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Ulrich and aCM bundles from invariant theory

Laurent Manivel

March 21, 2018

Abstract

We use certain special prehomogeneous representations of algebraic

groups in order to construct aCM vector bundles, possibly Ulrich, on

certain families of hypersurfaces. Among other results, we show that a

general cubic hypersurface of dimension seven admits an indecomposable

Ulrich bundle of rank nine, and that a general cubic fourfold admits an

unsplit aCM bundle of rank six.

1 Introduction

Arithmetically Cohen-Macaulay (aCM) vector bundles have been thoroughly
investigated since Horrock’s seminal result that on projective spaces, they must
be sums of line bundles. On quadrics, spinor bundles are non split aCM vector
bundles whose rank grows exponentially with the dimension of the base, and
it was conjectured by Buchweitz, Greuel and Schreyer that one cannot expect
anything better for higher degree hypersurfaces, independently of their degrees.
In particular low rank aCM vector bundles should not exist on hypersurfaces
of large enough dimension, and this has been established for rank two or three.
Actually only few examples are known, apart from surfaces and threefolds for
which specific techniques like the Serre construction are available.

In this note we suggest a construction of aCM bundles on hypersurfaces using
techniques from invariant theory. The following situation is quite common:
an algebraic group G acts linearly on a vector space V , and this action has
an open orbit; moreover the complement of this open orbit is an irreducible
hypersurface H . Sometimes, one can construct on PV a G-invariant morphism

A ⊗ OPV (−k)
ϕ

−→ B ⊗ OPV , for some integer k and some G-modules A and
B. If this morphism is generically an isomorphism, then its cokernel E will be
a G-equivariant aCM sheaf supported on the hypersurface H .

In order to get an aCM vector bundle, we would need H to be the schematic
support of E , which is not always the case even at the generic point of H , as we
will see. Moreover, the hypersurface H is often singular, while we are mainly
concerned by smooth hypersurfaces. If the singular locus has large codimension,
we can avoid it by restricting to suitable projective subspaces, and obtain aCM
vector bundles on smooth hypersurfaces. Notably, we will construct aCM vector
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bundles of rank six on the general quartic fourfold, and interesting families of
aCM bundles of rank three on the general quartic surface.

Sometimes our construction works with k = 1 and the upshot is that we get
Ulrich bundles on certain hypersurfaces, a very special type of aCM bundles
that recently attracted considerable interest (see [5] for an introduction). We
will start this note with a construction of Ulrich bundles on cubic hypersurfaces.

Acknowledgements. We would like to thank Daniele Faenzi, Rosa Miró-Roig,
Joan Pons-Llopis and Marcello Bernardara for useful discussions.

2 Ulrich bundles

2.1 General construction

Ansatz A. Suppose given an affine algebraic group G and

1. three G-modules V,A,B, with A and B of the same dimension,

2. a G-equivariant linear map ϕ : V → Hom(A,B) such that ϕ(v) is injective
when v is generic.

Then there is an exact sequence on PV :

0 −→ A⊗OPV (−1)
ϕ

−→ B ⊗OPV −→ E −→ 0,

where the reduced support of the sheaf E is a G-invariant hypersurface H . Let
us denote by ι the embedding of H in PV . If this hypersurface is irreducible,
and if E = ι∗E is the pushforward of a vector bundle on H , the degree of H
and the rank of E are related by the formula

dimA = dimB = rank(E)× deg(H). (1)

Moreover, the equation h of H verifies, after normalization, det(ϕ) = hr if
r = rank(E). The vector bundle E on H is then an Ulrich bundle (see [5] for
more general definitions and other characterizations of Ulrich bundles).

When r = 1, H is a determinantal hypersurface; if r = 2 and ϕ is skew-
symmetric, then H is a Pfaffian hypersurface (see [4]). Good candidates for
constructing examples of higher ranks are provided by prehomogeneous spaces,
even better, by representations with finitely many orbits.

Note that it may happen, and we will meet examples of this phenomenon,
that E is not the pushforward of a vector bundle, or even a sheaf on H . This
would mean that IHE = 0, which has no reason to happen in general. But there
is a canonical filtration of E by the subsheaves Ip

HE , such that the successive

quotients Ip
HE/Ip+1

H E = i∗Ep are indeed pushforwards of sheaves on H . The
fundamental equation (1) becomes

dimA = dimB = (
∑

p≥0

(p+ 1)rank(Ep))× deg(H). (2)
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Remark. Observe in particular that if

dimA = dimB = rank(E ⊗OPV OH)× deg(H), (3)

then E must be the pushforward of a vector bundle at least on an open subset
of H . Moreover this open subset is obviously G-stable.

2.2 Representations with few orbits

Suppose that the G-module V , or its projectivization PV , has finitely many
orbits. In particular it has at most one G-invariant hypersurface H , whose
degree d is known. If we can find ϕ : V → Hom(A,B) as above, we can
immediately deduce the value of r = rank(E), at least in the case where it is
really the pushforward of a vector bundle E on H .

If the hypersurface H is smooth, the vector bundle E is called an Ulrich

bundle. It is known that any smooth hypersurface carries an Ulrich bundle, but
the rank may be very high; the proof of [6] gives an estimate of the rank which
is exponential in the number of monomials in the equation of the hypersur-
face. Moreover this doesn’t seem to be an artefact of the proof but an intrinsic
difficulty; for example the minimal rank of an Ulrich bundle on a smooth hyper-
quadric is exponential in the dimension, and it is conjectured that aCM bundles
of smaller ranks do not exist on a general hypersurface of any degree d ≥ 2 [6].
It remains therefore an interesting question to construct Ulrich bundles of rank
as small as possible.

In our previous setting, the hypersurface H is almost never smooth, but we
can still obtain Ulrich bundles on smooth linear sections of H . These smooth
sections must have dimension small enough so that they do not meet the sin-
gular locus of H . This singular locus of H is of course G-invariant, and in the
situation where the ambient space PV has only few orbits, we can hope that its
codimension in H is not too small.

2.3 Examples

2.3.1 The Severi series

Suppose that S ⊂ PV is one of the four Severi varieties, of dimension 2a with
a = 1, 2, 4, 8. (We refer to [15] for the geometry of the Severi varieties.) The
automorphism group of S is reductive and a finite cover G acts linearly on V ,
a G-module of dimension 3a + 3. Moreover G has only two non trivial orbit
closures, the cone over S and the cone over its secant variety, which is a cubic
hypersurface H ⊂ PV . In particular the singular locus of H is S, and has
codimension a + 1. A general linear section of H of dimension d ≤ a will
therefore be smooth.
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The list of Severi varieties is the following:

a 1 2 4 8
G SL3 SL2

3 SL6 E6

S v2P
2 (P2)2 G(2, 6) OP2

V S2C3 (C3)⊗2 ∧2C6 V27

Choose an equation h of H , an element of Sym3V ∗. By polarization we get
a map

φ : V −→ Sym2V ∗ ⊂ Hom(V, V ∗),

equivariant with respect to the semisimple part of G. Hence on PV an exact
sequence

0 → V ⊗OPV (−1) → V ∗ ⊗OPV → E → 0.

Lemma 2.1 The sheaf E is, on the smooth locus of the cubic hypersurface H,

the pushforward of a vector bundle of rank a+ 1.

For a = 2, we deduce that any smooth cubic surface (which is automatically
determinantal) admits an Ulrich bundle of rank three. For a = 4, we get that
any smooth Pfaffian cubic fourfold admits an Ulrich bundle of rank five. This
is also the case of any smooth cubic threefold, since it is automatically Pfaffian.

For a = 8, the Severi variety S is the so-called Cayley plane, whose automor-
phism group has type E6. Moreover V is the minimal representation of E6, of
dimension 27, and the invariant cubic in PV is called the Cayley hypersurface.
We deduce:

Proposition 2.2 A smooth linear section of the Cayley hypersurface, of di-

mension at most eight, is a smooth cubic supporting an Ulrich bundle of rank

nine.

Note that cubic eightfolds obtained as linear sections of the Cayley cubic are
far from being generic; in fact, remarkably they are rational. But linear sections
of dimension seven are general, and we deduce:

Corollary 2.3 A general cubic hypersurface of dimension at most seven sup-

ports an indecomposable Ulrich bundle of rank nine.

Remarks.

1. Ulrich bundles on cubic surfaces and cubic threefolds have been extensively
studied in [7].

2. As a consequence of a remarkable numerical coincidence, a general cubic
sevenfold X can be represented as a linear section of the Cayley cubic in
finitely many ways (up to isomorphism). Each of these representations
allows to define an Ulrich bundle EX on the cubic, that we call a Cayley
bundle. It would be interesting to know how many such representations
do exist. Is there a unique one?
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The Cayley bundle EX on the cubic sevenfold X is indecomposable since it
is simple by [10, Theorem 3.4]. It can be described as follows. Recall that the
dual variety of the Severi variety S∗ ⊂ PV ∗ is the invariant cubic H ⊂ PV . In
particular there is an incidence correspondence

I := PNS∗/PV ∗

((
PP

PP
PP

PP
PP

P

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠

PV ∗ ⊃ S∗ H ⊂ PV

which is an instance of a Kempf collapsing [11]. If X = H ∩ PL is a smooth
cubic sevenfold, so that PL does not meet S = Sing(H), then X is isomorphic
to its preimage in I, and we therefore get a map pX : X → S∗. Then

p∗XNS∗/PV ∗ = EX ⊕OX(−1).

2.3.2 Three-forms in seven variables

Let V be a seven dimensional vector space. Then the action of GL(V ) on ∧3V
has only finitely many orbits, which were first classified by Schouten in 1931.
The generic stabilizer is of type G2. Moreover there is a unique semi-invariant
hypersurface H , with an equation h of degree seven.

Each three-form ω ∈ ∧3V defines a symmetric morphism

ϕ(ω) : ∧2V −→ ∧5V.

Lemma 2.4 If ω does not belong to H, then ϕ(ω) is an isomorphism. If ω is

generic in H, then ϕ(ω) has corank three.

Proof. We choose a basis e1, . . . , e7 of V and denote ei∧ej ∧ek by eijk. Explicit
representatives of V −H and of the open orbit in H are, respectively [14, section
3]:

ω0 = e123 + e456 + e147 + e257 + e367,
ω1 = e123 + e456 + e147 + e257.

A straightforward computation shows that φ(ω0) = 0 is injective, while φ(ω1)
has kernel 〈e15, e24, e14 − e25〉. The claim follows. �

As a consequence, the exact sequence

0 −→ ∧2V ⊗OP(∧3V )(−1)
ϕ

−→ ∧5V ⊗OP(∧3V ) −→ E −→ 0

defines an aCM sheaf E which, by the Remark in section 2.1, is the pushforward
of a vector bundle E on the open orbit in H . Moreover detϕ = h3 up to
normalization.

Proposition 2.5 There exists a 76-dimensional family of degree seven smooth

surfaces S ⊂ P3 admitting an indecomposable Ulrich bundle of rank 3.

5



Proof. The heptic hypersurface H is singular in codimension at least three,
just because the complement of the open orbit has codimension three. We will
therefore define a smooth heptic surface S = H ∩P by cutting H with a general
three-dimensional linear subspace P ⊂ P(∧3V ). Moreover we get a rank three
vector bundle ES on S, whose pushforward ES to P is involved in an exact
sequence

0 −→ ∧2V ⊗OP(−1) −→ ∧5V ⊗OP −→ ES −→ 0.

We claim that ES is in general indecomposable. Indeed, if it where not, it would
admit a rank one factor, and since the map ϕ(ω) is symmetric, the surface S
would be symmetric determinantal. But an easy dimension count shows that the
family of heptic symmetric determinantal surfaces in P3 has dimension at most
63, while the dimension of our family is dimG(4, 35)− dim sl7 = 124− 48 = 76.
�

Remarks.

1. Rank three indecomposable Ulrich bundles are known to exist on deter-
minantal heptic surfaces [12]. We would guess that our surfaces are not
determinantal, but we are unable to prove it.

2. One can check that the singular locus of H has codimension exactly three;
more precisely it coincides with the closure of the 31 dimensional orbit
O in ∧3V . Indeed, this closure contains all the smaller orbits, so we just
need to check that the general point ω2 of O is a singular point of H .
To see this, we can use the natural desingularization of H by the total
space of the conormal bundle of G(4, V7) (recall that H is the cone over
the projective dual of this Grassmannian). The set-theoretical fiber F of
a point in O is the set of U ∈ G(4, V7) such that ω2 belongs to ∧2U ∧ V7.
We can let

ω2 = e123 + e456 + e147.

Then we check that F ≃ P1×P1, which implies that ω2 is a singular point
ofH . Explicitely, ω2 belongs to ∧

2U∧V7 if and only if U = 〈e1, e4, e23, e56〉
for some non zero vectors e23 ∈ 〈e2, e3〉 and e56 ∈ 〈e5, e6〉. Thus we cannot,
unfortunately, extend our Ulrich bundles to smooth heptic threefolds.

3. Given a pair (U ⊂ V7, ω ∈ ∧2U∧V7), the wedge product by ω sends ∧2U to
∧4U ∧V7 ≃ ∧4U⊗(V7/U). For ω generic, this map is surjective, hence has
a rank three kernel which is also the kernel of φ(ω), as a straightforward
computation shows. The dual map is generically injective as a map of
vector bundles, hence defines an exact sequence of sheaves on Hreg, if p
denote the projection to G(4, V7):

0 −→ p∗Q∗ −→ p∗(∧2U)∗ −→ E −→ 0.
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3 Arithmetically Cohen-Macaulay bundles

3.1 General construction

Ansatz B. Suppose given an affine algebraic group G and

1. three G-modules V,A,B, with A and B of the same dimension,

2. a G-equivariant map ϕ : V → Hom(A,B), polynomial of degree k, such
that ϕ(v) is injective when v is generic.

Then there is an exact sequence on PV :

0 −→ A⊗OPV (−k)
ϕ

−→ B ⊗OPV −→ E −→ 0,

where the reduced support of the sheaf E is a G-invariant hypersurface H . If
this hypersurface is irreducible, and if E is the pushforward E = ι∗E of a vector
bundle on H , the degree of H and the rank of the vector bundle E on H are
related by the formula

k × dimA = k × dimB = rank(E)× deg(H).

Moreover, the equation h of H verifies, after normalization, det(ϕ) = hr if
r = rank(E).

For example one can suppose that V admits an invariant of degree k + 2.
By polarization we get an induced linear map

SymkV −→ Sym2V ∗ −→ Hom(V, V ∗),

which can be considered as a degree k map from V to Hom(V, V ∗). If V
is a representation with finitely many orbits, there is a good chance that ϕ
drops rank on a hypersurface with an open orbit whose complement has high
codimension.

Over a smooth linear section X of H , we will then obtain an aCM vector
bundle EX , hopefully indecomposable.

3.2 The Freudenthal series

Consider a Freudenthal variety F ⊂ PW , of dimension 3a+3 with a = 1, 2, 4, 8
[15]. Again the automorphism group of F is reductive and a finite cover G
acts linearly on W , a G-module of dimension 6a + 8. Here G has only three
non trivial orbit closures, the cone over F , the cone over its tangent variety,
which is a quartic hypersurface H ⊂ PW , and the singular locus Ω of this
hypersurface, whose dimension is 5a+ 4. In particular, a general linear section
of H of dimension d ≤ a + 1 will be smooth. The series can be extended to
a = 0 and is modeled on the rational normal cubic:

a 0 1 2 4 8
G SL3

3 Sp6 SL6 Spin12 E7

F (P1)3 LG(3, 6) G(3, 6) OG(6, 12) F27

W (C2)⊗3 ∧〈3〉C6 ∧3C6 ∆ W56
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Lemma 3.1 Let g denote the Lie algebra of G. There exists a non zero quadratic

map θ : Sym2W −→ g.

Proof. The action of G on W yields a map g → End(W ). Since W has an
invariant symplectic form, this map factorizes through Sym2W . Since W and
g (by the Killing form) are both self-dual, we get the desired map. �

Note that h = K ◦ ϕ, where K denotes the Killing form, is an equation of
the invariant quartic.

Corollary 3.2 For any g-module M there exists an equivariant quadratic map

θM : W −→ End(M). If θM (w) is invertible for a generic w, one therefore gets

an aCM sheaf EM whose reduced support is the hypersurface H, defined by an

exact sequence

0 −→ M ⊗OPW (−2)
θM−→ M ⊗OPW −→ EM −→ 0.

A uniform example, in the sense that it exists for the whole Freudenthal
series, is given by W itself.

Lemma 3.3 Let w be a general element of W . Then θW (w) is invertible.

Proof. We know that W is a fundamental representation of G. Let v+ and v−
be a highest and a lowest weight vector. They both belong to the cone over F ,
but the sum v+ + v− belongs to the cone over the open orbit, and is therefore a
general element of W . Since g ⊂ Sym2W ∗ is the space of quadratic equations
of F , we have a(v++v−) = 2a(v+, v−). This must be a multiple of the center of
the reductive group defined as the common stabilizer of the highest and lowest
weight vectors, hence a multiple of the fundamental coweight H associated to
W . So the claim reduces to the fact that for any weight ω of W , ω(h) is non
zero, which we check case by case. �

Unfortunately, we will see later that the sheaf EW is not a vector bundle
on the smooth locus of H . But we can get genuine aCM bundles from the
most basic representations of sl6 and so12, that will be studied in the next two
sections.

3.3 Quartic surfaces

Consider the case where G = SL6 = SL(V6), F = G(3, V6) and W = ∧3V6,
where V6 denotes a six-dimensional complex vector space. The map Sym2W →
sl6 can be described as follows (note that by the Schur lemma, there is a unique
such equivariant projection, up to constant). There is a natural map from
W ⊗W to ∧5V6 ⊗ V6 defined by the composition

∧3V6 ⊗ ∧3V6 −→ ∧3V6 ⊗ ∧2V6 ⊗ V6 −→ ∧5V6 ⊗ V6,

where the first map is induced by the polarization morphism ∧3V6 → ∧2V6⊗V6

and the second one by the exterior product ∧3V6 ⊗ ∧2V6 → ∧5V6. As an
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SL6-module, ∧5V6 is isomorphic to V ∗
6 . So the symmetric part of the previous

morphism gives a map

Sym2(∧3V6) −→ V ∗
6 ⊗ V6 −→ sl6,

where the rightmost arrow is the projection to the traceless part. If the resulting
morphism is non zero, it must be the map we are looking for.

Let us denote by θ : ∧3V6 → sl6 the corresponding quadratic map, and let us
compute it explicitely. A general element in P(∧3V6) belongs to a unique secant
line to G(3, V6), so a general element of ∧3V6 can be written, up to scalar, as
ω0 = e123 + e456, where e123456 is a fixed generator of ∧6V6. We get

θ(ω0) = Id〈e1,e2,e3〉 − Id〈e4,e5,e6〉,

a semisimple endomorphism whose eigenspaces are precisely the three-spaces
A = 〈e1, e2, e3〉 and B = 〈e4, e5, e6〉. The eigenvalues of θ(ω0) on ∧3V6 are 3 on
∧3A, 1 on ∧2A ⊗ B, −1 on A ⊗ ∧2B and −3 on ∧3B; in particular θ(ω0) acts
on ∧3V6 as an isomorphism, confirming the previous lemma. More generally,
θM (ω0) will be an isomorphism for any irreducible module M = SµV6 such that
µ is a partition of odd size.

A general element ω1 of the quartic hypersurface H ⊂ ∧3V6 is a general
element of the affine tangent space to G(3, V6) at a uniquely determined point
A = 〈e1, e2, e3〉. Since the affine tangent space to the Grassmannian at that
point is ∧2A ∧ V6, we can choose ω1 = e126 + e234 + e315. Then we get

θ(ω1) = e∗4 ⊗ e1 + e∗5 ⊗ e2 + e∗6 ⊗ e3,

a square zero endomorphism whose kernel and image are precisely the three-
space A.

If we apply our construction to the natural representation V6 of G, we obtain
an aCM sheaf EV6

with an exact sequence

0 → V6 ⊗OPW (−2) → V6 ⊗OPW → EV6
→ 0.

Our computation of θ(ω1) shows that EV6
has rank 3 on the open orbit O of

H (which is also it smooth locus). Since 2 × 6 = 3 × 4, we can conclude that
EV6

is the pushforward of a vector bundle EV6
on O. An alternative description

of this bundle is the following: since H is the tangent variety to F = G(3, V6)
(and also its projective dual), the open orbit O is naturally fibered over G(3, V6)
(with fibers the projectived tangent spaces; the natural map to H is known to
be birational, hence a resolution of singularities [15]). Let us denote by π the
projection from Hreg to G(3, V6). From the explicit description of θ(ω1) above,
we see that

EV6|Hreg
= π∗Q, EV ∨

6
|Hreg

= π∗U∗,

if we denote by U and Q the tautological and the quotient rank three vector
bundles on G(3, V6). We deduce:
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Proposition 3.4 Let S be a general quartic surface in P3, represented as a

linear section of the invariant quartic H ⊂ P(∧3V6). The vector bundles EV6|S

and EV ∨

6
|S are indecomposable rank three aCM vector bundles on S.

Proof. We need to check that E := EV6|S is indecomposable. Suppose it is not.
Then it must split as the direct sum L ⊕ M of a line bundle L and an aCM
rank two vector bundle M on S. Both are generated by global sections, and
h0(L)+h0(M) = 6. But in general Pic(S) = Z, and L cannot be trivial because
h0(E) = 6 = χ(E) and h1(E) = 0, hence h0(E∗) = h2(E) = 0. So L = OS(k)
for some k > 0, which implies that h0(L) ≥ 4. Therefore h0(M) ≤ 2, but since
M is generated of rank two this is only possible if M is trivial, which again
contradicts h0(E∗) = 0. �

We will call the aCM bundles E that we obtain on a quartic surface S by this
construction, the Grassmann vector bundles on S. The pair (S,E) is defined
by a linear section of the invariant quartic H , so the number of parameters is
dimG(4, 20)− dimSL6 = 4 × 16 − 35 = 29. Since there are 19 parameters for
S, we expect that a general quartic surface S supports a ten-dimensional family
of Grassmann bundles (or two such families).

Note that the rational projection fromH to G is defined by the derivatives of
the quartic invariant, which implies that c1(E) = 3h if h denotes the hyperplane
class. Moreover the Hilbert polynomial PE of E is easily computed, and by
Riemann-Roch, we get

PE(k) = 6(k + 1)2 = 6 + ch2(E(k)) = 6 + ch2(E) + kc1(E)h+ k2
h2

2
,

hence ch2(E) = 0.

Proposition 3.5 The two Grassmann bundles E = EV6|S and F = EV ∨

6
|S on S

are in natural duality, in the sense that E∗ ≃ F (−2).

Proof. If we consider S as a subvariety of PT̂G, the line bundle OS(−1) is
identified with OT̂G

(−1) and is therefore a subbundle of π∗T̂G. Since TG(−1)

is a quotient of T̂G, we get a map from OS(−1) to π∗(TG(−1)), which is never
zero since S does not meet G. But TG = U∗⊗Q, hence a natural injective map

OS(−1) −→ E ⊗ F (−3).

The image of this map is everywhere non degenerate and yields the desired
duality. �

The Mukai vector of E is v(E) = (3, 3h, 3), in particular it is not primitive.
Moreover the dimension of the moduli space M of simple vector bundles on S
at the point defined by E is v(E)2 + 2 = 9 × 4 − 2 × 9 + 2 = 20. A simple
diagram chasing shows that the kernel of the moduli space at the point [E] to
the family of Grassmann bundles should be given by the exact sequence

0 −→ T[E]G −→ Hom(L,∧3V6)/gl6 −→ Sym4L∗/〈HL〉 −→ 0.
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Here we denoted by L the four-dimensional subspaces of ∧3V6 such that S =
H ∩PL, and by HL the restriction to L of an equation of H . There is a natural
map that sends u ∈ Hom(L,∧3V6) to the quartic polynomial H(u(x), x, x, x)
on L; if u comes from sl6, this polynomial is identically zero by invariance.

Fantasy. We thus get a subvariety of dimension ten in a hyperkaehler moduli
space of dimension twenty. Is it Lagrangian?

The tangent space to the moduli space at a point defined by a Grassmann
vector bundle is a twenty-dimensional vector space endowed with a non degener-
ate skew-symmetric form. Is there a natural identification of this tangent space
with (∧3V6,∧)?

Remark. The action of θ(ω1) on ∧3V6 is nilpotent of order four. In terms of
B = 〈e4, e5, e6〉 (which is not uniquely defined by ω1), this action is graded,
in the sense that it maps ∧3B to A ⊗ ∧2B (injectively), A ⊗ ∧2B to ∧2A ⊗ B
(isomorphically), ∧2A⊗B to ∧3A (surjectively), and ∧3A to zero. This implies
that the kernel of θ(ω1) is the direct sum of ∧3A with a hyperplane in ∧2A⊗B,
so the cokernel has dimension 11 and not 20 × 2/4 = 10. This implies that
the E∧3V6

cannot be the pushforward of a vector bundle on the smooth locus
of H ; instead, it is the extension of the pushforward of a vector bundle of
rank 10 by the pushforward of a line bundle, neither of which has is aCM.
Nevertheless, E∧3V6

is an interesting example of an aCM sheaf supported on the
first infinitesimal neighbourhood of H . See [3] for more on aCM sheaves on non
reduced schemes.

3.4 Quartic fourfolds

In this section we consider the case where G = Spin12 = Spin(V12), where V12

is a twelve dimensional vector space endowed with a non degenerate quadratic
form. Here F = S12 parametrizes one of the two families of maximal isotropic
subspaces of V12 andW = ∆+ is one of the half-spin representations. Recall that
these representations can be described explicitely by choosing a decomposition
of V12 as the direct sum of two isotropic subspaces E and E′. Since the quadratic
form defines a perfect duality between them, we rather write V12 = E ⊕ E∨.

Then the Lie algebra of G decomposes as

g = so(V12) ≃ ∧2V12 = ∧2E ⊕ End(E) ⊕ ∧2E∗.

Moreover the half-spin representation maybe defined as

W = ∆+ = C⊕ ∧2E ⊕ ∧4E ⊕ ∧6E,

with the natural action of g defined by wedge products and contractions.
This allows to describe the natural quadratic map θ : W → g as follows. Let

us fix an orientation of E, that is, a generator of ∧6E. It will be convenient
to fix a basis e1, . . . , e6 of E and choose e123456 ∈ ∧6E for generator. With
respect to the previous decompositions, θ maps a spinor w = (ω0, ω2, ω4, ω6) to
θ(w) = (θ+(w), θ0(w), θ−(w)) with

θ+(w) = ω6ω2−ω4 ∗ω4, θ0(w) = ω0ω6IdE−ω2 ∗ω4 θ−(w) = ω0ω4−ω2∧ω2.

11



One will readily check that θ gives the quadratic equations of the spinor variety
S12, which is the closure of the image of ∧2E to P∆+ given by

ω 7→ [1, ω, ω2, ω3].

Let us compute explicitely θ on the open orbit ∆+ − H , and on the open
orbit in H .

Recall that H is the tangent hypersurface to the spinor variety S12, so a
general point of H is a general point of the projective tangent space of S12 at a
general point p. Since S12 is homogeneous, we can choose p to be any point, say
p = [1, 0, 0, 0]. It follows from the explicit parametrization of (an open subset
of) S12 given above that the corresponding tangent space is given by the set of
points of the form w1 = [ω0, ω2, 0, 0]. We get a general point if ω0 is non zero
and ω2 has maximal rank, so we can let ω0 = 1 and ω2 = e12 + e34 + e56. We
then get, up to a non zero scalar,

θ(w1) = (0, 0, e∗12 + e∗34 + e∗56) ∈ so(V12).

In particular θV12
(w1) is a rank six endomorphism whose cokernel is V12/E ≃ E∗.

Now let w0 = [1, 0, 0, e123456]. Then θ(w0) = IdE , which, when considered
as an endomorphism of V12 yields

θV12
(w0) = IdE − IdE∗ .

In particular θV12
(w0) is invertible (which implies a posteriori that w0 does not

belong to H). We thus get a sheaf EV12
supported on H , and an exact sequence

0 → V12 ⊗OP∆+
(−2) → V12 ⊗OP∆+

→ EV12
→ 0.

Since the rank of the cokernel of θV12
(w1) is 6 = 12 × 2/4, we can assert that

on the smooth part of H , EV12
is the pushforward of a vector bundle EV12

.
Moreover, as in the previous case Hreg is fibered over F = S12, and if we denote
the projection by π we get that

EV12
= π∗U∗,

if U denotes the tautological rank six vector bundle on the spinor variety S12 ⊂
G(6, V12). Note that as in the Grasmmannian case, the natural map

O(−1) → π∗T̂ → π∗T (−1) = π∗(∧2U∗(−1))

implies that EV12
(−1) is self-dual. We deduce:

Theorem 3.6 The general quartic fourfold admits an unsplit aCM vector bun-

dle of rank six.

Proof. It was checked in [1, Theorem 2.2.1] that the general quartic fourfold
X is a linear section of the Spin12-invariant quartic H , in finitely many ways.
(Note that the number of such representations is not known.) In particular
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the intersection of H with a general P5 does not hit its singular locus, and
is therefore contained in the open orbit. Restricting EV12

, we therefore get a
vector bundle EX on X and an exact sequence

0 → V12 ⊗OP5(−2) → V12 ⊗OP5 → ι∗EX → 0.

This bundle EX is unsplit: if it was a direct sum of line bundles, by self-duality
and since EX is generated by global sections we would have EX ≃ aOX ⊕
aOX(2)⊕ (6− 2a)OX(1), and then h0(EX) = 36+ 10a 6= 12, a contradiction.�

Let us call those aCM vector bundles on X its spinor bundles. We figure
out that these bundles should be indecomposable but we have not been able to
prove it. We get one such bundle for each of the finitely many representations
of X as a linear section of the Spin12-invariant quartic H , and we would guess
that those bundles cannot be isomorphic one to the others. In fact, there is
probably a way to reconstruct the embedding of X in the projectivized half-
spin representation from the spinor bundle, but we do not know how to do
that.
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