
HAL Id: hal-01739675
https://hal.science/hal-01739675

Submitted on 21 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calur: an Action Language for UML-RT
Nicolas Hili, Ernesto Posse, Juergen Dingel

To cite this version:
Nicolas Hili, Ernesto Posse, Juergen Dingel. Calur: an Action Language for UML-RT. 9th European
Congress on Embedded Real Time Software and Systems (ERTS 2018), Jan 2018, Toulouse, France.
�hal-01739675�

https://hal.science/hal-01739675
https://hal.archives-ouvertes.fr

Calur: an Action Language for UML-RT

Nicolas Hili
School of Computing, Queen’s University

Kingston, Ontario, Canada
Email: hili@cs.queensu.ca

Ernesto Posse
Zeligsoft

Gatineau, Quebec, Canada.
Email: eposse@zeligsoft.com

Juergen Dingel
School of Computing, Queen’s University

Kingston, Ontario, Canada
Email: dingel@cs.queensu.ca

Abstract—UML for Real-Time (UML-RT) is a profile of UML
specifically designed for real-time embedded (RTE) systems. It
has a long, successful track record of application and tool
support via, e.g., IBM Rational RoseRT, IBM RSA-RTE, and
now Papyrus-RT. Papyrus-RT is an Eclipse-based, open-source
modelling and development environment for UML-RT systems.
It allows the generation of complete, executable code from
models and advances the state-of-art via support for model
representation with mixed graphical/textual notations and an
extensible code generator.

Together with commercial UML-RT tools, Papyrus-RT cur-
rently uses C/C++ as the action language to support the definition
of behaviour. However, the use of a powerful, general-purpose
language such as C/++ can also easily break the abstraction
that UML-RT wants to offer developers (e.g., developers have
to be familiar with some of the intricate details of the C/C++
syntax and semantics) and greatly complicates almost any kind
of analysis. To address this issue, action languages have been
proposed for, e.g., UML. However, no suitable action language
for UML-RT exists yet. This paper introduces Calur, a proposed
action language for UML-RT, intended to be integrated within
Papyrus-RT. We describe the syntax and semantics of Calur, and
a preliminary implementation.

Keywords: Real-time Embedded Systems; UML-RT; UML;
Action Language; MDE; State Machines.

I. MOTIVATION

Model-Driven Engineering (MDE) is often touted as an
approach that can tackle the challenges of developing complex,
yet robust RTE systems. Modelling languages such as UML-
RT [1] aim at raising the level of abstraction to, e.g., reduce the
effort required to deal with lower level concerns such as data
serialization, low-level concurrency management, platform-
specific aspects, etc.

To promote the development of industrial-strength open
source tools for the development of RTE systems, the Eclipse
PolarSys Working Group was recently created [2]. The group
currently consists of 23 members from industry and academia
and supports 24 projects that focus on different aspects of
embedded systems development including modelling and trac-
ing. Eclipse Papyrus for Real-Time (Papyrus-RT) [3], [4] is
a project within PolarSys; currently in version 0.9, version
1.0 is scheduled to be released in July 2017. Papyrus-RT is
based on the Papyrus/Eclipse platform and was designed to be
extensible, allowing users to add, with relative ease, their own
customizations or extensions. Its target audience are industrial
developers who want to build custom solutions, researchers
who want to prototype and evaluate novel techniques, and

educators who want to teach students the strengths and weak-
nesses of modelling and MDE.

One of the existing pitfalls of Papyrus-RT is its lack of
a specific action language to be used in order to model the
behaviour of systems. Currently, C/C++ is used for modelling
transition effects and state entry/exit action code. The use of
a general-purpose language such as C++ as action language
inside models has several disadvantages. Firstly, it creates a
tight dependency between the model and the target language
in which the code is generated. Therefore, it prevents users
from generating code in multiple languages, reducing the
maintainability of models developed with the modelling tool.
Secondly, it requires users to be familiar with some intricate
details of the C++ syntax and semantics. On the one hand,
this makes it hard for the tool to offer good support for
the development of correct and reliable models (e.g., using
a self transition triggered with a periodic timer instead of a
loop statement for periodically executing a task). On the other
hand, using C/C++ as an action language enables users to
bypass the abstraction and encapsulation mechanisms offered
by the modelling language. For example, a user can choose to
directly access a method of a specific object via a reference
to its pointer, breaking the encapsulation UML-RT is built
around. Thirdly, as a programming language is not specific to
the syntax and semantics of the modelling language, it makes
it difficult to offer users a user-friendly action language editor
with features such as syntax highlighting, auto-completion,
auto-formatting, etc.. Finally, the complexity of C/C++ makes
many analyses very difficult to perform.

Several attempts have been made to equip UML state
machines with a dedicated action language that is fully aligned
with UML. Examples include fUML [5], ALF [6], and Precise
Semantics of UML State Machines (PSSM) [7]. However,
such attempts are focusing on UML only and are therefore
not specific to UML-RT. As UML-RT is a subset of UML
with its own run-time services and semantics, a specific action
language is required to make the best use of it.

This paper introduces CALUR, a proposed action language
for UML-RT, and its integration in Papyrus-RT. The remainder
of this paper is structured as follows: Section II introduces the
core modelling concepts of UML-RT; CALUR is introduced in
Section III and an implementation is sketched in Section IV;
New opportunities and challenges are discussed in Section V;
Section VI presents related work; Section VII concludes.

A

b : B c: C [0..1]

d: D [0..1]

p1

p2

p3

p4~

p5
p6

p7

p8
p9~

p10

p11

p12
p13~

Notation:

C

c: C

c: C [0..1]

c: C [0..1]

Capsule

Fixed capsule
part

Optional capsule
part

Plugin capsule
part

p

base port
p~

conjugated
port

p

behaviour
port

Fig. 1: A UML-RT Structure (Capsule) Diagram

II. UML FOR REAL-TIME (UML-RT)

In this section we describe informally the main concepts of
UML-RT, in particular we describe the notions of capsules and
structure diagrams in II-A and state machines in II-C. While
UML-RT covers other types of UML diagrams, we focus only
on these two, as they are the most important for UML-RT
modelling. For more information on UML-RT we refer the
reader to [1], [8], [9]. The official account of UML can be
found in [10], [11].

A. Capsule Diagrams

UML-RT allows for modelling a system’s structure through
structure diagrams, also called capsule diagrams. Capsule
diagrams are essentially UML Composite Structure diagrams,
where the classifiers in the structure are so-called capsules.
Fig. 1 shows a typical UML-RT capsule diagram.

A capsule, as its name suggests, is a highly encapsulated
active entity, which may have some behaviour specified via
a state machine (see II-C). It is in fact, a UML active class.
Capsules may execute concurrently with other capsules and
communicate with them only by sending and receiving signals
through ports (p1, p2, ..., p13 in Fig. 1). Ports in different
capsules are linked by connectors. A connector links only two
ports1. Each port has a type specified with a protocol, which
identifies signals that can be sent or received via the port.
Communication may be asynchronous or synchronous. Cap-
sules can have internal structure consisting of capsule parts.
A capsule part can be thought of as a “slot” or placeholder
for other capsule instances. A part is a UML Property whose
type is a capsule. External ports of these parts are connected
(wired) statically or can be connected at run-time. Connected
ports must implement the same protocol and be “compatible”,
i.e., the output (send) signals of one port must be the input
(receive) signals of the other port and vice versa. In this case,
one of the ports is said to be the base port and the other the
conjugate port, e.g., p6 and p9 in Fig. 1. A port marked with
∼ implements the conjugated version of a protocol, with the
input and output signals inverted.

1A port may be replicated so that it consists of many port instances, with
each instance connecting to one and only other port instance

The set of ports of a capsule defines its interface. There are
five kinds of ports: external ports, relay ports, internal ports,
Service Access Points (SAPs) and Service Provision Points
(SPPs). External ports are ports linked to external capsules,
and used directly by the capsule’s state machine (if it has one)
to either send or receive messages (e.g., port p2 in Fig. 1).
Relay ports are ports directly connected to some sub-capsule
(thus relay messages between some external capsule and some
sub-capsule, e.g., ports p1 and p3 in Fig. 1). Internal ports are
used to communicate between the capsule’s state machine and
some sub-capsule (e.g., port p4 in Fig. 1).

Some ports such as p12 and p13 may be declared as unwired,
but they may become connected or wired at run-time by
explicit actions on the part of the capsules that own these
ports. This is achieved when one of the ports is registered
at runtime by its capsule as a service provision point or SPP
for short, under a unique service name, and the other port is
registered by its capsule as a service access point or SAP for
short, under the same unique service name. When both ports
are registered (which may be done asynchronously), a new
connector links them. It is also possible to deregister ports and
reregistering them, thus allowing a dynamic reconfiguration of
the connections among capsules. SPPs and SAPs are typically
used when the modelled architecture consists of service layers
to access services in the underlying layer or platform.

There are three kinds of capsule part: fixed, optional or
plug-in. A fixed part is one where its instance(s) is(are)
created (resp. destroyed) when its containing capsule is created
(resp. destroyed) and is permanently attached to its containing
capsule. An optional part is one where its instance(s) may
be incarnated (i.e., created) or destroyed at a different time,
but is(are) still owned by the containing capsule. Plug-in parts
are “placeholders” for capsules which can be “imported” and
“deported” dynamically, but are not owned by the containing
capsule, so they can be shared between different capsules.
In Fig. 1, b is a fixed part of type B, c is an optional part
of type C, indicated by its pattern, and d is a plug-in part of
type D, indicated by its pattern and dashed border.

B. Runtime semantics

Conceptually a capsule instance is an executable entity
running concurrently with other capsule instances, so it can be
viewed as a logical thread. Nevertheless, each capsule instance
can be assigned to some physical thread, i.e. a thread in the
underlying platform. That is, several capsule instances can
share the same real system thread or be on their own.

More precisely, the run-time system consists of one or more
controllers, each of which runs in its own physical (OS) thread.
A controller is like an interpreter for capsules, which manages
their lifecycle and executes their behaviour. It contains an
event pool for all events whose intended receiver is a capsule
instance allocated to the controller2. The controller divides
the execution of capsule by processing each event in the pool
at a time. This enforces run-to-completion semantics, this is,
when the controller processes an event, this event is passed to
its target state machine and it is processed fully, one at a time,
executing an entire transition chain from the state machine’s
current (stable) state, executing all actions in the chain and
possibly passing through several pseudo states until it reaches
another (stable) state and before processing the next available
event in the pool. This ensures that a capsule’s state machine
cannot be interrupted while processing an event, which avoids
preemptive interruptions and all the concurrency issues that
go with it.

C. State Machine Diagrams

The behaviour of a capsule is specified using UML-RT
state machines [1], [8] which are similar to UML state
machines [10], [11] but with some key differences. Fig. 2
shows a typical UML-RT state machine diagram.

StateMachine

Sleep

Diagnose

Active

Locked

Unlocked

start/a1

standby/a2

resume/a3

error/

initial/

unlock/lock/

Notation: State

Composite State

intial state
entry point
exit point

trigger/action
transition

Fig. 2: A UML-RT State Machine Diagram

2The event pool is shared between all capsule instances allocated to the
same controller. This distinguishes UML-RT from other common concurrency
models where the queue is per process/thread or per port.

A UML-RT state machine has hierarchical states and
guarded transitions, which are triggered by events received
on ports. Each state declares its entry and exit actions and
transitions have effects, so they can contain actions that are
to be executed when the transition is fired. Just like in
standard UML state machines, event handling in UML-RT
state machines will follow a “run-to-completion” semantics:
a state machine will handle one and only one event at a time,
and any transition chain enabled will be fully followed and its
actions fully executed before the next event is handled.

However, there also are some important syntactic and se-
mantic differences between UML-RT state machines and UML
state machines:

1) UML-RT state machines cannot contain “and-states” (or-
thogonal regions). All states are “or-states”. So, during
execution a given UML-RT state machine can be only
in at most one simple state.

2) Transitions in UML-RT state machines are not allowed
to cross state boundaries and they may have explicit
entry and exit points, here collectively called connection
points (in UML terminology, entry and exit pseudo-
states). Hence, to represent a boundary-crossing transi-
tion, it must be broken up into segments, where each
segment links connection points, either at the same
level of nesting, or between a state and an immediate
sub-state. During execution, connected segments form a
transition chain, which is executed as one step.

3) In UML-RT entry points are by default connected to
deep history pseudo-states. Suppose a composite state
n is the target of a transition and that the associated
entry point is not linked to a sub-state of n. If n has not
been previously visited and there is an initial transition
pointing to the default state, then the initial transition
is followed and the default state entered. If, however,
n has been visited previously, then the last sub-state
visited in n is entered. If it has not been visited and
there is no initial transition, no sub-state is entered and
the state machine remain “at the border” of n. This
policy is applied recursively. Hence, entering a state
can be interpreted as “resuming computation where it
previously left off”. In standard UML state machines,
on the other hand, it is possible not to connect entry
points to deep history pseudo-states, but to “shallow”
history pseudo states, or to the boundary of the state,
in which case an initial state is always entered, if an
entry point is not explicitly connected to a sub-state.
Since all states have deep-history semantics, we avoid
the common notation of depicting deep history pseudo-
states explicitly, to avoid clutter in the diagrams.

4) Actions may be related to concepts specific to UML-
RT such as capsule operations. In particular an action
may send an event through a port, create or destroy
an optional capsule, import or deport a plug-in capsule,
connect or disconnect unbound ports, and perform nor-
mal operations on objects.

5) UML-RT supports timing requirements using a special
timing protocol and internal ports which implement
this protocol. A capsule, which contains a port that
implements the timing protocol, can schedule an event
by sending a signal through this port. Scheduling can be
a part of the entry or exit behavior of a state or as an
action on a transition. After a specified amount of time,
the capsule will receive a timeout event from the port
which it can process as any other signal.

D. Time

In UML-RT, time is assumed to progress according to an
external timing service (usually provided by the underlying
platform). The timing service adheres to a timing protocol
with a distinguished timeout signal and a period or a deadline.
The timing service is accessible by UML-RT models through
a standard port with the corresponding timing protocol, so
time signals can be treated as any other signal. Since the
timing service is external, it can proceed in any way that
maintains time consistency, i.e., if two timers with timeout
signals tmo1 and tmo2 are set up at the same time t0 with
timeouts t1 > t0 and t2 > t0 respectively, and such that
t1 < t2, then the timing service must guarantee that signal
tmo1 will be triggered before tmo2. Besides this requirement,
the semantics of UML-RT does not make any assumptions
about the rate of progress of these clocks. Furthermore, since
UML-RT is not concerned with performance or scheduling, it
makes no assumptions about the duration of specific actions.
We assume that individual actions in the underlying action
language take a negligible amount of time with respect to the
minimum time unit of the time services used. Furthermore,
other activities such as entering or exiting a state, or relaying a
message on a relay port, also take a negligible amount of time.
In the case of asynchronous communication between capsules,
the amount of time between the sending of a message and
its reception and consumption is undetermined. If a capsule
is in a state listening to a normal port and a timeout port,
and the environment sends the message before the timeout,

Fig. 3: Parcel Router System

the language does not guarantee that the message will be
consumed before the timeout signal arrives.

E. Illustrative Example: a Parcel Router
Fig. 3 illustrates a parcel router system we modelled in

UML-RT. A parcel router [12], [13] is an automatic system
where tagged parcels are routed through successive chutes and
switchers to a corresponding bin. The system is time-sensitive
and parcels can jam due to the variation of time spent by a
parcel to transit through the different chutes. According to the
parcel tags, switchers drive the orientation of doors in order
to route the parcels to the corresponding bins.

Fig. 4: Parcel Router Top Capsule Diagram

The UML-RT model consists of a single top capsule. The
capsule structure of the Parcel Router is shown by the capsule
diagram in Fig. 4. It consists of a Gen capsule that generates
tagged parcels and three stages responsible for conveying
parcels to one of four destination bins.

Fig. 5: Parcel Router Stage Capsule Diagram

Each stage is further decomposed into chutes, switchers, and
sensors. The capsule diagram in Fig. 5 details the content of
the Stage capsule. It contains two successive chutes that are
chained with a switcher. When a parcel is conveyed by the
first chute, a sensor reads the tag of the parcel and sends the
value to the switcher. The latter, upon reception of the parcel,
can route the parcel on its right or left side to the next stage
or the four bins.

III. CORE ACTION LANGUAGE FOR UML-RT (CALUR)
As mentionned in section II, the behaviour of the parcel

router system can be modelled using UML-RT state machines

where the actions embedded in each state and transition is
written in C++. It results in the different drawbacks discussed
in section I (limited analysis capabilities, misuse of C++, lack
of editing support, etc.).

To address these issues, we have defined CALUR3, an
action language for UML-RT. CALUR stands for Core Action
Language for UML-RT. It is intended to be used for writing
action code in an independent way without being tight to a
specific target language implementation (e.g., C++). Origi-
nally, CALUR was part of a proposal for defining a full textual
notation of UML-RT models called TUMLRT [14]. To the
contrary of TUMLRT, CALUR is not intended to be used
as standalone but rather to specify in a textual way action
code embedded in UML-RT models where the structure is still
specified graphically by means of capsule and state machine
diagrams, conciliating the best of both worlds.

Listing 1 is a partial Backus-Naur Form (BNF) describing
the syntax of CALUR. It consists of a set of statements to, e.g.,
send signals, create timers, log messages, and so on.

The send keyword is used for sending a signal to a specific
port defined by its name and an optional index. The signal
corresponds to an outgoing signa defined in the protocol that
is used for typing the port. Therefore, only legit signals that
can be sent by this port can be used. Signals can also have
arguments and a value for each argument of the signal (as
defined in the protocol typing the port) must be provided. The
send statement can behave differently following the case:

1 < s t a t e m e n t > : : =
2 send <signal−name > to < p or t− r e f > (with < args >)? ;
3 | i n c a r n a t e <capsule−name > at < p a r t− r e f > < a rgs >? ;
4 | d e s t r o y < p a r t− r e f > ;
5 | import <capsule−name > at < p a r t− r e f > < a rgs >? ;
6 | deport < p a r t− r e f > ;
7 | r e g i s t e r < po r t− r e f > to < p or t− r e f > ;
8 | d e r e g i s t e r < p or t− r e f > ;
9 | l o g <message > (with < args >)? ;

10 | c a l l <operat ion−name > ;
11 | (t imer <name> :) ? inform in <expr >
12 <t ime−uni t > (at <port−name >)? ;
13 | (t imer <name> :) ? inform every <expr >
14 <t ime−uni t > (at <port−name >)? ;
15 | c a n c e l t imer <timer−name > ;
16 | var <name> : <type−name > ;
17 | <var−name> := <expr > ;
18 | i f <expr > then < s t a t e m e n t > (e l s e < s t a t e m e n t >) ?
19 < args > : : = (<expr > (and <expr >)*)
20 < p or t− r e f > : : = <port−name > <index >?
21 < p a r t− r e f > : : = <part−name > <index >?
22 <index > : : = <expr >
23 <t ime−uni t > : : = s e c o n d s | m i l l i s e c o n d s | m i c r o s e c o n d s
24 <expr > : : = < l i t e r a l >
25 | <var−name>
26 | <unary−op > <expr >
27 | <expr > <binary−op > <expr >
28 | <var−name> . <operat ion−name > < args >?

Listing 1: Calur Syntax Proposal [14]

3An early implementation of CALUR is available at: https://bitbucket.org/
nicolas-hili/calur-experiment

1) The port is not replicated. Therefore, there can be only
one recipient to which the signal is addressed. As a
consequence, the communication is “unicast” and the
index parameter of the port-ref is optional;

2) The port is replicated and the index parameter of the
port is specified. Therefore, the recipient to which the
signal is addressed is unique and identified by its index.
The communication is again “unicast”. Note that the
replication of the outgoing port/capsule part must match
the replication of the incoming port/capsule part;

3) The port is replicated and the index parameter is not
specified. Therefore, the signal will be sent to all recipi-
ents connected to the specified port. The communication
is “broadcast”.

Note that the behaviour above holds whether the outgoing
port is external, internal, relay, or SPP. If the port is SAP,
then it is supposed to be connected to a unique SPP port at
run-time, therefore the index parameter of the port-ref should
be unspecified.

incarnate and destroy are statements used in the context
of optional capsules that can be dynamically incarnated and
destroyed, while import and deport are statements specific
to the use of plugin capsules. <capsule−name> designates
the type of capsules that has to be incarnated or imported,
and <part−ref> the properties referring to the capsule part.
Note that, as for ports, the part-ref rule in Listing 1 allows
for specifying a specific index, in case the capsule part is
replicated.

register and deregister can be used for registering a
specific port to another port or de-registering it. They can be
used to bind a SAP port to a SPP one, as well as normal ports
whose registration is not set to automatic.

log is a specific statement for logging messages to the con-
sole. It includes a mandatory messages and optional arguments
to display their values into the console.

call is a statement that can be used for invoking a specific
operation defined in a capsule. As for other UML-RT elements
embedding action code (states, transitions, . . .), a UML-RT
operation can be specified using C++ or CALUR.

inform in, inform every, and cancel timer are statements
to deal with the use of timers in UML-RT. The first two allow
the creation of timers that time out after a given amount of
time (given in seconds, milliseconds, or microseconds) once or
periodically. Both statements return a timer id (defined by the
name attribute in Listing 1) that is used by the cancel timer
statement for cancelling the timer when, e.g., a specific event
occurs. The duration can be specified using a numerical value,
or using another expression (such as a variable). As for the log
service port, a simplified notation is provided here. If no timer
service port is defined, our implementation raises an error.
If one timer service port is defined, then our implementation
implicitly assumes it is the one to use. However, to the contrary
of log service ports, defining multiple timers is common
in a UML-RT model as they may be simultaneously used
for different purposes. For example, a first timer can be
used to periodically execute an action while a second timer

can timeout if no new message is received during a certain
amount of time (e.g., for detecting a software failure). As a
consequence, when multiple timer ports are defined, the user
must explicitly define which timer port is used.

Variables can be created using the var keyword. Primitive
types (integer, boolean, string, ...) can be used, as well as
more complex types, such as enumerations or structured types
defined in the model. Values of variables can be set, and
operations of variables structured with complex types can also
be invoked.

CALUR also contains an if-then-else conditional statement.
However, it does not include any loop statements (for, while),
to encourage users to keep the action code simple and encode
loops on the level of the state machine. At first glance, this
design decision may appear odd to the reader. The rational
behind the removal of loop statements is to discourage the
user from creating “catch-all” states and to encourage them
to use instead state machine and control nodes. The same
rational would also hold for conditional statements and we
do agree that using state machine choice points and guards
is more consistent. However, conditionals in state entry and
exit are still useful, for example when a specific operation
returns a success code and it is frequent that real-world models
contain conditionals. Without conditionals, some state machine
diagrams can rapidly become unwieldy. However, conditionals
should be parsimoniously used, and an excessive amount of
conditionals in a model can be the sign of bad design. Research
in design patterns and anti-patterns can help figure out when
the use of conditionals is disproportionate compared to the
amount of appropriate control nodes (guards, choice points,
etc.) [15].

Also supported (but not shown in Listing 1) are standard
arithmetic functions (e.g., random, round) and logical opera-
tors (and, or, etc.).

IV. IMPLEMENTATION

The following describes our implementation using Papyrus-
RT. First, we give an overview of how we implemented
CALUR into Papyrus-RT. Then, we detail the implementation
of specific validation rules and their corresponding quick fixes.

A. Implementation Overview

CALUR has been implemented in Papyrus-RT using Xtext,
an Eclipse-based framework for implementing textual Domain
Specific Languages (DSLs) described as LL grammars. Xtext
leverages the ANTLR parser and provides a full toolset
including linker, typechecker, and compiler, as well as editing
support in Eclipse.

Fig. 6 shows the integration of CALUR within Papyrus-
RT. For this, we extended the Code Snippet view 1 that is
initially used for adding action code when a graphical element
(transition or state) is selected. For a state, the view contains
two tabs “entry” and “exit” in order to add action code for the
entry and exit action of the selected state. When a transition
is selected, then the code snippet view contains two tabs,
respectively for the transition effect and guard of the transition.
Other elements can be used as well. For example, guards of
choice points can also be defined in this view. The view and
all of these tabs currently support C++, but do not provide any
editing support (such as syntax highlighting, content-assist, or
auto-formatting) or error checking.

To support CALUR with error checking and other “smart”
editor features, we slightly modified this view (cf. Fig. 6).
The main area is an Xtext textual editor supporting the
CALUR grammar and providing the required features for e.g.,
content-assist and syntax highlighting. CALUR can be used for
modelling the sequence of actions that are executed for each
state entry and exit, and transition effect. It can also be used
for modelling guards. Currently, the following features have
been implemented:

1

2

3

Fig. 6: CALUR Integration with Papyrus-RT

1) Syntax Highlighting/Content Assist: Using the extended
view, the syntax of action code written in CALUR is
highlighted and content assist is possible for assisting
users in writing action code. Content assist allows for
recognizing the names of UML-RT model elements in
the view.

2) Validation and Quick Fixes: Validation is possible for
helping users correct errors. Examples of errors the vali-
dation checks for include detecting misspelled references
to UML-RT model elements, the use of timers while no
timer port has been defined, and so on. In addition, some
quick fixes have been implemented. For example, if the
user uses the log statement while no log port has been
instantiated, the editor automatically proposes to add the
corresponding log port.

3) Code Generation: Xtend is used for automatically gen-
erating code from CALUR in any target language de-
fined in Papyrus-RT (currently, only C++ is available).
Anytime, it is possible to switch back to the C++ view
by clicking on the button we have implemented 2 .
Therefore, it is possible not to use CALUR at all and
revert back to C++, or even to modify the C++ code
that is generated from a specific piece of action code in
CALUR.

Fig. 6 on page 6 illustrates how CALUR can be used along
with the Papyrus-RT graphical diagrams to model the parcel
router. The main area 3 represents a state machine diagram to
model the behaviour of a chute of the parcel router. It consists
of two main states IDLE and OCCUPIED. Initially, a chute is
idle, waiting for an upstream component to forward a parcel
(identified by its number, current level, and current stage). In
UML-RT, we modelled the transmission of a parcel from one
chute to another as a signal sent by the upstream chute. The
signal carries the parcel as a parameter p. When the signal is
received, it triggers the reception transition, causing the chute
that received the parcel to go from IDLE to OCCUPIED. Upon
reception of the parcel, a timer is modelled to represent the
duration the parcel stays in the chute before being transmitted
to the next one. The timer causes the transmission transition to
be fired, effectively transmitting the parcel to the next chute.
Additional constructs are modelled to prevent jam.

The right side of Fig. 6 shows the CALUR action code
used for modelling the reception transition of the Chute state
machine. The first line indicates that the message parameter
p (which corresponds to the parcel that is transmitted) is
stored into the parcel attribute of the capsule. Lines 3–5 log
a message. Finally, the last line initializes a timer that will
timeout after a certain delay. Note that delay, parcel, and p are
visible in the model explorer in Fig. 6. Both delay and parcel
are attributes owned by the Chute capsule. p is a parameter of
the transmit signal that triggers the reception transition.

B. Name Resolution
Our implementation ensures the consistency and integrity of

the actions that are written in CALUR. Consistency checking
relies on the Xtext internal mechanism. Each model element

in UML-RT is uniquely identified with a qualified name. Our
implementation provides filtering rules (also called scoping
in Xtext) in order to limit the number of potential candidate
references used in CALUR. The context in which the action
code is specified allows us to reduce the risk of “name
collision”, hence allowing us to replace the qualified name
of model elements with simple names. For example, in Fig. 6
on page 6, the context of the action code is the reception
transition, hence by transitivity, the Chute capsule. Therefore,
this . parcel automatically refers to the parcel property of the
chute (and not any other parcel property that could exist in any
other capsules in the model) and p automatically refers to the
parcel parameter that is carried by the message that triggered
the reception transition.

Fig. 7: Content-assist

The filtering of potential candidates is also used for provid-
ing the user with content-assist capabilities. Fig. 7 illustrates an
example of use of the content-assist capabilities. When hitting
ctrl + , the list of potential candidates that matches the
first letters (if any) entered by the user.

Note that filtering reduces the risk of name collision but
does not entirely remove it. In Fig. 6, if we consider that
the parcel signal parameter is named parcel rather than p,
CALUR is capable of distinguishing both parcels in the line
this . parcel = parcel because of the context when both ref-
erence instances are used. For the former, CALUR is expecting
the name of an attribute of the capsule to be typed while for
the latter, it is expecting the name of either a local variable
(that was created with the var keyword) or a signal parameter
that is defined in the protocol that types the incoming port of
the capsule from which the signal that triggered the transition
was received. The previous sentence is voluntary long to show
the different relations between the constructs of UML-RT
(transitions, ports, protocols, signal, etc.) that can be used to
determine the context of the action code and to resolve names.

As a second example, consider this time a local variable
named parcel that is created (using the var keyword) within
the reception transition. In that case, CALUR would not be
able to distinguish the local variable from the signal parameter
when resolving the second occurrence of parcel in the line

this . parcel = parcel . Note that the same problem remains
in any programming language as well.

C. Error Checking and Quickfixes

Our implementation also supports a certain number of errors
that can be checked and quickfixes that can be proposed to the
user when an error is found.

Fig. 8: Incorrect Use of the Log Statement

Fig. 8 shows an incorrect use of the log statement when the
capsule does not contain a log port. In UML-RT, the logging
service is provided via a service port. If no log port is defined,
our implementation raises an error. A description of the error is
given. A quickfix is also suggested to the user to automatically
add a log port in the capsule.

Fig. 9: Warning Message for Duplicated Log Ports

The example illustrated in Fig. 9 shows a second example
of an incorrect use of the log statement when the capsule
contains this time multiple log port. While it is authorized in
UML-RT to have multiple log ports, using one or multiple
ports does not affect the behaviour. However, using multiple
ports burdens the reading of the model and can be the source of
possible errors when a redundant port is deleted. The severity
of the error is defined as “warning” and a quickfix is also
suggested to automatically remove all redundant log ports.

TABLE I: Explicit Error Checking and Suggested Quickfixes

Statement Description Severity Quickfix
log No log port defined Error Add a log port
log Multiple log ports defined Warning Remove

redundant ports
inform in Multiple timer ports while

no explicit reference to a
timer port name

Error Explicit use of a
timer port name

incarnate Multiple frame ports de-
fined

Warning Remove
redundant ports

import Multiple frame ports de-
fined

Warning Remove
redundant ports

Table I shows some explicit error checking we have imple-
mented. Note that CALUR (through Xtext) implicitly ensures
the consistency of the action code according to the name reso-
lution and the filtering processes we discussed in Section IV-B
and therefore, those errors are not represented in Table I. For
example, CALUR is not only capable of detecting misspelled
port names, but it can also detect that a send statement is
incorrectly used whenever the user attempts to send a signal
through a port while the signal is not defined as an outgoing
signal of the protocol that types that port. Such errors are
automatically detected by CALUR (without introducing an
explicit rule) as the incorrectly used message will simply not
be considered as a possible candidate by CALUR during the
filtering process.

D. Code Generation

As mentionned earlier, our implementation automatically
translates action code written in CALUR into the target pro-
gramming language defined for the model. As such, CALUR
can be seen as a pivot language. For the moment, only C++ is
supported by Papyrus-RT. Listing 2 shows the CALUR action
code of the reception transition of Fig. 6.

1 t h i s . p a r c e l := p ;
2

3 l o g " Chute %s of s t a g e %d becomes o c c u p i e d \ n " with
4 t h i s . getName () and
5 p . s t a g e ;
6

7 inform in t h i s . d e l a y s e c o n d s ;

Listing 2: CALUR Action Code

Listing 3 shows the resulting C++ code that is generated
from it. As the parcel attribute is a complex type, each
composed attribute is set individually, according to the values
of p. Both log and timer statements in C++ are part of the
run-time service of Papyrus-RT and have specific syntaxes,
automatically generated from CALUR.

1 t h i s −>p a r c e l = P a r c e l () ;
2 t h i s −>p a r c e l . number = p . number ;
3 t h i s −>p a r c e l . l e v e l = p . l e v e l ;
4 t h i s −>p a r c e l . s t a g e = p . s t a g e ;
5 l o g . show (" Chute %s of s t a g e %d becomes o c c u p i e d \ n " ,

t h i s −>getName () , p . s t a g e) ;
6 t i m e r . i n f o r m I n (UMLRTTimespec (t h i s −>de lay , 0)) ;

Listing 3: Resulting C++ Code Generated from CALUR

V. NEW OPPORTUNITIES AND CHALLENGES

The definition of an action language that contains an in-
terpretable semantics opens up interesting opportunities in
terms of potential analyses we can drive. Model simulation,
interpretation, and debugging are, among others, powerful and
highly desired techniques, yet almost impossible to perform
due to the complexity of C++. Leveraging the use of an
interpretable action semantics for modelling the actions in
states and transitions in UML-RT models makes powerful
analyses possible.

To illustrate the new opportunities CALUR bring, we have
implemented a first prototype of a UML-RT model interpreter
using Moka [16]. Moka is a Papyrus project to interpret UML
activity diagrams and state machines. It fully supports The
Foundational UML (fUML) [5] and provides some extension
mechanisms to implement new engines. That makes it suitable
for supporting new action semantics such as CALUR. It also
provides interesting features for model-level debugging and
animation [17], [18]

We have developped a first prototype of an engine capable
of supporting the action semantics of UML-RT in order to
interpret UML-RT state machines augmented with the CALUR
action language. As of today, our prototype only supports
basic UML-RT constructs such as message passing. Therefore,
it does not support the interpretation of complex UML-RT
models. However, it shows evidence of the cruciality of
dedicated action languages rather than plain C++ to support
powerful analyses.

Our current prototype also reveals new challenges coming
out when implementing a model interpretor for UML-RT mod-
els. The task is challenging as the model must be interpreted
exactly the same way the code is executed on the target
platform. Semantically, there is no difference between the
UML-RT model and the code that is generated from it. Both
are models that conform to a specific metamodel and that are
interpreted by an interpretor. The generated code is compiled
by GDB into an executable binary interpretable by a specific
operating system. Similarly, the UML-RT model conforms to
the UML metamodel and is interpreted by model interpretors
such as Moka. Consequently, there should be no difference
between the action semantics of the UML-RT model and the
generated code. That conclusion can be hard to prove, as the
action semantics of the execution is implicitly encoded in the
way the code is generated and in the way the run-time service
of the tool (e.g., Papyrus-RT) makes sense of it. If a gap exists
between the semantics of execution, the interpretation of a
UML-RT model can result in a different output than the real
execution of the system, making the analysis worthless.

Existing approaches and tools can be used for defining a
single semantics of execution of UML-RT for the different
target models (C++ and UML-RT). The Gemoc Studio [19] is
an Eclipse-based project for the complete definition of DSLs.
In the Gemoc Studio, the syntax of a DSL is separated from
its semantics, which allows the automatic generation of model
interpretors using the Eclipse Debugger. To go one step further,

one could envision to use the Gemoc Studio for defining
the UML-RT syntax and semantics, and for automatically
generating both the run-time service of Papyrus-RT and the
model interpretor in Moka.

For the moment, validation and code generation are per-
formed only after editing an action in the Calur Code Snippet
view 2 (cf. Fig. 6). A second place where automatic validation
and code generation has to be done is when a structural
element of a capsule is changed. Consider for example the
CALUR code in Listing 2. The last line implicitly assumes
that only one timer is defined in the Chute capsule. Consider
now that the user decides to add a second timer in the
Chute capsule. The action code above is now invalid as the
inform in statement has to explicitly define which of the
two timers it has to be used. This decision also affects the
subsequent code generation process. This example shows the
complexity of the problem of ensuring the consistency of
hybrid textual/graphical models.

VI. RELATED WORK

A certain number of initiatives were done to equip UML
with a formal semantics. Precise Semantics Of UML Compos-
ite Structures (PSCS) [20] and PSSM [7] are two proposition
specifications from the Object Management Group (OMG).
The two extend fUML [5] in order to add support for mod-
elling and execution of composite structures and state ma-
chines. Both PSCS and PSSM are “compatible” with UML-RT
and other variants of UML, such as xtUML [21]. Compatibility
means that the execution semantics of PSCS/PSSM include
most of the execution semantics of UML-RT among others as
they account for issues like run-to-completion, dynamic incar-
nation, dynamic wiring, allocation of capsules to controllers, or
timers. As such, CALUR can be seen as a concrete syntax that
specializes the execution semantics of PSCS/PSSM to cope
with other UML-RT constructs.

Other action semantics have been defined. RPL [22] is an
action language used for building ObjecTime models (RPL is
no longer supported in more recent tools such as IBM Rational
RoseRT). RPL can be seen as a facade for SmallTalk and sup-
ports dynamically typed and interpreted action code. CALUR
is in the same spirit of RPL (RPL used the concept of “actor
classes” which is equivalent to the UML-RT capsules used
in CALUR), although some syntactical differences exist. RPL
follows the object-oriented notation where features are owned
and exposed by objects (e.g., p.msg().send(. . .)). In CALUR we
chose a verb-first style (e.g., “send message”). The first reason
is that it can be read more easily. The second reason is more
of a technical/pragmatic nature. Having a keyword first allows
for an early disambiguation of rules parsed by the LL parser
used by Xtext, simplifying the definition and maintenance of
the grammar.

Object Action Language (OAL) [23] is another language
designed by Mentor Graphics [24] and used in BridgePoint
XtUML [21]. OAL is used to define the semantics of actions in
structural and behavioural diagrams. It allows for defining the
action code for modelling element such as states, operations,

or functions. The goals are similar to the ones achieved
by CALUR. However, it lacks of dedicated structures for
covering the semantics of UML-RT models (such as dynamic
incarnation and wiring, plugin capsule imports, etc.).

The Action Language for Foundational UML (Alf) [6]
provides a concrete textual syntax for fUML. Alf/fUML are
intended to become the standard for defining executable UML
models. It is today implemented in the last version of Magic-
Draw [25]. However, fUML does not provide any support for
UML profile such as UML-RT. Besides, like OAL, Alf does
not cover all the concepts of UML-RT. A decision for CALUR
could have been to create a UML-RT Alf library. However, it
appeared to us that these concepts are too essential to the
language’s semantics to be relegated to a library (even if they
are implemented as functionality of a library) and deserve to
be first-class constructs for analysis purpose.

Other tools integrate custom action languages. This is the
case for example for Yakindu StateChart Tools [26]. Yakindu
StateChart Tools provides a small textual language for state
charts and supports code generation in Java, C, and C++.
As such, it follows the same goal of CALUR of having a
pivot language used to generate code in specific programming
languages. Yakindu StateChart Tools also support integration
of legacy C code (for the professional edition only). In com-
parison, CALUR also supports out of the box the integration
of legacy code with the ability of switching between CALUR
and any target language.

VII. CONCLUSION

In this paper, we have presented CALUR, a proposed action
language for UML-RT. CALUR is a pivot language that
can be used for writing action code for different UML-RT
modelling elements (states, transitions, guards, choice points,
etc.) independently of any target language implementation.
We have sketched a prototype implementation that is in-
tended to be integrated in Papyrus-RT. Our implementation
supports CALUR with syntax highlighting, content-assist, error
checking, and other “smart” features. It also supports code
generators for C++ with the possibility of switching between
C++ and CALUR in order to support legacy code integration.

We have also discussed the implementation of a prototype
for model interpretation using Moka of UML-RT models
augmented with CALUR. This shows evidence of the need
of a platform-independent language semantics and opens up
interesting directions in model analyses that could be more
easily supported in Papyrus-RT.

Acknowledgments: This work is supported by Ericsson
Canada, EfficiOS, and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

REFERENCES

[1] B. Selic, “Using UML for modeling complex real-time systems,” in
Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES’98), 1998, pp. 250–260.

[2] “PolarSys Working Group Homepage,” https://www.polarsys.org/.
[3] “Papyrus for Real Time (Papyrus-RT),” https://www.eclipse.org/

papyrus-rt, accessed: 2016-03-10.
[4] E. Posse, “PapyrusRT: Modelling and Code Generation,” in Workshop

on Open Source for Model Driven Engineering (OSS4MDE’15), 2015.
[5] “Object Management Group (OMG). Semantics of a Foundational

Subset for Executable UML Models (fUML),” 2017, http://www.omg.
org/spec/FUML/1.3.

[6] “Concrete Syntax For A UML Action Language: Action Language
For Foundational UMLâĎć (ALFâĎć),” 2017, http://www.omg.org/spec/
ALF/1.1/. In process.

[7] “Precise Semantics Of UML State Machines (PSSM) v1.0,” 2017, http:
//www.omg.org/spec/PSSM/1.0/Beta1/. In process.

[8] B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object Oriented
Modeling. Wiley & Sons, 1994.

[9] E. Posse and J. Dingel, “An Executable Formal Semantics for UML-
RT,” Software & Systems Modeling, vol. 15, no. 1, pp. 179–217, 2016.

[10] Object Management Group, “UML Superstructure Specification v2.4.1,”
http://www.omg.org/spec/UML/2.4.1/, Aug. 2011.

[11] ——, “UML Superstructure Specification v2.5,”
http://www.omg.org/spec/UML/2.5/, Sep. 2012.

[12] W. Swartout and R. Balzer, “On the Inevitable Intertwining of Specifica-
tion and Implementation,” Communications of the ACM, vol. 25, no. 7,
pp. 438–440, 1982.

[13] J. Magee and J. Kramer, State Models and Java Programs. Wiley,
1999.

[14] Z. . Ltd., “Tumlrt: Textual Syntax for UML-RT Reference Guide,” 2016,
version 0.8.

[15] T. K. Das and J. Dingel, “Model Development Guidelines for UML-
RT: Conventions, Patterns and Antipatterns,” Software and Systems
Modeling, 2016.

[16] “Papyrus: Moka Overview,” 2016, http://wiki.eclipse.org/Papyrus/
UserGuide/ModelExecution.

[17] N. Das, S. Ganesan, L. Jweda, M. Bagherzadeh, N. Hili, and J. Dingel,
“Supporting the Model-driven Development of Real-time Embedded
Systems with Run-time Monitoring and Animation via Highly Customiz-
able Code Generation,” in ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems (MODELS’16), ser.
MODELS’16. Saint-Malo, France. October 2-7, 2016: ACM, 2016, pp.
36–43.

[18] M. Bagherzadeh, N. Hili, and J. Dingel, “Model-level, Platform-
independent Debugging in the Context of the Model-driven Develop-
ment of Real-time Systems,” in 11th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE’17), ser. ES-
EC/FSE’17. Paderborn, Germany. September 04-08, 2017: ACM, 2017,
pp. 419–430.

[19] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale, “Execution Framework of the Gemoc Studio (Tool
Demo),” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering. ACM, 2016, pp. 84–
89.

[20] “Precise Semantics Of UML State Machines (PSSM) v1.1,” 2017, http:
//www.omg.org/spec/PSCS/1.1/PDF. In process.

[21] C. Starrett, “xtUML: Current and Next State of a Modeling Dialect,” in
EXE@ MoDELS, 2016, pp. 33–37.

[22] RPL Language Guide. ObjectTime Developer.
[23] BridgePoint, “Object Action Language Reference Manual v1.5,”

https://xtuml.org/wp-content/uploads/2012/09/Object_Action_
Language_Reference_Manual2.pdf.

[24] Mentor, “Mentor Graphics Homepage,” https://www.mentor.com/.
[25] No Magic, “MagicDraw Homepage,” https://www.nomagic.com/

products/magicdraw.
[26] Itemis, “Yakindu StateChart Tools Homepage,” https://www.itemis.com/

en/yakindu/state-machine.

