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Abstract. Wave propagation in mechanical structures can be controlled by a coupling to an
electrical network exhibiting a similar dispersion relation. The energy transfer between the two
media is maximized on a broad frequency range when choosing a network that is the electrical
analogue of the structure to control. In terms of structural vibration, this strategy is equivalent
to a multimodal tuned mass damping. Indeed, the control is implemented thanks to a multi-
modal electrical network, whose modes are close enough to those of the mechanical structure.
The electromechanical coupling can be achieved by using an array of piezoelectric patches,
which are small enough compared to the smallest wavelength to control. Then, when con-
sidering interconnected patches, wave propagation occurs simultaneously in the mechanical
and electrical media. Wave propagation in one-dimensional periodic structures can be ana-
lyzed with the transfer matrix method. In this paper, the definition of an electromechanical unit
cell gives a relation between state vectors involving both mechanical and electrical degrees of
freedom. As an extension of a previous work focusing on longitudinal propagation, four trans-
fer matrix models are defined in order to describe the piezoelectric coupling of a beam to its
discrete electrical analogue. Indeed, the beam can be approximated either by its discrete equiv-
alent, a fully homogenized model, a piecewise homogenized model or a finite element model.
Offering an increasing complexity, those formulations are compared in order to determine their
respective limits. Depending on the frequency range of interest, it then becomes possible to
choose a suitable model for the analysis of structures involving a piezoelectric coupling to their
electrical analogues.
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1 INTRODUCTION

Multimodal vibration control can be implemented by coupling a mechanical structure to its
electrical analogue. A practical solution is to cover the structure to control with an array of
piezoelectric patches that are interconnected with a suitable electrical network. From a finite
difference method applied to the continuous equations describing the mechanical medium, an
electromechnical analogy provides the suitable electrical topology [1, 2]. This method was
applied to the control of a beam and it led to a passive electrical network made of inductors
and transformers [3, 4]. A periodic layout of the electromechanical structure allows using the
transfer matrix method [5, 6]. This method has often been implemented in problems involv-
ing independent piezoelectric shunts [7, 8, 9] but rarely with an interconnection of successive
patches [10]. This last case requires the definition of state vectors that combine both mechanical
and electrical degrees of freedom, because a real electromechanical waveguide is considered.
The electrical part is described with the discrete equations governing the lumped electrical com-
ponents but the continuous mechanical medium can be approximated by various models.

The present contribution extends previous models and results that were initially dedicated
to the analysis of longitudinal wave propagation in coupled analogous waveguides [11]. When
considering transverse propagation, the transfer matrices are obviously different, but the meth-
ods remain the same. A first section presents the electromechanical unit cell including a beam
segment and a portion of the analogous electrical network, which was presented in [4]. Then, a
model describing a pair of piezoelectric patches subjected to bending motion is proposed. In a
second section, we recall the transfer matrices that were obtained in [4] when considering either
a discrete or a fully homogenized beam coupled to the discrete electrical analogue. Two new
models are added: a piecewise homogenized model and a finite element model, which both take
into account the mechanical discontinuity induced by the addition of piezoelectric patches. The
last section compares the propagation constants and the frequency response functions obtained
with the four transfer matrix models, which offer an increasing complexity. The main objective
is to define their respective limits and to select the most appropriate depending on the frequency
range of interest and the required accuracy.

2 ANALOGOUS PIEZOELECTRIC NETWORK ON BEAM

A beam is coupled to its analogous electrical network through a periodic array of piezoelec-
tric patches. A unit cell is defined by considering both mechanical and electrical propagation
media. Then, the linear piezoelectricity theory gives a model describing a pair of piezoelectric
patches subjected to bending motion.

2.1 Electromechanical unit cell

A periodic array of piezoelectric patches is distributed on an homogeneous beam. An elec-
trical network interconnects the patches, which creates an electrical waveguide. The chosen
network is the periodic electrical analogue of a beam [3, 4] because it was shown that this solu-
tion can lead to a broadband control of transverse waves. As seen in Fig. 1, an electromechanical
periodic structure is obtained, so that a unit cell of length a can be defined. The thickness of the
main structure is hs and its width is b. The piezoelectric patches have a thickness hp, a width
b and a length lp, with lp ≤ a. Then, q̇I is the current flowing from the network to the pair of
patches and VI is the voltage on the electrodes connected to the network. The two piezoelectric
patches need to be transversely polarized in identical directions in order to generate a non-zero
voltage when bending excitation occurs [12].
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Figure 1: Beam segment coupled to its analogous electrical network through a periodic array of
piezoelectric patches and corresponding electromechanical unit cell.

2.2 Bending model for a pair of thin piezoelectric patches

For a thin piezoelectric patch under plane-stress assumption and polarized in transverse di-
rection [13], the 3D linear piezoelectricity theory is simplified into the one-dimensional formu-
lation

σp = Y E
p εp − ē31Ep

Dp = ē31εp + ε̄ε33Ep
, where Y E

p =
1

sE11

, ē31 =
d31

sE11

, and ε̄ε33 = εσ33 −
d2

31

sE11

. (1)

εp and σp are respectively the strain and stress in the axial direction ’1’ of the piezoelectric
patch. Dp and Ep are the electric displacement and electric field in the transverse direction ’3’.
sE11 is the elastic compliance at constant electric field, d31 is the piezoelectric charge constant
and εσ33 is the permittivity at constant stress. If we consider that the stress is constant along the
thickness, the normal force Np is obtained by multiplying σp by the patch cross-section area
Sp = bhp. For a thin piezoelectric patch, the electric field Ep can be seen as constant along the
thickness [13], which means that Ep is equal to −Vp/hp, where Vp is the voltage between the
two electrodes. Finally, the electric charge qp comes from the integration of −Dp all over the
surface of the patch. It is thus found from Eq. (1) that

Np = Y E
p Spεp − epVp

qp = ep∆Up + Cε
pVp

, where ep = −bē31, Cε
p =

ε̄ε33Ap

hp
and Ap = blp. (2)

∆Up = UpR − UpL is the difference between the right and left end displacements of the patch
and Cε

p is the capacitance of the patch when no strain is allowed along the direction ’1’.
Regarding the bending of thin piezoelectric patches, we consider that the electrical variables

only depend on axial deformations [13]. Then, for two patches that offer a symmetrical posi-
tioning with respect to the neutral axis, their contribution to the bending moment, M2p, is equal
to the integration of the stress times the distance to the central axis z over the two cross-section
areas. Furthermore, it is seen from the parallel electrical connection in Fig. 1 that VI = Vp and
qI = 2qp. So, with εp = θ′pz, Eqs. (1) and (2) give

M2p = 2Y E
p Ipθ

′
p − ep(hs + hs)VI

qI = ep(hs + hs)∆θp + 2Cε
pVI

, where 2Ip =
b(hs + 2hp)

3

12
− bh3

s

12
, (3)

∆θp = θpR − θpL is the difference between the right and left rotations at the ends of the patches
and θ′p corresponds to their curvature.
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3 TRANSFER MATRIX MODELS FOR TRANSVERSE WAVE PROPAGATION

Four transfer matrix models are proposed to describe the considered electromechanical unit
cell. All of them take into account a discrete electrical network but they differ in the definition
of the mechanical medium. The first model consider a lumped beam, whereas the second is
fully homogenized. Then, the discontinuity induced by the piezoelectric patches is introduced
in a piecewise homogenized model. This third transfer matrix model is validated by the last
one, which is based on a finite element method.

3.1 Discrete model based on global properties

The mechanical part of the unit cell in Fig. 1(b) is an elastic beam segment symmetrically
covered with two piezoelectric patches. This structure can be firstly seen as an homogenized
medium governed by a global piezoelectric coupling similar to Eq. (3). Then, if the considered
wavelength is considerably longer than the length of the unit cell, the curvature can be approxi-
mated by θ′ ≈ ∆θ/a, where ∆θ = θR − θL is the difference between the right and left rotations
at the ends of the unit cell. Consequently, the bending moment M depends on a global bending
stiffness KE

θ , which gives the discrete model

M = KE
θ ∆θ − eθVI

qI = eθ∆θ + CεVI
, where

1

KE
θ

=
lp

YsIs + 2Y E
p Ip

+
a− lp
YsIs

and Is =
bh3

s

12
. (4)

KE
θ is obtained directly from the geometry and the material properties of the unit cell. However,

the coupling eθ and the blocked capacitance Cε depend on global 3D considerations. Cε is the
capacitance of the pair of piezoelectric patches when ∆θ = 0. This does not mean that the
patches are fixed because ∆θ is not equal to ∆θp when the patches do not cover the whole unit
cell (a 6= lp). Consequently, Cε is not equal to 2Cε

p as it depends on the ratio a/lp. On the
other hand, Cσ is the capacitance of the pair of patches when no bending moment is applied
at the ends of the unit cell (M = 0). This free capacitance is easier to handle because it is
directly related to the free capacitance of a single piezoelectric patch: Cσ = 2Cσ

p , which can be
measured or approximated from 3D calculations [12]. Another global constant that can be easily
obtained is KD

θ , the stiffness in open circuit (qI = 0). It is computed in the same way as KE
θ in

Eq. (4) with Y D
p instead of Y E

p . Y D
p is the Young modulus at constant electric displacement,

which is defined from Eq. (1) by Y D
p = Y E

p + ē2
31/ε̄

ε
33. Then, from the definition of Cσ and KD

θ ,
Eq. (4) gives Cσ = Cε + e2

θ/K
E
θ and KD

θ = KE
θ + e2

θ/C
ε. Those two equations are reorganized

to finally get the global constants appearing in Eq. (4):

eθ =

√
KE
θ

(
1− KE

θ

KD
θ

)
Cσ

Cε = CσK
E
θ

KD
θ

. (5)

The mechanical part of the discrete model is illustrated in Fig. 2(a), where the torsional spring
refers to the bending stiffness and the lumped mass m is the mass of the unit cell. If ρs is the
density of the beam and ρp is the density of the piezoelectric material,m = ρsSsa+2ρpSplp. The
shear force is not represented because it does not depend directly on the piezoelectric coupling,
contrary to the total bending moment, which is increased by eθVI according to Eq. (4). When
the discrete mechanical unit cell is coupled to its analogous electrical network, the resulting
electromechanical unit cell can be represented by the electric scheme in Fig. 3 [4]. The relation
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Figure 2: Three models for the mechanical part of the unit cell: (a) Discrete model. (b) Fully
homogenized model. (c) Piecewise homogenized model.
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Figure 3: Electrical model of the discrete electromechanical unit cell.

between the electromechanical state vectors at the right and left ends of the unit cell is thus
given by the following transfer matrix formulation [4]:

W ?
R

θ?R
qw

?
R

qθ
?
R

M?
R

Q?
R

Vθ
?
R

Vw
?
R


=



1 1 0 0 1
2
−1

4
Λ

2eθ
− Λ

4eθ

0 1 0 0 1 −1
2

Λ
eθ

− Λ
2eθ

0 0 1 1 − eθ
2

eθ
4

−1+Λ
2

1+Λ
4

0 0 0 1 −eθ eθ
2
−(1 + Λ) 1+Λ

2
f
2

f
4

0 0 1 −1 0 0

−f −f
2

0 0 0 1 0 0

0 0 − f̃
2
− f̃

4
0 0 1 −1

0 0 f̃ f̃
2

0 0 0 1





W ?
L

θ?L
qw

?
L

qθ
?
L

M?
L

Q?
L

Vθ
?
L

Vw
?
L


, (6)

where f = ω2ma2/KE
θ , f̃ = ω2LCεâ2 and Λ = e2

θ/(K
E
θ C

ε). The symbol ”?” denotes dimen-
sionless state variables, which are highlighted for the sake of conciseness of the transfer matrix:
W ? = W/a, θ? = θ, M? = M/KE

θ , Q? = aQ/KE
θ , q?w = qw/â, q?θ = qθ, V ?

θ = CεVθ and
V ?
w = âCεVw.

3.2 Fully homogenized model for the mechanical part

When considering wavelengths that are not considerably longer than the length of the unit
cell, the assumption θ′ ≈ ∆θ/a is no more valid and the mechanical model involving lumped
mass and stiffness needs to be improved. A first solution is to ensure the continuity of the
mechanical structure by considering an homogenized beam segment as the one represented in
Fig. 2(b). The electrical network is still discrete, which gives a semi-continuous model, where
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the definition of eθ and Cε remains the same as in the discrete model:

M = Y EIθ′ − eθVI

qI = eθ∆θ + CεVI
, where Y EI = KE

θ a. (7)

Figure 2(b) shows that a bending moment MR + eθVI is applied to the right side of the beam
segment and a bending moment −(ML + eθVI) is applied to its left side. After a modification
of the state vector, a purely mechanical transfer matrix Tm can thus be used to described the
relation between the dimensionless forces and displacements at both ends as

W ?
R

θ?R

M?
R +

Λ

eθ
V ?

I

Q?
R

 = Tm


W ?

L
θ?L

M?
L +

Λ

eθ
V ?

I

Q?
L

 , where V ?
I = CεVI. (8)

Here, we focus on an homogeneous Euler-Bernouilli beam segment [10, 4], which means that
the mechanical transfer matrix is

Tm =


c+ch

2
1
ka

s+sh
2

− 1
(ka)2

c−ch
2

1
(ka)3

s−sh
2

−ka s−sh
2

c+ch
2

1
ka

s+sh
2

1
(ka)2

c−ch
2

−(ka)2 c−ch
2

−ka s−sh
2

c+ch
2

− 1
ka

s+sh
2

−(ka)3 s+sh
2

(ka)2 c−ch
2

ka s−sh
2

c+ch
2

 , (9)

where c = cos(ka), ch = cosh(ka), s = sin(ka), sh = sinh(ka). The wave number k is
obtained from the beam dispersion relation k = ω 4

√
ρS/Y EI , where ρ = m/(aSs + 2lpSp) is

the homogenized density of the unit cell. Concerning the electrical part, note from Fig. 3 that

V ?
I =


0
0
1
−1

2


T 

qw
?
L

qθ
?
L

Vθ
?
L

Vw
?
L

 (10)

Furthermore, Fig. 3 shows that the electrical propagation results from the superposition of a
purely electrical contribution, involving a transfer matrix Te, and a second contribution due to
the coupling eθ:

qw
?
R

qθ
?
R

Vθ
?
R

Vw
?
R

 = Te


qw

?
L

qθ
?
L

Vθ
?
L

Vw
?
L

+ eθ(θ
?
L − θ?R)


1
2

1
0
0

 , where Te =


1 1 −1

2
1
4

0 1 −1 1
2

− f̃
2
− f̃

4
1 −1

f̃ f̃
2

0 1

 . (11)

Finally, Eqs. (8), (10) and (11) give a transfer matrix formulation between the left and right
electromechanical state vectors, which can be written as

W ?
R

θ?R
M?

R
Q?

R
qw

?
R

qθ
?
R

Vθ
?
R

Vw
?
R


=


I4 04

−eθ

[0 1
2

01

]
02

02 02

I4



Tm
Λ

eθ
(Tm − I4)

02 02

02

[
1−1

2

0 0

]
eθ

[01
2

01

]
02

02 02

 Te





W ?
L

θ?L
M?

L
Q?

L
qw

?
L

qθ
?
L

Vθ
?
L

Vw
?
L


. (12)
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3.3 Piecewise homogenized model for the mechanical part

The previous homogenized model does not take into account the mechanical discontinuity
induced by the addition of piezoelectric patches on the beam. This can be rectified by dis-
criminating the purely elastic segments ”s” from the segments ”sp” involving a piezoelectric
contribution. The piecewise homogenized model is thus made of three beam segments, as pre-
sented in Fig. 2(c). In the ”sp” segment covered by the pair of piezoelectric patches, the problem
can be expressed under the same form as in Eq. (7):

Msp = Y E
sp Ispθ

′
p − espVI

qI = esp∆θp + Cε
spVI

, where Y E
sp Isp = YsIs + 2Y E

p Ip. (13)

The ”sp” constants appearing in the previous system of equations are not equal to the ones in
Eq. (7) because they refer to the central segment of the unit cell, without considering the purely
elastic segments. Nevertheless, esp and Cε

sp can be computed with the same method as in Eq. (5)
by considering a global stiffness that refer to the sole ”sp” segment.

As the problem focusing on the ”sp” beam segment is equivalent to the one presented in
Sec. 3.2, a 8×8 transfer matrix Tsp is built on the same form as Eq. (12) but with homogenized
constants referring to the ”sp” segment. The two ”s” beam segments are purely elastic, so that
their 4×4 mechanical transfer matrices Ts are obtained as Tm but with the use of the constants
Ys, ρs, Ss and Is. At the end, the piecewise homogenized model of the electromechanical unit
cell is given by

W ?
R

θ?R
M?

R
Q?

R
qw

?
R

qθ
?
R

Vθ
?
R

Vw
?
R


=

[
Ts 0
0 I4

]
Tsp

[
Ts 0
0 I4

]


W ?
L

θ?L
M?

L
Q?

L
qw

?
L

qθ
?
L

Vθ
?
L

Vw
?
L


, where I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (14)

3.4 Finite element model

A convenient finite element model was proposed by Thomas et al. [13], who focused on
thin piezoelectric patches shunted with independent electrical circuits. The model is based on a
condensation of the electrical degrees of freedom in order to recast the system into a standard
elastic vibration problem. However, this method is not applicable when considering connections
of different patches with an electrical network. There are electrical nodes that interconnect
successive unit cells, which means that the corresponding electrical degrees of freedom cannot
be condensed. Before condensation, the finite element formulation is expressed as follows[

Mm 0
0 0

] [
q̈m

V̈I

]
+

[
Km Kc

−Kc
T Cε

sp

] [
qm

VI

]
=

[
Fm

qI

]
, (15)

where Mm, Km and Kc are respectively the mass, stiffness and coupling matrices that are de-
fined in [13]. The electric charge qI flowing toward the pair of piezoelectric patches is obtained
from the topology of the analogous network as

qI = Sqqe where Sq =
[

0 1 0 −1
]

and qe =
[
qwL qθL qwR qθR

]T (16)
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By analogy with the force vector Fm and the displacement vector qm, the voltage vector
Fe =

[
VwL VθL −VwR −VθR

]T is defined as the dual of the electric charge vector qe.
The principle of superposition allows considering that the voltage vector Fe is a sum of two
contributions. The first contribution is obtained when no mechanical displacement is allowed
(qm = 0) and the second contribution excludes external charge displacements (qe = 0): Fe =
F e

e + Fm
e . The purely electrical contribution F e

e only depends on the choice of the electrical
network. Similarly to established practices in mechanical problems, we define the electrical
matrices Ke and Me as equivalents of stiffness and mass matrices:

F e
e =

[
Ke − ω2Me

]
qe (17)

When considering the electrical analogue of a beam, Me can be found from the network in
Fig. 3 with eθ = 0 and Cε → ∞, i.e. VI = 0. However, the matrix Ke cannot be obtained
directly from Fig. 3 with eθ = 0 and L = 0. Actually, Ke is not defined, unless we introduce
additional degrees of freedom. This is performed by adding two virtual capacitors C0/2 in the
”θ” electrical line, on both sides of the unit cell. In the end, we get

Ke =
4

â2C0



1
â

2
−1

â

2
â

2

â2

4

Cε
sp + 2C0

Cε
sp + C0

− â
2

â2

4

Cε
sp

Cε
sp + C0

−1 − â
2

1 − â
2

â

2

â2

4

Cε
sp

Cε
sp + C0

− â
2

â2

4

Cε
sp + 2C0

Cε
sp + C0


and Me =

L

2



1
â

2
0 0

â

2

â2

4
0 0

0 0 1 − â
2

0 0 − â
2

â2

4


. (18)

Note that the capacitance C0 is a numerical parameter that has to be small compared to Cε
sp.

A good practice is to set C0 between Cε
sp × 10−3 and Cε

sp × 10−9 to conceal its influence on
electrical propagation and to avoid numerical issues.

The contribution Fm
e is equal to Fe when qe = 0. Fig. 3 shows that qe = 0 induces that

qI = 0. Then, qI = 0 induces that VwL = VwR = 0 and VθL = VθR = VI. Furthermore, Eq. (15)
gives VI = Kc

Tqm/C
ε
sp when qI = 0. As a consequence,

Fm
e =

1

Cε
sp
SV Kc

Tqm where SV =
[

0 1 0 −1
]T
. (19)

Finally, Eqs. (15), (16), (17), (18) and (19) lead to the following dynamic stiffness matrix
formulation involving a combination of mechanical and electrical degrees of freedom:

 Km +
1

Cε
sp
KcKc

T 1

Cε
sp
KcSq

1

Cε
sp
SV Kc

T Ke

− ω2

[
Mm 0
0 Me

][ qm

qe

]
=

[
Fm

Fe

]
, (20)

With a restriction to the transverse case, qm =
[
WL θL qI WR θR

]T and Fm =[
−QL −ML 0 QR MR

]T , where qI is the mechanical displacement vector of the internal
nodes of the unit cell [13]. So, the dynamic stiffness matrix in Eq. (20) can be reorganized in
order to distinguish the left, right and internal degrees of freedom: D̃LL D̃LI D̃LR

D̃IL D̃II D̃IR

D̃RL D̃RI D̃RR

qL

qI

qR

 =

FL

0
FR

 where FL =


−QL

−ML

VwL

VθL

 , FR =


QR

MR

−VwR

−VθR

 , (21)
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qL =
[
WL θL qwL qθL

]T and qR =
[
WR θR qwR qθR

]T . With this partitioning, the
waveguide finite element methods [6] can be applied. First, the internal degrees of freedoms are
eliminated through

[
DLL DLR

DRL DRR

] [
qL

qR

]
=

[
FL

FR

]
, where

DLL = D̃LL − D̃LID̃
−1
II D̃IL

DLR = D̃LR − D̃LID̃
−1
II D̃IR

DRL = D̃RL − D̃RID̃
−1
II D̃IL

DRR = D̃RR − D̃RID̃
−1
II D̃IR

. (22)

Then, the condensed dynamic stiffness matrix is transformed into a transfer matrix [6, 8]:

WR

θR

qwR
qθR
QR

MR

−VwR

−VθR


=

[
−D−1

LRDLL D−1
LR

−DRL + DRRD
−1
LRDLL −DRRD

−1
LR

]


WL

θL

qwL
qθL
QL

ML

−VwL

−VθL


. (23)

4 COMPARISON OF THE TRANSFER MATRIX MODELS

The propagation constants of the proposed transfer matrices are compared. Depending on
the frequency range of interest, we note differences between the models. Those differences
are confirmed by the observation of frequency response functions, which lead to guidelines
concerning the choice of a suitable model.

4.1 Propagation constants

The computation of the eigenvalues λ of a transfer matrix gives access to the propagation
constants µ = ln(λ) = δ + iη [5, 8]. The real part δ is the attenuation constant, which rep-
resents the exponential decay of the amplitude of a wave propagating along one unit cell. The
imaginary part η is the phase constant, i.e. the phase shift between the two ends of the unit cell.
Table 1 gives the geometry and the material properties of the considered unit cell. Concerning
the electrical network, the transformer ratio â is set arbitrarily to 1 and the inductance value
is tuned to L = a2m/(â2KE

θ C
ε) in order to satisfy the multimodal coupling condition defined

in [4]. This condition induces that the electrical network approximates the dispersion relation

Beam (Aluminum 2017) Patches (PZT)
Length (mm) a = 50 lp = 30
Width (mm) b = 20 b = 20

Thickness (mm) hs = 20 hp = 5
Density (kg/m3) ρs = 2780 ρp = 7800

Young modulus (GPa) Ys = 73.9 1/sE11 = 66.7
Charge constant (pC/N) - d31 = −210

Permittivity (nF/m) - εσ33 = 21.2

Table 1: Geometry and material properties of the beam and the piezoelectric patches.
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Figure 4: Phase constants - (· · · ) for the discrete model, (—) for the piecewise homogenized
model.
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Figure 5: Attenuation constants - (−−) for the fully homogenized model, (—) for the piecewise
homogenized model.

of the beam segment, which is required to implement the analogous coupling. Once the me-
chanical and electrical properties are defined, the propagation constants of the transfer matrices
in Eqs.(6), (12), (14) and (23) can be compared. For each model, the 8×8 transfer matrices
give eight propagation constants µ. Two opposite sets of four constants refer to propagation in
opposite directions of the electromechanical waveguide. So, only four propagations constants
need to be considered to analyze the phase or the attenuation.

First, the phase constants in Fig. 4 show that, below 9 kHz, the discrete model differs signif-
icantly from the other ones. Note that the finite element model tends to the piecewise homog-
enized model when increasing the number of elements. Furthermore, the results obtained with
the fully homogenized model are very close to those of the piecewise homogenized model over
the frequency range of interest. This is the reason why the fully homogenized and finite element
models are not represented in Fig. 4. For each of the other models, only two phase constants
are represented because the two other ones are equal to zero. For the piecewise homogenized
model, one phase constant approaches a classical beam dispersion relation while the other phase
constant reach a step when η = π. This last phase constant thus represents a propagation in a
discrete medium [14], which is actually the discrete electrical network. On the other hand, the
discrete model offers two phase constants related to discrete waveguides, i.e. with a step at
η = π. This is simply explained by the fact that, in the discrete model, the mechanical medium
is also represented by a lumped model. Around 7.5 kHz, η = π means that the wavelength is
equal to two unit cells and Fig. 4 shows large differences between the models. So, the discrete
model is no more valid when the considered wavelength approaches the length of the unit cell.

The difference between the piecewise homogenized model and the fully homogenized model
clearly appears when looking at the smallest attenuation constant for each model around 19 kHz,
as seen in Fig. 5. Over this frequency range, the discrete electrical network does not influence
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the results anymore because no ellectrical propagation occurs above 7.5 kHz, which was pre-
dicted from Fig. 4. However the effect of the mechanical discontinuity induced by the addition
of piezoelectric patches creates a stop band for transverse propagation in the beam. Note that
a stop band also appears with the fully homogenized model. This is explained by the fact that,
even without considering structural discontinuity, the patches induces additional moments on
both sides of the unit cell, as represented in Fig. 2(b). This generates a periodic discontinuity
that leads to a moderate stop band effect. This stop band is not negligible compared to the one
obtained with the piecewise homogenized model because the effect of the mechanical disconti-
nuity is actually quite small in the present example. With the same geometry, the stop band for
longitudinal waves was significant [11], but a similar effect for transverse wave would require
a considerably thicker discontinuity. In conclusion, strong structural modification would be
needed to benefit from structural stop bands in transverse propagation and, anyway, this effect
does not occur on the same frequency range as the proposed analogous control.

4.2 Frequency response functions

Frequency response functions (FRFs) are compared for a free-free beam, which is period-
ically covered with 20 pairs of piezoelectric patches. The two electrical lines of the network
needs to be short-circuited at both ends in order to satisfy analogous boundary conditions [4].
Then, the modal coupling condition tunes the electrical modes to the modes of the discrete me-
chanical model. A tuned mass control is then observed on several modes together and the vibra-
tion amplitude is reduced by introducing damping in the network. Here, a resistance Rs = 20 Ω
is added in series to the inductors by replacing L by L − jRs/ω, where j2 = −1. The finite
electromechanical structure consists of n = 20 identical unit cells. A solution to get the relation
between the state vectors at both ends of the beam is to raise the transfer matrix to the power
of n [4]. The only excitation is a transverse force at one end of the beam. All the other forces,
moments and voltages at the ends of the structure are equal to zero. This simplify the problem
and it becomes possible to get FRFs as the ratio of the velocity at one end over the excitation
force at the other end.

The models are first compared in a low-frequency range. The FRFs obtained with the discrete
and the piecewise homogenized model are represented in Fig 6 from 0 to 3.3 kHz. This fre-
quency range covers the first eight bending modes of the beam when no coupling occurs. Again,
the FRFs obtained with the homogenized and the finite element model are not represented be-
cause they cannot be distinguished from the piecewise homogenized model. As predicted by
Fig 4, it is observed that the discrete model is no more reliable when the wavelength approaches
the length of the unit cell. A limit of validity can be set to 1 kHz, which corresponds to about ten
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Figure 6: Frequency response functions at low frequencies - (· · · ) for the discrete model, (—)
for the piecewise homogenized model.
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Figure 7: Frequency response functions at higher frequencies - (−−) for the fully homogenized
model, (—) for the piecewise homogenized model.

unit cells per wavelength according to Fig 4. With the discrete model, the position of the me-
chanical resonances are shifted because the mechanical medium is modeled by a lattice. Thus,
it does not take into account the increasing mistuning between the continuous and the discrete
media.

The second comparison is performed at higher frequencies. Actually, we want to observe the
FRFs when the wavelength in the beam is close to two times the length of a unit cell (η = π).
This condition occurs between 18 and 19 kHz and it comes with the stop band effect, which
was shown in the analysis of the attenuation constants in Fig 5. The finite element model
still tends to the piecewise homogenized model, but the homogenized model now presents a
slightly different response, as seen in Fig 7. Below 18 kHz, there is already a difference in
the positioning of the resonances, but it is even more pronounced after the stop band, which is
larger with the piecewise homogenized model. Nevertheless, the effect of the stop band is quite
negligible, especially when considering that the approximations of the Euler-Bernoulli model
are questionable at such high frequencies. It is also remarked that the considered frequency
range is clearly beyond the last electrical resonances. Here, the control strategy involving an
analogous discrete network has no effect and the FRFs are essentially due to propagation in the
mechanical waveguide.

5 CONCLUSIONS

• Four transfer matrix models are proposed and compared. They differ in the definition of
the mechanical medium which can be discrete, fully homogenized, piecewise homoge-
nized or based on a finite element model.

• The finite element model tends to the piecewise homogenized model which is the most
accurate because it takes into account the mechanical discontinuity induced by the piezo-
electric patches.

• For problems involving analogous control with a discrete electrical network, the fully
homogenized model is generally sufficient because the eventual stop band effects occur
at frequencies where the proposed control is no more efficient.

• The discrete model is convenient because of its easy implementation but it should be
limited to wavelength above ten times the length of the unit cell.

• A future work will consist in the extension of the proposed finite element model to the
case of a plate coupled to an analogous electrical network.
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