (23, 68), (33, 60), (42, 51), (45, 50), (54, 40), (56, 38), (65, 26), (69, 22), (73, 17), (80, 8). α 87 = [1, 1, 2, 3, 3, 2, 1, 1]: (5, 83), (13, 77), (19, 73), (27, 67), (36, 57), (47, 48), (52, 43), (62, 31), (63, 29), (68, 24), (72, 20), (78, 12), (82, 8). α 88 = [1, 1, 2, 3, 2, 2, 2, 1]: (4, 84), (7, 83), (16, 74), (22, 70), (28, 65), (39, 56), (43, 53), (49, 47), (58, 36), (60, 35), (76, 15), (77, 14), (79, 11).α 89 = [1, 2, 2, 4, 3, 2, 1, 0]: (4, 85),[START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF] 80), (20, 75), (32, 66), (34, 63), (40, 59), (52, 49), (53, 48), (55, 45), (61, 37), (69, 28), (70, 26), (76, 18), (82, 10).α 90 = [1, 2, 2, 3, 3, 2, 1, 1]: (2, 87),[START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF] 86),[START_REF] Vinberg | Complexity of actions of reductive groups[END_REF] 81), (25, 73), (33, 67), (42, 57), (52, 50), (54, 48), (62, 38), (68, 30), (69, 29), (72, 26), (78, 18), (85, 8).

α

  91 = [1, 2, 2, 3, 2, 2, 2, 1]: (2, 88),[START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF] 86),[START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF] 84), (22, 75), (23, 74), (34, 65), (46, 56), (49, 54), (50, 53), (58, 42), (60, 41), (79, 17), (80, 15), (81, 14).

α

  92 = [1, 1, 2, 3, 3, 2, 2, 1]: (5, 88), (7, 87), (19, 79), (28, 72), (29, 70), (39, 62), (43, 59), (55, 47), (64, 36), (67, 35), (74, 24), (77, 21), (82, 15), (84, 12).

α

  93 = [1, 2, 3, 4, 3, 2, 1, 0]: (3, 89), (11, 85), (19, 80), (27, 75), (32, 71), (40, 64), (41, 63), (55, 51), (57, 49), (58, 48), (61, 44), (69, 35), (70, 33), (76, 25), (82, 17).

α

  94 = [1, 2, 2, 4, 3, 2, 1, 1]: (4, 90),[START_REF] Steinberg | On the desingularization of the unipotent variety[END_REF] 86), (20, 81), (32, 73), (40, 67), (42, 63), (52, 56), (60, 48), (62, 45), (68, 37), (69, 36), (77, 26), (83, 18), (87, 10), (89, 8).

α

  95 = [1, 2, 2, 3, 3, 2, 2, 1]: (2, 92), (5, 91), (7, 90), (25, 79), (29, 75), (34, 72), (46, 62), (50, 59), (55, 54), (64, 42), (67, 41), (74, 30), (81, 21), (84, 18), (85, 15).

α

  96 = [1, 1, 2, 3, 3, 3, 2, 1]:[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF] 92), (14, 87), (20, 84), (28, 78), (29, 76), (31, 74), (39, 68), (43, 66), (61, 47), (71, 36), (73, 35), (79, 27), (82, 22), (83, 21), (88, 13). (106, 51), (109, 40), (110, 38), (113, 27), (114, 26), (116, 13). α 119 = [2, 3, 4, 6, 5, 4, 3, 1]: (7, 118), (21, 116), (34, 114), (35, 113), (46, 110), (49, 109), (58, 106), (59, 105), (61, 104), (70, 100), (71, 99), (79, 93), (80, 92), (82, 91), (88, 85), (89, 84), (95, 76), (96, 75), (97, 74), (102, 66), (103, 64), (107, 55), (108, 53), (111, 41), (112, 39), (115, 28), (117, 14).

α

  120 =[START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF][START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF][START_REF] Braverman | The minimal realization from deformation theory[END_REF][START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF][START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebras[END_REF][START_REF] Braverman | The minimal realization from deformation theory[END_REF][START_REF] Bender | Singularities of closures of spherical B-conjugacy classes of nilpotent orbits[END_REF][START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF]:[START_REF] Joseph | On the variety of a highest weight module[END_REF] 119), (22, 117), (36, 115), (47, 112), (50, 111), (60, 108), (62, 107), (72, 103), (73, 102), (74, 101), (81, 96), (83, 95), (84, 94), (90, 88), (91, 87), (92, 86), (98, 79), (99, 78), (100, 77), (104, 68), (105, 67), (106, 65), (109, 56), (110, 54), (113, 43), (114, 42), (116, 29), (118, 15).

7 , E 8 , we consider the numbering of the simple roots determined by the following diagram (of type E 8 )

  and its subdiagrams {α 1 , . . . , α 7 } (of type E 7 ) and {α 1 , . . . , α 6 } (of type E 6 ). the group G is of type C or D, and α is an extremal root of the Dynkin diagram; (3) the group G is of type G 2 or F 4 , and α is long and extremal; (4) the group G is of type E 6 (resp., E 7 ) and α ∈ {α 1 , α 6 } (resp., α = α 7 ). In types A and C, every orbital variety of O min is smooth. (b) In types G 2 , F 4 , and E 8 , every orbital variety of O min is singular. (c) In types A and B, every orbital variety of O subreg has a finite number of B-orbits. (d) In type E 8 , every orbital variety of O subreg has an infinite number of Borbits.

	(1) the group G is of type A or B;		
	(2) The proof is given in Section 4.			
	Corollary 1.	(a)					
				α 2			
		α 1	α 3	α 4	α 5	α 6	α 7	α 8
	Theorem 2. Let α ∈ Π be a simple root and let V subreg (α) = O subreg ∩ n α be the
	corresponding orbital variety of the subregular nilpotent orbit O subreg . The following
	conditions are equivalent:					
	(i) V subreg (α) has a finite number of B-orbits;	
	(ii) V subreg (α) has a dense B-orbit;			
	(iii) One of the following conditions is satisfied:	

  3.2.Tangent space of the minimal nilpotent orbit at the biggest root vector. Recall that for each positive root α we consider a root vector e α ∈ g α \{0}.The biggest root vector e βmax is a representative of the minimal nilpotent orbit O min . By T e βmax O min we denote the tangent space of O min at e βmax .Proposition 3. T e βmax O min = g βmax ⊕ [g βmax , g -βmax ] ⊕ γ∈Mmax g γ . βmax O min = dim O min = |M max | + 2.The first equality in (3) follows from the fact that O min is smooth. For showing the second equality, we compute the stabilizer z g (e βmax ) := {v ∈ g : [v, e βmax ] = 0}. Let v ∈ g and let us write v = h + α∈Φ v α where h ∈ h and v α ∈ g α for all α ∈ Φ. βmax ] = 0 holds if and only if h ∈ ker β max , v -βmax = 0, and v α = 0 whenever α + β max is a root. The last fact is equivalent to having -α ∈ M max . Altogether, this yields dim z g (e βmax ) = dim g -2 -|M max |.

	Proof. We first claim that	
	(3) dim T e We get	
	[v, e βmax ] = β max (h)e βmax + [v -βmax , e βmax ] +	[v α , e βmax ],
	α∈Φ\{-βmax}	
	and the equality [v, e	

  e βmax . Hence K * e βmax ⊂ O min , which yields the inclusion g βmax = T e βmax (K * e βmax ) ⊂ T e βmax O min . -βmax , g βmax ] = K[x -βmax , e βmax ] = T e βmax u -βmax (K) • e βmax ⊂ T e βmax O min

	By (2), the inclusion
	[g holds. Similarly, for every γ ∈ M max , letting γ := β max -γ (which is a positive
	root), the inclusion

* ) • e βmax = K *

  68 = [0, 1, 1, 2, 2, 2, 1, 1]:[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF] 62), (20, 50), (29, 40), (33, 36), (42, 27), (43, 26),(48, 22),(56,[START_REF] Vinberg | Complexity of actions of reductive groups[END_REF],(61,[START_REF] Joseph | On the variety of a highest weight module[END_REF].α 69 = [1, 2, 2, 3, 2, 1, 0, 0]: (2, 63),[START_REF] Spaltenstein | On the fixed point set of a unipotent element on the variety of Borel subgroups[END_REF] 57), (18, 51), (23, 48), (30, 40), (32, 38), (33, 37), (44, 26), (45, 25),(52, 17). 73 = [1, 1, 1, 2, 2, 2, 1, 1]: (1, 68),[START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF] 67), (20, 54), (29, 45), (38, 36), (42, 31), (47, 26), (52, 22), (60, 13),(66,[START_REF] Joseph | On the variety of a highest weight module[END_REF].α 74 = [0, 1, 1, 2, 2, 2,2, 1]: (7, 68), (21, 56), (22, 55), (34, 43), (35, 42), (36, 41), (49, 29), (50, 28), (61, 15), (62, 14). α 75 = [1, 2, 2, 3, 2, 1, 1, 0]: (2, 70), (10, 64), (18, 58), (23, 55), (30, 49), (32, 46), (41, 37), (44, 34), (53, 25), (59, 17), (69, 7). α 76 = [1, 1, 2, 3, 2, 2, 1, 0]: (4, 71), (6, 70), (16, 61), (27, 53), (28, 51), (39, 40), (45, 35), (49, 31), (58, 20), (63, 14), (66, 11). α 77 = [1, 1, 2, 3, 2, 1, 1, 1]: (4, 72), (12, 65), (16, 62), (24, 56), (32, 47), (43, 37), (44, 36), (60, 19), (63, 15), (67, 11), (70, 8). α 78 = [1, 1, 2, 2, 2, 2, 1, 1]: (3, 73), (6, 72), (27, 54), (29, 51), (38, 43), (47, 33), (50, 31), (57, 22), (65, 13), (68, 9), (71, 8). α 79 = [1, 1, 1, 2, 2, 2, 2, 1]: (1, 74), (7, 73), (21, 60), (22, 59), (34, 47), (36, 46), (39, 42), (53, 29), (54, 28), (66, 15), (67, 14). α 80 = [1, 2, 2, 3, 2, 2, 1, 0]: (2, 76), (6, 75), (10, 71), (23, 61), (33, 53), (34, 51), (45, 41), (46, 40), (49, 38), (58, 26), (66, 17), (69, 14). α 81 = [1, 2, 2, 3, 2, 1, 1, 1]: (2, 77), (10, 72), (18, 65), (23, 62), (30, 56), (32, 54), (44, 42), (50, 37), (60, 25), (67, 17), (69, 15), (75, 8).

	α 70 = [1, 1, 2, 3, 2, 1, 1, 0]: (4, 64), (12, 58), (16, 55), (24, 49), (32, 39), (35, 37), (44, 28), (53, 19), (59, 11), (63, 7).
	α 71 = [1, 1, 2, 2, 2, 2, 1, 0]: (3, 66), (6, 64), (21, 51), (27, 46), (38, 35), (39, 33), (41, 31), (57, 14), (58, 13), (61, 9).
	α 72 = [1, 1, 2, 2, 2, 1, 1, 1]: (3, 67), (5, 65), (24, 50), (25, 47), (43, 30), (44, 29), (54, 19), (57, 15), (62, 9), (64, 8).
	56), (4, 54), (23, 36), (37, 22), (42, 16), (45, 15), (47, 10), (53, 8).
	α 61 = [0, 1, 1, 2, 2, 2, 1, 0]: (6, 55), (20, 41), (21, 40), (33, 28), (34, 27), (35, 26), (48, 14), (49, 13).
	α 62 = [0, 1, 1, 2, 2, 1, 1, 1]: (5, 56), (18, 43), (19, 42), (32, 29), (36, 25), (48, 15), (50, 12), (55, 8).
	α 63 = [1, 1, 2, 3, 2, 1, 0, 0]: (4, 57), (12, 51), (16, 48), (24, 40), (27, 37), (32, 31), (44, 20), (45, 19), (52, 11).
	α 64 = [1, 1, 2, 2, 2, 1, 1, 0]: (3, 59), (5, 58), (24, 41), (25, 39), (35, 30), (44, 21), (46, 19), (55, 9), (57, 7).
	α 65 = [1, 1, 2, 2, 1, 1, 1, 1]: (3, 60), (11, 54), (23, 43), (44, 22), (47, 17), (50, 16), (51, 15), (56, 9), (58, 8).
	α 66 = [1, 1, 1, 2, 2, 2, 1, 0]: (1, 61), (6, 59), (20, 46), (21, 45), (34, 31), (38, 28), (39, 26), (52, 14), (53, 13).
	α 67 = [1, 1, 1, 2, 2, 1, 1, 1]: (1, 62), (5, 60), (18, 47), (24, 42), (36, 30), (37, 29), (52, 15), (54, 12), (59, 8).

α α
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Appendix

In this appendix, g is a simple Lie algebra of exceptional type, (λ 1 , . . . , λ r ) is the basis of the Cartan subalgebra h which is dual to the basis of h * formed by the simple roots α 1 , . . . , α r , (e 1 , . . . , e n ) is a Chevalley basis of the maximal nilpotent subalgebra n (the numbering of the vectors corresponds to the total ordering of the positive roots determined by the height, roots with the same height being ordered according to the lexicographic order of their coordinates).

Given x = n j=1 x j e j , we denote by A(x) the matrix of the linear map b → n, y → [y, x] with respect to the bases (λ 1 , . . . , λ r , e 1 , . . . , e n ) of b and (e 1 , . . . , e n ) of n. In this appendix, we describe the matrix A(x) in the different exceptional cases.

In Figures 1 and2, we give the matrix A(x) in types G 2 and F 4 , respectively. For clarity, the zero coefficients are replaced by dots. In type F 4 , we write the matrix [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF]89) [START_REF] Fresse | Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of B-orbits[END_REF]95), (14, 90), (26, 84), (29, 80), (34, 78), (38, 74), (46, 68), (50, 66), (61, 54), (71, 42), (73, 41), (79, 33), (85, 22), (86, 21), (91,[START_REF] Vinberg | Complexity of actions of reductive groups[END_REF]. [START_REF] Joseph | Orbital varietes of the minimal orbit[END_REF]94), (16, 90), (24, 86), (31, 81), (37, 78), (45, 72), (54, 63), (57, 60), (65, 52), (67, 51), (69, 47), (73, 44), (77, 38), (83, 30), (87, 23), (97,[START_REF] Joseph | On the variety of a highest weight module[END_REF]. [START_REF] Fresse | Smooth orbital varieties and orbital varieties with a dense B-orbit[END_REF]98), [START_REF] Springer | Linear algebraic groups[END_REF]95)