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Abstract
Building physics researchers have benefitted from elements of statistical learning and time series analysis

to improve their ability to construct knowledge from data. What is referred to here as inverse problems are
actually a very broad field that encompasses any study where data is gathered and mined for information.

The purpose of the present article is twofold. First, it is a tutorial on the formalism of inverse problems
in building physics and the most common ways to solve them. Then, it provides an overview of tools and
methods that can either be used to assess or the reliability of inverse problem results, prevent erroneous
interpretation of data, and optimise information gained by experiments. It provides an introduction, along
with useful references, to the topics of estimation error assessment, regularisation, identifiability analysis,
residual analysis, model selection and optimal experiment design. These concepts are presented in the
context of building simulation and energy performance assessment: a simple RC model is used as a running
example to illustrate each chapter.
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1 Introduction
1.1 General introduction
According to the definition of [Beck and Woodbury, 1998], inverse techniques are a suite of methods which
promise to provide better experiments and improved understanding of physical processes. Inverse problem
theory can be summed up as the science of training models using measurements. The target of such a training
is either to learn physical properties of a system by indirect measurements, or setting up a predictive model
that can reproduce past observations.

In the last couple of decades, building physics researchers have benefitted from elements of statistical
learning and time series analysis to improve their ability to construct knowledge from data. What is referred
to here as inverse problems are actually a very broad field that encompasses any study where data is gathered
and mined for information.

• Material and component characterisation: many material properties are not directly observable
and must be estimated by indirect measurements. Inverse heat transfer theory [Beck, 1985] was de-
veloped as a way to quantify heat exchange and thermal properties from temperature sensors only,
and has translated well into building physics: for instance, the characterisation of heat and moisture
transfer properties of materials is an inverse problem under investigation [Künzel and Kiessl, 1996,
Huang and Yeh, 2002, Rouchier et al., 2015, Berger et al., 2016, Rouchier et al., 2017] because of how
time consuming traditional hygric characterisation methods are.

• Building energy performance assessment, from the original energy signature models [Fels, 1986,
Rabl and Rialhe, 1992] to co-heating tests [Bauwens and Roels, 2014], is an inverse problem. It can be
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used to formally estimate the energy savings after retrofit measures [Heo and Zavala, 2012, Zhang et al., 2015]
or to point out faults in system or envelope performance [Yoshida et al., 2001, Heo et al., 2012].

• Model predictive control [Clarke et al., 2002, Hazyuk et al., 2012, Lin et al., 2012] requires models
describing the thermal behaviour of the building, as well as the internal and external influences on its
performance. Inverse problems thus include the identification of building energy performance models,
weather forecast models [Oldewurtel et al., 2012, Dong and Lam, 2014], occupancy behaviour models
[Dong and Andrew, 2009, D’Oca and Hong, 2015, Mirakhorli and Dong, 2016], that are reliable and
computationally efficient.

These scientific challenges are gaining visibility due to the increasing availability of data (smart meters,
building management systems...), the increasing popularity of data mining methods, and the available com-
putational power to address them.

Many engineers and researchers however lack the tools for a critical analysis of their results. This caution
is particularly important as the dimensionality of the problem (i.e. the number of unknown parameters)
increases. When data are available and a model is written to get a better understanding of it, it is very
tempting to simply run an optimisation algorithm and assume that the calibrated model has become a
sensible representation of reality. If the parameter estimation problem has a relatively low complexity (i.e.
few parameters and sufficient measurements), it can be solved without difficulty. In these cases, authors
often do not carry a thorough analysis of results, their reliability and ranges of uncertainty. However,
it is highly interesting to attempt extracting the most possible information from given data, or to lower
the experimental cost required by a given estimation target. System identification then becomes a more
demanding task, which cannot be done without proof of reliability of its results. One should not overlook the
mathematical challenges of inverse problems which, when added to measurement uncertainty and modelling
approximations, can easily result in erroneous inferences.

The purpose of the present article is twofold. First, it is a tutorial on the formalism of inverse problems
in building physics and the most common ways to solve them. Then, it provides an overview of tools and
methods that can either be used to assess or the reliability of inverse problem results, prevent erroneous
interpretation of data and optimise information gained by experiments. It is focused on applications of
these methods to building physics and energy simulation, but useful references to other fields are included
where necessary. The paper does not mention all applications of inverse problems in building physics, but
focuses on papers which addressed their challenges.

• Sec. 2 states the formalism of inverse problems as they are most commonly formulated in the theory
of system identification and statistical inference. The different categories of models are then presented,
along with the main paradigms for solving the estimation: least square estimation and maximum
likelihood estimation. This section ends with a word on the main sources of errors in inverse
problems and the need for regularisation.

• Sec. 3 addresses the matter of identifiability. The parameters of a specific model, given measurement
data, can be estimated with finite confidence intervals on two conditions: the model structure must
allow parameters to be distinguishible, and the training dataset must be informative enough.

• Sec. 4 presents how calibrated models can be validated, and under what conditions the parameter
estimates can be considered satisfactory. The presented methods allow diagnosing deficiencies in
the model formulation if its complexity is insufficient or excessive.

• Sec. 5 presents two ways of ensuring that the most information is mined from the data. Model
selection methods help pick the most appropriate model to explain a given dataset, and optimal
experiment design is the search for the experimental setup that will maximise the information gained
by a given model
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1.2 Running example: 2R2C model
A picture is worth a thousand words. In an attempt to make methods more understandable and easier to
apply, a running example illustrates chapter section of the paper. This example is a RC model shown on
Fig. 1, the type of which is familiar to building physicists. Experimental measurements of the ambient
(outdoor) temperature Ta, indoor temperature Ti and internal heat input q are available, and the target of
the inverse problem is to identify the value of thermal resistors and capacitors that describe the building
energy performance. These parameters form the unknown vector θ. The numerical model simulates Ti, along
with an unobserved envelope temperature Te. Other notations shown on Fig. 1(a) will be clarified below.

(a) (b)

Figure 1: (a) 2R2C model and (b) dataset of the running example illustrating the paper
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While each of the following chapters is documented with references pointing readers towards the appro-
priate literature, the paper may also be read from a more practical perspective by focusing on the “Example”
sections (the last section of each chapter).

2 Principle and formulation of inverse problems
This chapter starts by an overview of the two main targets of data analysis in building sciences, and the
categories of models typically used to solve them. Three main categories of models are identified in this
classification: deterministic models, stochastic time series models and machine learning methods. The general
formulation of inverse problems is presented in Sec. 2.2, then the solving methodology for deterministic and
stochastic models are respectively described in Sec. 2.3 and 2.4. Machine learning is beyond the scope of
this paper and is only briefly mentioned in Sec. 2.1.

2.1 Types of problems and models
Two types of inverse problems are mainly addressed here:

• Parameter estimation problems. The objective of the inverse problem is to find an estimate of
physical properties. Parameters hold some physical meaning, which allows for their interpretation.
Typical examples are the characterisation of material samples, or the detection of faults in building
components. The validation of the results of the inverse problem focuses on the physical value of the
parameter estimates and their covariance. Models used for characterisation purposes are typically more
computationally demanding than those used solely for forecast.

4



• System identification problems. The objective is solely to establish a model that will be used for
predictive purposes. Whether parameters hold physical meaning is irrelevant: the model can either be
of grey-box or black-box type. A typical application is the forecasting of building energy performance,
weather and occupant behaviour, in the aim of model predictive control. In this category of problems,
the experiment can be replaced by a reference model, and the target is to find a lower-order, less
computationally expensive model, which reproduces its input-to-output behaviour: these are problems
of model reduction or surrogate modelling [Hazyuk et al., 2012]. Models used for prediction/forecast
are typically either linear time-series analysis models (ARMA, ARX, etc.), or black-box models from
the field of machine learning (neural networks, support vector machines, etc.). The calibrated model
must be validated by predicting the output on a new data set, independent from the one used for the
calibration.

The terms of characterisation and model calibration are often used to describe either type of problem.
Other types of inverse problems may be mentioned, although they have little applications in building physics,
namely problems whose objective is the reconstruction of an input signal u or of the initial conditions x0.

Figure 2: Classes of models and their typical field of application

Once the target of the inverse problem is set, the user should choose a model structure that will fit their
requirements. These structures are presented on Fig. 2 in three categories.

1. Deterministic models, defined by the knowledge of the observed physical phenomena, so that measure-
ments may bring an estimate of some physical parameters. These models are often non-linear and will
be presented as such in the general case.

2. Stochastic time series models, including state-space models, that can be used either for parameter
estimation or system identification. These models are often linear, which brings additional possibilities
for their identifiability analysis and the calculation of their sensitivity and information matrices.

3. Black-box models with no link to physics, calibrated by a training dataset then used for prediction.
These models originate from machine learning and statistical inference methods, and can either have
a pre-defined structure (parametric models) or not (non-parametric models).

The first type of model is typically encountered when modelling coupled phenomena, such as hygrothermal
or thermo-aeraulic models with field-dependent variables, or when the output y is the outcome of a Building
Energy Simulation (BES) software which equations are not explicitely available for derivation. They are
almost exclusively used for the characterisation of physical properties: there is rarely a point in using a
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non-linear white-box model for prediction/forecast, since linear time-series analysis methods and machine
learning tools can perform significantly better.

When calibrating a model purely for predictive purposes, it is not necessary for it to be defined by
physical laws. Statistical models and machine learning provide flexible solutions to the problem of identifying
reproducible patterns in data. The goal is to understand the structure of the data in order to reproduce
it. Statistical modelling relies on a mathematically proven theory behind the model but sometimes require
strong assumptions on the data (typically stationarity in the weak sens). Machine learning attempts to
understand the structure of the data in a less theoretical way.

Machine learning is possibly one of the fastest-growing tools for data analysis, and is increasingly applied
to understanding and predicting building energy performance. The field encompasses regression, classification
and clustering applied to many applications: predicting time series, understanding occupant behaviour,
weather forecast, energy performance assessment, etc. The most common examples are Artificial Neural
Networks (ANN) and Support Vector Machines (SVM), two subsets of artificial intelligence (AI) that are
applicable to either classification or regression. A recent review of some applications of AI for building energy
performance assessment was made by [Chou and Bui, 2014], along with an application of ANN and SVM for
heating and cooling load prediction. Non-parametric time series analysis methods can also analyse data to
capture a description of the process that generated it, without an a priori specified model structure. They
are highly flexible due to not being constrained to a pre-defined model structure: this is especially useful
when no prior information about the model structure is assumed. They include kernel estimation methods,
splines, nearest neighbor, gaussian process models (a.k.a. kriging), etc.

The scope of the present paper does not cover the topic of machine learning, which could span over several
articles by itself. Instead, here are a few references to recent comparative studies of their performance for
further reading:

• Energy performance prediction, or performance comparison between pre- and post-retrofit by Gaus-
sian Process Modeling [Heo and Zavala, 2012], Gaussian Mixture Regression [Zhang et al., 2015], ANN
[Karatasou et al., 2006], etc.

• Weather forecast: each weather data type (outdoor temperature, wind speed, solar radiation) has its
own uncertainty and time scale of fluctuations, and a single model cannot be suited to all. A comparison
of time series analysis and ANN performance for short-term forecast was made by [Florita and Henze, 2009].
[Dong and Lam, 2014] used Adaptive Gaussian Processes for wind speed prediction and Hammerstein-
Wiener models for temperature and solar radiation.

• Occupant presence and behaviour is represented by stochastic models (Hidden Markov Models, Semi-
Markov Models) that are trained with data from occupancy sensors, occupant interaction with the ap-
pliances, etc. [Wang et al., 2005, Dong and Lam, 2011, Dong and Lam, 2014, Virote and Neves-Silva, 2012]

2.2 Formulation
2.2.1 General formulation

The general principle of solving a system identification problem is to describe an observed phenomenon by
a model allowing its simulation. Measurements z = (u,y) are carried in an experimental setup. A model is
defined as a mapping between some of the measurements set as input u (boundary conditions, weather data)
and some as output y. The model equations are parameterised by a finite set of variables θ. Parameter
estimation is the process of assessing θ from a discrete set of N data points y1:N = {yk, k ∈ 1 . . . N}.

The output of the ideal, undisturbed physical system is noted y∗, which is the hypothetical outcome of
an ideal, non-intrusive sensor. Under the hypothesis of additive measurement noise ε(t), the observed output
sequence is:

yk = y∗k + εk (2)
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The most common situation is that of additive white gaussian noise, i.e. εk ∼ N (0, σ) is a sequence of
independent and identically distributed (i.i.d.) variables, where the k index denotes data points and the
measurement uncertainty σ may or may not be known.

The aim of the inverse problem is to approximate the system with a mathematical formulation of the
outputs ŷ(t, θ) that will allow the estimation of θ. Ideally, the model is unbiased: it accurately describes the
behaviour of the system, so that there exists a true value θ∗ of the parameter vector for which the output ŷ
reproduces the undisturbed value of observed variables.

y∗(t) = ŷ(t, θ∗) (3)

Eq. 3 is written in continuous time: the discrete system output from Eq. 2 is the series of values taken by
the continous process y∗(t) at the time coordinates {tk, k ∈ 1 . . . N}. In the following, the continous and
discrete notations of each variable may be used alternatively.

Figure 3: Sketch of the general model formulation in the hypothesis of an unbiased model

In practice, θ∗ will never be reached exactly, but rather approached by an estimator θ̂, which may
hold different values according to the criteria it follows. The unbiased model hypothesis overlooks inevitable
modelling errors that occur when translating physics into equations, and solving these equations numerically.
When solving an inverse problem in such a deterministic setting, it is possible to prevent these errors from
interfering with inference results by applying regularisation techniques. These techniques will be introduced
in Sec. 2.3.2.

Alternatively, the state-space representation of dynamic models is very common and allows explicitely
formulating model inadequacy. It is written here in a continuous-discrete form:

ẋ(t, θ) = f(x(t, θ),u(t), θ) + w(t) (4)
yk = g(xk,uk, θ) + εk (5)

Eq. 4 is the state-space representation of a dynamic model, possibly non-linear, written in continuous
time. It describes the temporal evolution of all states of the system ẋ(t, θ) by a user-defined function
f(x(t, θ),u(t), θ) of the inputs u(t) and the parameters θ. This formulation is general and does not presume
a given structure: the model can be a custom set of differential equations chosen by the user to describe a
small number of states. Its last term w(t) is often not included, which leads to a deterministic system of
Ordinary Differential Equations (ODEs). It is the system noise, which was introduced in building thermal
models by [Madsen and Holst, 1995] as a way to account for modelling approximations, unrecognized inputs
or noise-corrupted input measurements. Adding this term turns the system into a set of Stochastic Differential
Equations (SDEs): in this setting, a filter (generally a Kalman filter) is applied for the estimation of a discrete
vector of states xk from observations yk, and the maximum likelihood or maximum a posteriori estimation
methods are used for parameter estimation.

Eq. 5 is the measurement equation: it relates the states x to the observed output y and includes a term
of measurement noise εk, similar to Eq. 2. It is written in discrete time, since observations y1:N are a finite
vector of data points. This means that Eq. 4 needs discretization before solving: an example will be shown
below.

Note on notations: the nomenclature is summarised on Tab. 1. In the rest of the article, each variable
may be called in either a continous or a discrete notation, and in either a vector or a scalar notation.
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Table 1: Nomenclature of the inverse problem
Output Parameters

y Observations θ Unknown parameters
y∗ Real process θ∗ True value of θ
ŷ = g(xk,uk, θ) Model output θ̂ Estimator

Errors Estimator indices
εk = yk − y∗k Measurement noise LS Least-square
r(t, θ) = y(t)− ŷ(t, θ) Residual ML Maximum likelihood
σθ = θ̂ − θ∗ Estimation error MAP Maximum a posteriori

For instance, a discrete-vector notation yk indicates that measurements at the time coordinate k may be
vector-valued (if several sensors are used).

2.2.2 Linear models

Some disambiguation is necessary when designating a model as linear : this term may denote either a linear
parameter-to-output relation, or a linear input-to-output relation. In order to avoid confusion, the notions
of linearity to the parameters and linearity to the inputs are separated here. The first one is used here to
designate a direct linear relation between unknown parameters θ and output y:

y = S θ (6)

where the sensitivity matrix S is of size N × p, with N the number of data points (i.e. the size of the obser-
vation sequence y) and p the number of parameters of the model. This type of model may be encountered
in heat transfer simulations at the material or component scale. A typical example is the 1D heat conduc-
tion problem [Beck, 1985]: the reconstruction of the boundary heat flow imposed on a wall from transient
temperature measurements can be formulated in the form of Eq. 6 [Maillet et al., 2011a].

Alternatively, following the conventions of control theory and system identification [Ljung, 1998], the term
of linear system is used here to designate a linear input-to-output relation. The continuous-time state-space
representation of such a system can be written as:

ẋ(t) = A(θ)x(t) + B(θ)u(t) + w(t) (7)
yk = C(θ)xk + D(θ)uk + εk (8)

The system matrices A, B, C, and D are functions of the parameters and are generally considered time-
invariant. Another convenient way to represent a linear (deterministic) system is the transfer function form
that can be easily derived from the state-space representation:

H(s) = Y (s)
U(s) = C (sI−A)−1 B + D (9)

The class of linear systems is a very recurrent formulation in building physics, because it includes all
RC models and the family of autoregressive models used in time series analysis: ARX, ARMAX, Box-
Jenkins models, etc. Since a lot of the content of the inverse problems theory originates from control
theory [Walter and Pronzato, 1997], this class of system offers many possibilities for analysing the feasibility
of the inverse problem, validating and improving its results. The class of autoregressive models for the
statistical analysis of time series are black-box models by definition, but their parameters can be given
physical interpretation by comparing them with equivalent physical models [Jiménez et al., 2008].

2.2.3 Modelling errors

The hypothesis of an unbiased model ŷ (Eq. 3) states that there exists a parameter value θ∗ for which the
model output is separated from the observations y only by a zero mean, Gaussian distributed measurement
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noise. It means that the model perfectly reproduces the physical reality, and the only perceptible error
is due to the imperfection of sensors. This is exceedingly idealistic because all models are wrong to some
extent. Building energy simulation is a multi-physics, multi-scale topic that cannot accurately portray
all phenomena of heat and mass transfer: forward problems are always simplified to some extent. The
identification procedure is a series of experimental and numerical steps along which lay several sources of
errors [Maillet et al., 2011b]: the forward problem is an approximation of the modelled physical process, with
a given spatial discretisation; a hypothesis on the model may be excessively simplifying or the parametrization
of a function may be wrong; the intrusiveness of a sensor may be overlooked; measurements are affected by
noise and depend on sensor calibration, etc.

Modelling errors are caused by all hypotheses and shortcuts taken while translating physical phenomena
into equations (a model), and translating these equations in a form that can be solved numerically (dis-
cretization, linearization, etc.) After finding a parameter estimate θ̂ with one of the inverse techniques listed
below, it is more accurate to disaggregate the deviation between its prediction ŷ(θ̂) and the experiment y in
two terms: a model error and a measurement error [Kaipio and Somersalo, 2005].

y(t) = ŷ(θ̂, t) +
[
y∗(t)− ŷ(θ̂, t)

]
+ ε(t) (10)

The term in brackets is the model error, i.e. the deviation between the ideal system y∗ and its approxima-
tion ŷ. A technique to treat this error was presented by [Arridge et al., 2006, Kaipio and Somersalo, 2007,
Nissinen et al., 2008] in a Bayesian paradigm: it is given a prior probability density, as would be the mea-
surement error ε(t). The approximation error can also be estimated after the parameter estimate θ̂ has been
found, by filtering the measurement noise out of the residuals with a Fourier transform, assuming it has a
different frequency than the approximation error.

r(t, θ̂) = y(t)− ŷ(θ̂, t) = ε(t)︸︷︷︸
white noise

+
[
y∗(t)− ŷ(θ̂, t)

]
︸ ︷︷ ︸
approximation error

(11)

Modelling approximations are problematic because inverse problems are typically ill-posed [Beck and Woodbury, 1998]:
their solution is highly sensitive to noise in the measured data and approximation errors. This can be quan-
tified by the condition number of the sensivitity matrix of the forward problem: it will be shown below how
much a nearly singular information matrix may affect the uncertainty of the estimates. A global optimum
of the inverse problem may then be found with unrealistic physical values for the material properties as a
consequence of seemingly moderate errors made when setting up the problem.

The two following sections respectively describe the procedure for parameter estimation in a deterministic
and in a stochastic paradigm, and address how modelling approximations have been dealt with in building
physics applications in each setting: either by using regularisation, or by including process noise in a state-
space model.

2.3 Parameter estimation in a deterministic setting
2.3.1 Least square estimation

The most intuitive path to solving a parameter estimation problem is to find the set of parameters θ that
minimises the squared deviation between observations y and model prediction ŷ. The least square estimator
(LSE) θ̂LS is the global optimum of the least squares criterion:

r2(θ) =
N∑
k=1

(yk − ŷk(θ))2 = [y− ŷ(θ)]T [y− ŷ(θ)] (12)

In the model is linear to the parameters (see Eq. 6), a direct evaluation of the least square estimate θ̂LS
is possible without iteration [Maillet et al., 2010]:

θ̂LS =
(
STS

)−1 ST y (13)
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The solution only exists if STS is non singular, that is if S is of full rank [Maillet et al., 2010].
If the model cannot be written in the form of Eq. 6, an iterative scheme is needed to find the LSE. These it-

erative optimization schemes fall within two categories: gradient-based and gradient-free methods. Gradient-
based methods rely on the value of the derivatives of the objective function (here the sum of squared residuals
r2(θ)), calculated at the current iteration, to propose the next value of θ. The gradient of the cost function can
for instance be approached by the adjoint state method [Brouns et al., 2013, Brouns et al., 2017], parameter-
perturbation methods or sensitivity-equation methods [Palomo Del Barrio and Guyon, 2003]. Most of the
built-in curve fitting methods available in scientific programming softwares include an implementation of
the Gauss-Newton or Levenberg-Marquardt algorithm and can perform a numerical approximation of the
Jacobian. Alternatively, gradient-free methods only use the current value of the objective function r2(θ)
to update the proposal of θ. Examples of their implementation in building sciences include: the calibra-
tion of a mono-zone building model including convection and radiation effects with a genetic algorithm
[Lauret et al., 2005]; the calibration of a series of increasingly large thermal and hygric models with a ge-
netic algorithm [Kramer et al., 2013]; the characterisation of hygrothermal properties of a porous material
with the covariance matrix adaptation algorithm [Rouchier et al., 2015].

Solving an inverse problem by returning only point estimates θ̂ is not very informative. Due to the ill-
posedness of inverse problems, small measurements errors and seemingly reasonable model hypotheses may
add up to very large errors on the parameter estimates. Interactions between parameters in the forward
problem also translate as correlations in the multivariate probability function of the estimate (more on the
topic of identifiability follows in Sec. 3). When presenting the results of an inverse problem, it is important
to illustrate the estimate uncertainty with its covariance matrix. The covariance matrix of the LSE can be
derived as the inverse of the information matrix I = STS/σ2 [Cai and Braun, 2015, Maillet et al., 2011a]:

cov
(
θ̂LS

)
= σ2 (STS

)−1 (14)

where σ is the measurement uncertainty and Sk is the sensitivity matrix calculated locally:

Sij(θ) =
[
∂ŷi(θ)
∂θj

]
(15)

The standard deviation on the individual parameter estimates σθ̂ and the corresponding correlation matrix
can then be obtained by decomposing the covariance matrix.

The least-square estimation is the typical framework for calibrating deterministic systems, i.e. systems
described by equations which do not include a stochastic term. Some criteria are similar to the sum of
squared residuals defined in Eq. 12, and are sometimes used for an easier interpretation of model fitness:
the root mean square error [Joe and Karava, 2017], mean absolute percentage error [Dong and Lam, 2014],
etc.

2.3.2 Regularisation

Regularisation aims at reducing the effect of data inaccuracy on the identification. The first possible ap-
proach for regularisation is to reduce the degrees of freedom of the problem by restricting the search to
a set of admissible solutions. It is the principle of the truncated singular value decomposition technique
[Hansen, 1990] and the future information method [Beck, 1985]. The second approach, known as Tikhonov
regularisation [Tikhonov and Arsenin, 1977], is another way to introduce a constraint by penalizing the fit-
ness value of unrealistic solutions. The objective function r2(θ) (Eq. 12) is modified after this principle.
A quadratic term is introduced, adding a convex component to the search space and orienting the search
towards a prior estimate θp of the expected solution vector.

θ̂LS = argminθ

{
N∑
i=1

(yi − ŷi(θ))2 + α‖θ − θp‖2
}

(16)
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The regularisation parameter α ≥ 0 balances the evaluation of individuals between the optimization of the
least square criterion, and the agreement with a range of physically admissible solutions. A low value of α
implies an insufficient regularisation of the problem, while a high value imposes too much of a constraint
and forces the solution to match the prior. Guidelines exist for the correct choice of α, such as the L-curve
method [Hansen, 1992]. This method states that several runs of the search algorithm with different values of
α result in an L-shaped graph when displaying the solutions ‖θ− θp‖ versus their residuals ‖y− ŷ‖, and that
the optimal choice for α is near the corner of this L-curve. This method is used in [Rouchier et al., 2015]
to tune the regularisation parameter and facilitate the identification of the hygrothermal properties of a
material. It was shown by [Wang and Zabaras, 2004] that the LSE with Tikhonov regularisation and the
MAP estimator have similar mathematical forms.

2.4 Parameter estimation in a stochastic setting
2.4.1 Kalman filter

In deterministic circumstances, modelling errors are not explicitally expressed : all states x1:N of the system
are single-point values and entirely specified by the model structure and parameter values θ. In a stochastic
setting however, the model is considered potentially wrong. Each vector of states is defined by a probability
distribution function p (xk|y1:N , θ), given a sequence of measurements y1:N and parameter values θ.

If the model is linear, the estimation of this PDF is accomplished by applying a Kalman filter at each time
step. In the following, definitions adapted from [Shumway and Stoffer, 2016] are used: xk|s is the expected
state at time t given observations up to time s. Pk|s is the variance of the state xk, i.e. the mean-squared
error.

xk|s = E (xk|y1:s, θ) (17)
Pk|s = Var (xk|y1:s) = E

[
(xk − xk|s)(xk − xk|s)T |y1:s, θ

]
(18)

The Kalman filter algorithm is described here, applied to the discrete linear state-space model shown
on Eq. 34 and 35. We suppose that the observation noise εk follows a zero-mean normal law of covariance
matrix R.

• Set the initial states x0|0 and their covariance P0|0

• for k = 1...N :

1. Prediction step: given the previous state xk−1|k−1 and its covariance Pk−1|k−1, the model
estimates the one-step ahead prediction.

xk|k−1 = F xk−1|k−1 + G uk (19)
Pk|k−1 = F xk−1|k−1 FT + Q (20)

2. Innovations (prediction error) εk and their covariances Σk are then calculated, along with the
Kalman gain Kk:

εk = yk −Hθ xk|k−1 (21)
Σk = C Pk|k−1 CT + R (22)
Kk = Pk|k−1 CT Σ−1

k (23)

3. Updating step: the new states at time t are updated from the prediction xt|t−1 and the inno-
vation.

xk|k = xk|k−1 + Kk εk (24)
Pk|k = (I−Kk C) Pk|k−1 (25)
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• The total (negative) log-likelihood can be calculated up to a normalizing constant:

− lnLy(θ) = 1
2

N∑
k=1

ln |Σk(θ)|+ 1
2

N∑
k=1

εk(θ)T Σk(θ)−1 εk(θ) (26)

Roughly speaking, the Kalman filter applies Bayes’ rule at each time step: the updated state p(xk|y1:k) =
N (xk|k,Pk|k) is a posterior distribution, obtained from a compromise between a prior output of the model
p(xk|y1:k−1) = N (xk|k−1,Pk|k−1) and the evidence brought by measurements yk. Their relative weight is
expressed by the Kalman gain Kk that measures the relative confidence we put in both the model and the
measurements.

This standard Kalman filter algorithm works for linear systems only. Non-linear systems require either
the Extended Kalman Filter (used by [Kristensen et al., 2004]) or the Unscented Kalman Filter.

2.4.2 Maximum likelihood and maximum a posteriori estimation

Maximum likelihood estimation (MLE) is a standard approach to parameter estimation in statistics. It is a
prerequisite for many statistical inference methods [Myung, 2003] used for model selection criteria, parameter
significance tests, Bayesian methods, etc. and provides techniques for pointing out model deficiencies. The
basic idea is to construct a function of the data and the unknown parameters called the likelihood function
[Åström, 1980]. The maximum likelihood estimate θ̂ML is the parameter value that maximizes this criterion.

The likelihood function Ly of the parameter θ given the observed data y is equal to the probability of
observing data y given the parameter θ:

Ly(θ) = p(y1:N |θ) (27)

This function measures how likely the observed sample y1:N is, as a function of a parameter value θ. The
point of MLE is to find the estimator θ̂ML that maximizes it (or, more frequently, that minimizes the negative
log-likelihood − lnLy(θ)), i.e. the value which is the most likely to have generated the data.

Supposing that the measurement noise at each time step tk is independent, identically distributed and
Gaussian of covariance matrix R, the likelihood is deduced from the Kalman filter algorithm in Eq. 26. It
can then be used as the objective function of a minimization routine.

The central limit theorem states that the unbiased maximum likelihood estimator is asymptotically
gaussian with mean θ̂ML and a covariance matrix cov(θ̂). The precision of the estimator has a lower bound
given by the Cramér-Rao theorem by:

cov
(
θ̂ML

)
= E

[(
θ̂ML − θ∗

)(
θ̂ML − θ∗

)T]
≥ F(θ̂ML)−1 (28)

where F(θ) is the observed Fisher information matrix:

F(θ) = E

[(
∂ lnLy(θ)

∂θ

)T (
∂ lnLy(θ)

∂θ

)]
(29)

or alternatively it is equal to the negative of the Hessian matrix of the log-likelihood function:

Fi,j(θ) = −E
[

∂2

∂θi∂θj
lnLy(θ)

]
(30)

Note that this definition of the covariance matrix of the error of the estimate supposes that the estimator is
unbiased [Emery and Nenarokomov, 1998] as defined in Eq. 3. The marginal uncertainty on the individual
estimates σθ̂ and the corresponding correlation matrix can then be obtained by decomposing the covariance
matrix.

The likelihood approach to parameter estimation is a statistical paradigm, which differs from the typical
view of least square estimation. If the system is modelled by stochastic differential equations, the evaluation
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of the likelihood function can be solved as a general nonlinear filtering problem: [Madsen and Holst, 1995]
proposed a method based on the extended Kalman filter, for the identification of thermal models of buildings.
This work was then followed by many noteworthy contributions on solving inverse problems described by
SDEs in the MLE framework [Andersen et al., 2000, Kristensen et al., 2004, Bacher and Madsen, 2011].

Alternatively, the Maximum a Posteriori (MAP) approach is very similar to MLE and is applicable when
some prior information on the parameters p(θ) is available. The MAP estimator θ̂MAP is the argument which
maximises the posterior p(θ|y) distribution defined by Bayes’ theorem:

p(θ|y) ∝ Ly(θ)p(θ) (31)

where p(θ) is the prior distribution of the parameters, i.e. the formulation of initial expert knowledge
that may be known before collecting observations. If there is little prior information about parameter
values, i.e. the prior p(θ) may be a uniform distribution on a large interval, the MAP and MLE esti-
mates are equivalent. The incorporation of expert knowledge in parameter estimation puts the problem
in the framework of Bayesian inference. Bayes’ theorem updates the probability for a hypothesis p(θ)
as more information y becomes available. Bayesian parameter estimation is typically solved by Markov
Chain Monte-Carlo methods (MCMC) that generate a sequence {θn, n = 0, 1, 2...} approximating the pos-
terior PDF p(θ|y). It is a non-parametric description of the posterior from which it is simple to extract
an approximation of the MAP estimate and its covariance matrix cov(θ̂MAP). Here are some examples of
building physics inverse problems solved in the Bayesian framework: the inverse heat conduction problem
[Wang and Zabaras, 2004, Kaipio and Fox, 2011]; the estimation of the thermal properties of a wall using
temperature sensors [Berger et al., 2016] and heat flux measurements [Biddulph et al., 2014]; the analysis
of building energy savings after retrofit and payback times [Heo et al., 2012]; the characterisation of hygric
properties of porous materials from relative humidity and weight measurements [Rouchier et al., 2017]; the
calibration of building thermal models [Schetelat and Bouchié, 2014, Zayane, 2011].

2.5 Example: 2R2C model
Let us recall the application example shown in Sec. 1.2: a 2R2C model has been defined (Fig. 1(a)) in order
to estimate the characteristics of a building from a dataset holding three measured time series: indoor and
outdoor temperature, and heating power (Fig. 1(b)). Its physical equation (Eq. 1) can be formulated as a
continuous-time state-space system similar to Eq. 7 and 8:

[
Ṫe(t)
Ṫi(t)

]
︸ ︷︷ ︸

ẋ(t)

=

− 1
R1C1

− 1
R2C1

1
R2C11

R2C2
− 1
R2C2


︸ ︷︷ ︸

A(θ)

[
Te(t)
Ti(t)

]
︸ ︷︷ ︸

x(t)

+

 1
R1C1

0

0 1
C2


︸ ︷︷ ︸

B(θ)

[
Ta(t)
q(t)

]
︸ ︷︷ ︸

u(t)

+w(t) (32)

yk =
[
0 1

]︸ ︷︷ ︸
C(θ)

[
Te
Ti

]
t=tk

+ εk (33)

The vector of states x(t) = [Te(t), Ti(t)]T includes the observed indoor temperature Ti and unobserved
envelope temperature Te. The C matrix points to which of the states is observed.

Eq. 32 needs to be translated from continuous to discrete time, since observations are only available at
a finite set of time coordinates {tk, k ∈ 1 . . . N} separated by a time step ∆t. The discretisation process of
linear state space models is described by [Madsen and Holst, 1995] and briefly summarized here. The goal
is to turn the continuous-discrete set of equations 32 and 33 into the following one:

xk = F xk−1 + G uk + wk (34)
yk = C xk + εk (35)
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where the F and G matrices of the discrete equation result from the A and B matrices of the continuous
equation, and the process noise in discrete time wk ∼ N (0,Qd) has a covariance matrix Qd that can be
estimated from the covariance matrix of the process noise in continuous time w(t) ∼ N (0,Qc):

F = exp (A ∆t) (36)
G = A−1 (F− I) B (37)

Qd =
∫ ∆t

0
exp (A ∆t) Qc exp

(
AT ∆t

)
dt (38)

This model takes the outdoor temperature Ta and indoor heating q as inputs, and returns a predicted time
series of indoor temperature Ti. The inverse problem is the estimation of 4 parameters θ = {R1, R2, C1, C2}
by fitting this prediction on the observed profile of Ti.

Table 2: Parameter estimation results in the 2R2C example
Parameter Initial guess θ̂LS σθ̂ t-statistic p-value
R1 (W/K) 1× 10−2 2.13× 10−2 5.45× 10−5 392 < 0.01
R2 (W/K) 1× 10−2 2.37× 10−3 2.27× 10−5 104 < 0.01
C1 (J/K) 1× 107 1.56× 107 8.93× 104 175 < 0.01
C2 (J/K) 1× 107 1.93× 106 5.22× 104 37 < 0.01
Te(0) (C) 20 30.27 2.36× 10−2 1281 < 0.01

The Python code for running a simple Least-Square estimation of θ by the Levenberg-Marquardt algo-
rithm is given in Appendix A. Running this code requires a data file available within the folder of execution.
In this example, the initial condition on the unobserved envelope temperature Te is considered unknown,
and estimated along with the other parameters. The results are shown on Tab. 2

3 Identifiability analysis
The present section is concerned with the a priori feasibility of parameter estimation. An appropriate model
structure and a sufficiently rich data set are two necessary (though not sufficient) conditions for a satisfactory
parameter estimation. It is possible to check for these conditions before running the often costly estimation
algorithm, in order to adapt either the model or the data.

The usual definition of identifiability originates from [Bellman and Åström, 1970]. This notion was orig-
inally predominantly developed to help understanding complex biological systems, each of which is modelled
by a specific set of differential equations with unobservable parameters. The question of identifiability is
whether the input-output relation of the system may be explained by a unique parameter combination θ.

y(θ) = y(θ̃)⇒ θ = θ̃ (39)

Two conditions are required for the parameter estimates to be identifiable: the model structure must allow
for parameters to be theoretically distinguishible from one another, with no redundancy; the data must be
informative so that parameter uncertainty is not prohibitively high after identification. These conditions are
respectively denoted structural and practical identifiability.

3.1 Structural identifiability
Structural identifiability relates the possibility of finding parameter estimates to the structure of the model,
independently from measurements.
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A priori identifiability of linear systems

Let us illustrate this question in the particular case of linear, time invariant systems. This includes RC
models for buildings where not all temperature nodes are observed.

ẋ(t) = A(θ)x(t) + B(θ)u(t) (40)
yk = C(θ)xk (41)

It was shown by [Grewal and Glover, 1976] that two sets of parameter values are indistinguishable if and
only if they both yield the same impulse responses and transfer functions. This leaves two possibilities for the
assessment of the identifiability of the system on Eq. 40: either taking a Laplace transform of the system and
check whether the same input-output relation implies an unique parameter set [Walter and Pronzato, 1997],
or expressing its impulse response with its Markov parameters. The first method will be illustrated on the
2R2C example in Sec. 3.3 below. The latter method was done by [Agbi et al., 2012] for the identification
of a multi-zone thermal model, as a preliminary step to study the impact of experimental data quality. The
system on Eq. 40 is identifiable if and only if the equality of Markov parameters implies the equality of
parameters. As shown by [Dötsch and Van Den Hof, 1996], this is equivalent to a rank test of the Jacobian
matrix, locally defined around θ = θ0 by:

∂Sm(θ)
∂θ

∣∣∣∣
θ=θ0

=
[
∂h(i)(θ)
∂θj

]
θ=θ0

(42)

where the impulse response of the system h and its derivatives are expressed by the first m Markov parameters
of the model:

h(k)(θ) = C(θ)Ak−1(θ)B(θ) (43)

This is equivalent to checking whether the following structural information matrix M is of full rank:

M =
(
∂Sm(θ)
∂θ

)T (
∂Sm(θ)
∂θ

)∣∣∣∣∣
θ=θ0

(44)

A priori identifiability of non-linear systems

The issue of structural identifiability however applies to all classes of models, and not only RC networks.
The identifiability of non-linear models is analysed from the same theoretical basis [Bellman and Åström, 1970,
Grewal and Glover, 1976]: proving that the input-output relation of the model can only be explained by a
single set of parameters. Recent overview articles [Raue et al., 2014, Grandjean et al., 2017] provide a list of
a priori structural identifiability analysis methods. Particularly, [Grandjean et al., 2017] give a particularly
clear explanation of the following alternatives, and apply them linear and non-linear models close to those
used in building simulation.

• The Taylor series expansion approach was theorised by [Pohjanpalo, 1978]. It relies on the uniqueness
of the coefficients of a Taylor series expansion of the output with respect to time. This philosophy is
therefore similar to the impulse response method, except that the model is dealt with in continuous
time. There exists and order of differentiation for this series expansion, which coefficients form a non-
linear algebraic system of equations in the parameters and from which the structural identifiability
may be pronounced. Its solvability is checked by the rank of the Jacobian matrix. As underlined by
[Sedoglavic, 2001], the order of differenciation in this method is not bount, which can lead to highly
complex calculations as the models grow large. The author circumvents the exponential complexity by
the use of differential algebra for the series expansion. For this purpose, [Sedoglavic, 2001] developed
an algorithm available on Maple and later [Karlsson et al., 2012] on Mathematica.
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• Based on the theory from [Ritt, 1950] for differential algebra, a global identifiability analysis can be
performed for dynamic models described by polynomial or rational equations [Raue et al., 2014]. The
characteristic set of the differential ideal from the model structure can be used to define a normalized
exhaustive summary of the model, which is in essence an implicit description of its input-output
behaviour. Showing the injectivity of the exhaustive summary proves the identifiability of the model.
Later, [Pia Saccomani et al., 2003] developed an algorithm made available by [Bellu et al., 2007] as
the DAISY algorithm. Its easiness of use makes it an interesting tool although it quickly becomes
prohibitive for large systems.

To the author’s knowledge, there has however been no application of these methods to the field of build-
ing energy simulation. A comparative study has however been applied to civil engineering problems by
[Chatzis et al., 2015].

3.2 Practical identifiability
Structural identifiability analysis methods mentioned above do not account for the richness of measurements
(or lack thereof), and therefore do not guarantee that parameters can be properly estimated in practice. It is
possible that the current experimental settings do not offer enough richness of information for the identifica-
tion of some parameters, despite these parameters being theoretically distinguishable in the model structure.
Furthermore, the assessment of structural identifiability does not account for measurement uncertainty either.
This uncertainty may have serious consequences on parameter uncertainty, especially concerning parameters
which have little influence on the system output.

Practical identifiability relates the parameter estimation possibilities to the experimental design (type
and amount of measurements), the richness of available data and its accuracy, in addition to accounting for
the type of model used. A parameter within a model is identifiable in practice if the data brings enough
information to estimate it with finite confidence intervals.

It is possible to filter out parameters that are unlikely to be learned from the data by running a prelim-
inary sensitivity analysis. Parameter estimation algorithms are often computationally expensive and their
cost quickly rises with the number of parameters of the model. This is a motivation for excluding parame-
ters with little influence on the output, especially since their estimates are bound to have wide confidence
intervals. Sensitivity analysis is the main mathematical tool for the purpose of identifying the physical phe-
nomena that can be really tested on the available experimental data. It measures the effects of parameter
variations on the behaviour of a system and allows two things: ranking parameters by their significance so
that non-influencial parameters may be filtered out, and identifying correlations between parameters which
may prevent their estimation. Many local and global sensitivity analysis methods are applicable, providing
first-order and total-order sensitivity indices from which correlations can be assessed: differential sensitivity
analysis [Lomas and Eppel, 1992] calculates the sensitivity of the model output to each parameter locally
as defined by Eq. 15. It was used by [Palomo Del Barrio and Guyon, 2003] to calculate indices for indi-
vidual parameter influence and correlations, and by [Berger et al., 2016] as a preliminary step before model
calibration. Sampling-based methods (variance-based and one-at-a-time methods) allow a global sensitiv-
ity analysis but are seldom used in preparation of an inverse problem, due to their computational cost
[Lomas and Eppel, 1992, Rabouille, 2014].

Principal component analysis (PCA) is a way to move the problem into a less correlated parameter
space. It was applied by [Palomo Del Barrio and Guyon, 2003] before the calibration of a thermal model
[Palomo del Barrio and Guyon, 2004]. Similarly, [Cai and Braun, 2015] use a significance vector defined as
the square root of diagonal elements of the information matrix STS, then apply a method based on principal
component analysis (PCA) to remove the most correlated parameters from it. The criterion for measuring
parameter correlations is the condition number of the information matrix.

Practical identifiability is a local property: the main identifiability check must therefore be run after
identification, once parameter estimates have been found. This is part of the steps one should follow to
validate the estimates, by observing their confidence regions and quantifying the information gained by the
model from the data.
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3.3 Example: 2R2C model
Structural identifiability analysis is illustrated here with the 2R2C model example (Fig. 1). It is a linear
model for which the transfer function method is suitable [Walter and Pronzato, 1997]. The system can be
written in Laplace form as:

sX(s) = A X(s) + B U(s) (45)
Y(s) = C U(s) (46)

The transfer function of this system is then a [1× 2] matrix:

H(s, θ) = Y(s)
U(s) = C (sI2 −A)−1 B (47)

= 1

s2 + C1R1 + C2R1 + C2R2

C1C2R1R2
s+ 1

C1C2R1R2

[
1

C1C2R1R2

1
C2
s+ R1 +R2

C1C2R1R2

]
(48)

Note that this derivation can be done manually due to the simplicity of the 2R2C model. In case of a more
complicated linear model, a symbolic computation software is preferable.

The system is structurally identifiable iff the unicity of transfer function implies the unicity of parameters:

H(s, θ) = H(s, θ̃)⇒ θ = θ̃ (49)

This is solved by checking for unicity of each term of the transfer function for two parameter sets θ and θ̃:

C1R1 + C2R1 + C2R2

C1C2R1R2
= C̃1R̃1 + C̃2R̃1 + C̃2R̃2

C̃1C̃2R̃1R̃2
(50)

1
C1C2R1R2

= 1
C̃1C̃2R̃1R̃2

(51)

1
C2

= 1
C̃2

(52)

R1 +R2

C1C2R1R2
= R̃1 + R̃2

C̃1C̃2R̃1R̃2
(53)

One can quickly check that the unicity of two transfer functions H(s, θ) and H(s, θ̃) indeed implies the
equality of each individual parameter: the condition of structural identifiability is satisfied.

Practical identifiability is another necessary condition for the results of the inverse problem to be
relevant. Running a sensitivity analysis on the model parameters is a way to estimate their relevance in the
problem, although it is not a sufficient condition for identifiability.

Table 3: FAST sensitivity analysis of the 2R2C parameters to the least-square criterion
Parameter First order index Total order index
R1 (W/K) 0.467 0.753
R2 (W/K) 0.012 0.049
C1 (J/K) 0.001 0.030
C2 (J/K) 0.001 0.005
Te(0) (C) 0.207 0.467

An example of a simple local FAST sensitivity analysis on the 2R2C model is shown here. The influence
of each parameter on the least-square residual criterion is shown on Tab. 3. The code for running this
analysis is available in Appendix A.2. Results suggest that thermal capacitances have little influence on the
solution: their estimation should be validated with caution after solving the inverse problem.
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4 Validation and diagnosis
Let us suppose that the user has gathered measurement data z = (u,y), chosen a numerical model and
its parameterisation θ to depict the observed phenomena, checked for theoretical identifiability, and run a
parameter estimation algorithm in either the least-squares or maximum likelihood framework, to obtain an
estimate θ̂ and its covariance matrix cov(θ̂). Let us now address how the results of an inverse problem solved
with one model type and one data set can be validated.

Figure 4: Validation steps

Once the parameter estimation is complete, several steps should be followed to make sure the results are
usable. These steps are listed by [Madsen, 2016] for both model selection and validation, and fall within
three categories.

• Tests on the parameter estimates. This is to make sure that the chosen model structure is
appropriate and does not include redundant parameters. It is especially important in characterisation
studies, where the parameter values are the sole target of the identification. Practical identifiability is
a measure of the information truly gained by the model from the experiment, and helps identify how
much each parameter has been updated by observations.

• Tests on the model output and residuals. This is to make sure that the model complexity is
sufficient to replicate the observations, and can be trusted to simulate the reality with different initial
and boundary conditions. It is especially important if the target of the system identification study is
to establish a predictive model.

• Out-of-sample validation of the predicted output using a different dataset than the one used for
training.

In addition to checking model validity, these steps allow establishing a diagnosis of which improvements can
be brought to the model.

4.1 Parameter confidence regions
In this part, the analysis concerns mostly the covariance matrix of the estimate cov(θ̂), which can be cal-
culated by Eq. 14 in the least-squares estimation, or Eq. 28 in the maximum-likelihood estimation. The
covariance matrix is related to the correlation matrix Rθ̂ by:

cov
(
θ̂
)

= σθ̂ Rθ̂ σθ̂ (54)

18



where σθ̂ is a diagonal square matrix containing the standard deviation σθ̂i of each individual parameter θ̂i.
The matrices Rθ̂ and σθ̂ are the basis for testing for superfluous parameters in the model.

A preliminary sensitivity analysis performed before parameter estimation does not guarantee that the
confidence intervals and regions of estimates are finite. Such an analysis is performed either globally (for
Monte-Carlo and sampling-based methods) or locally near an initial guess value of the parameters. In either
case, its outcome cannot precisely depict the uncertainty ranges of parameters near the estimate θ̂ obtained
by the identification.

The first criterion for validating parameter estimates is their individual significance. A low influence of
a parameter on the model output results in low values of the sensitivity matrix S (Eq. 15) or information
matrix F (Eq. 29), which translates into high values in the diagonal of the covariance matrix (Eq. 54). It
is important to note that the calculation of the covariance matrix depends on the data: it only measures
whether parameters are significant in the conditions of the experiment. The marginal significance of a
parameter is evaluated by comparing its absolute value θ̂i with its standard deviation σθ̂,i. It can be done by
a simple comparison of both, or with a t-test for statistical significance: [Ljung, 1998, Madsen, 2007] use the
value of the standard deviation σθ̂,i to test the hypothesis Hi that θ̂i is statistically significant, against the
hypothesis H0 that it is not. Alternatively, the confidence interval of a single parameter can be approached
by the value of its diagonal term in the covariance matrix.

The second criterion for validating parameters is the lack of serious correlations between estimates.
The correlation matrix Rθ has coefficients between -1 and 1, indicating pairwise coupled effects of param-
eters on the model output. A high correlation between two parameter estimates means that the model
structure should be revised or that one of the parameters should be fixed to an assumed value. A sta-
tistically insignificant parameter may disturb the estimation of more important parameters it interacts
with: it is generally stated that if a parameter is found to be either insignificant or strongly correlated
with another, it should be removed from the model and the estimation should be conducted once more
[Palomo Del Barrio and Guyon, 2003, Madsen, 2016].

Perhaps the most informative way to assess the practical identifiability of a model is the display of
confidence regions and intervals for its parameter estimates. A likelihood-based method of setting these
regions is described by [Meeker and Escobar, 1995, Raue et al., 2009] as the likelihood ratio test and is
briefly summarised here. Suppose a model of p parameters θ which exhibit some interaction. We want to
draw the confidence regions for a subset θ1 of the parameters of length p1, with the remaining parameters
denoted θ2, in order to see if this region is finite and the model identifiable. If the maximum likelihood
estimator θ̂ML has been identified, the likelihood ratio function is defined by:

R(θ1) = maxθ2

[
Ly(θ1, θ2)
Ly(θ̂)

]
(55)

A property of the likelihood ratio test is that −2 ln [R(θ1)] asymptotically follows a χ2 distribution with p1
degrees of freedom [Meeker and Escobar, 1995]. An approximate 100(1 − α)% likelihood-based confidence
region for θ1 is the set of all values such that:

−2 ln [R(θ1)] < ∆2
1−α,p1

(56)

where ∆2
1−α,p1

is the 1 − α quantile of the χ2 distribution with p1 degrees of freedom. Note that this test
can be performed after a deterministic parameter estimation, by using the sum of squared residuals instead
of the likelihood function:

−2 ln
[
Ly(θ)
Ly(θ̂)

]
= 1
σ2

(
r2(θ)− r2(θ̂)

)
(57)

From this theory of asymptotic likelihood-based confidence regions, [Raue et al., 2009] proposed the
definition of the profile likelihood function χ2

PL(θi) of a single parameter θi as an a posteriori way to check
its structural and practical identifiability. This function is defined as the likelihood ratio in the particular
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case of a single explanatory parameter:

χ2
PL(θi) = maxj 6=i

[
Ly(θi, θj)
Ly(θ̂)

]
(58)

As written by [Raue et al., 2009]: structurally non-identifiable parameters are characterized by a flat profile
likelihood. The profile likelihood of a practically non-identifiable parameter has a minimum, but is not
excessing a threshold ∆1−α for increasing and/or decreasing values of θi (here, ∆1−α is the 1 − α quantile
of the χ2 distribution with one degree of freedom). As an example, the 95% confidence interval of a single
parameter θi is the interval of values so that χ2

PL(θi) does not exceed the threshold ∆1−95% = 3.84.
A comprehensive application of this theory in a building physics application was proposed recently by

[Deconinck and Roels, 2017] to measure the identifiability of parameters of several RC models describing
the thermal characteristics of a building component. Results reveal large differences in the practical iden-
tifiability of models between winter and summer conditions: this underlines the importance of the richness
of excitation data on the results of an inverse problem, independently from the model structure. Two-
dimensional confidence regions can also be shown by applying Eq. 56 to pairwise parameter combinations:
these regions can be plotted in the form of a correlation matrix enriched with precise confidence thresholds
[Raue et al., 2009, Feroz et al., 2011].

4.2 Residual analysis
The most straightforward way to check for the validity of a calibrated model is a visual comparison between
measurements and simulations that takes into account both the measurements noise and the model input data
uncertainties. The agreement between model and reality is stated to be good when a significant overlapping is
observed between simulations and measurements uncertainty bands [Palomo Del Barrio and Guyon, 2003].
Note that this statement also holds for a white-box model where parameters are not the outcome of an
inverse problem: the validation of such a model should meet these standards as well.

However, a more systematic analysis of the residuals is often preferable. Statistical tools to compare
measurements and simulations can be used to assess the validity of the model after calibration. The
following steps were recommended for all model validation procedures during the PASSYS project by
[Palomo Del Barrio et al., 1991]. Let us focus on the definition of the residuals calculated from the cal-
culation of any of the estimates θ̂ defined above:

r(t) = y(t)− ŷ(t, θ̂) (59)

Residuals from an ideal unbiased model should behave like white noise, i.e. a stochastic process that ap-
proaches a stationary normal distribution with zero mean. In time series analysis, the stationarity of this
stochastic process can be checked if its mean and variance do not vary over different time periods. Another
method is to use the normalized autocorrelation function (ACF) of residuals [Godfrey, 1980]:

ACFr(τ) = 1
σ2
r

E [(r(t)− µr) (r(t+ τ)− µr)] (60)

where µr and σ2
r are the mean and variance of the process (the residual). The ACF measures the average

correlation between points separated by a lag τ within the time series. The ACF of a true white noise signal
is zero for all lags other than zero. The whiteness test on the ACF is the first statistical test in residual
analysis [Palomo Del Barrio et al., 1991]. The second test is the independence test described below.

The criterion of white noise residuals is very difficult to meet in practice [Kramer et al., 2013] as all models
include hypotheses and approximations in addition to measurement uncertainty. Furthermore, numerically
high values of the ACF do not precisely point out the source of model inadequacies. Enter the cross-
correlation function (CCF) [Godfrey, 1980]:

CCFr,u(τ) = 1
σrσu

E [(r(t)− µr) (u(t+ τ)− µu)] (61)
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The CCF checks is the residuals are correlated with any of the input processes u. Should a significant
cross-correlation with one of the inputs be found, then it is likely that this input is improperly accounted
for in the model [Madsen, 2007]. Ideally, a correct model structure should not yield any cross-correlation
between residual and input signals. Statistical tests to meet the independence criterion are described by
[Palomo Del Barrio et al., 1991].

A strong residual ACF does not necessarily imply that an input is being overlooked. An example of model
which checks the independence test (CCF) but fails the whiteness test (ACF) is shown by [Kramer et al., 2013].
The satisfying low values of the CCF suggest than no input is missing in the model. By adding an error
model to the model structure, the authors then saw the ACF fit within a reasonable bandwidth. According
to [Ljung, 1998], the ACF obtained from a model missing an error model is less likely to meet the whiteness
test. Other examples of residual analysis for model validation include:

• [Jiménez et al., 2008] apply residual analysis to the validation of different ARX and ARMAX models
in a numerical study: these models include error models.

• [Reynders et al., 2014] identify reduced-order models of buildings on reference simulations from a de-
tailed physical model. The reduced-order models are described by stochastic differential equations.
The authors analyse the cumulated periodograms (this is equivalent to analysing the ACF) to pick the
necessary complexity of reduced models.

• [Joe and Karava, 2017] draw ACF and CCF profiles after estimation in a deterministic agent-based
framework and found relatively high values for these functions.

The overall conclusion is that deterministic grey-box modelling is unlikely to meet the standards for the
whiteness test of residuals. In a deterministic context, a good overlap between confidence regions of predic-
tions and observations is often a sufficient criterion for judging that a model structure is appropriate.

4.3 Cross-validation
The result of an inverse problem is the set of parameters θ̂ with which a specific model ŷ offers the closest fit
to the training data. The goal of system identification is however to build a model which accurately predicts
the outcome of new input conditions. The generalization performance of a model relates to its prediction
capability on independent test data [Hastie et al., 2001]. Estimating this prediction error is the first step
towards the selection of the appropriate model complexity to represent the reality. A complex model will
make more use of the training data than a simple model: its average training error will be lower, but the
covariance of the parameter estimates cov(θ̂) will be higher, hence so will the variance of output predictions
over the test dataset. There is a model complexity threshold over which decreasing the training error means
increasing the generalization error: such a model is overfitted and has a poor prediction performance.

Expected prediction errors E
[
(y − ŷ(u))2

]
can be decomposed into two main components: the squared

bias and the variance [Hastie et al., 2001]. As a reminder, the hypothesis of additive Gaussian measurement
noise still holds: y(t) = y∗(t) + ε(t) with ε ∼ N (0, σ).

E
[
(y − ŷ(u))2

]
︸ ︷︷ ︸

Expected prediction error

= (E [ŷ(u)]− y∗)2︸ ︷︷ ︸
Bias2

+E
[
(ŷ(u)− E [ŷ(u)])2

]
︸ ︷︷ ︸

Variance

+σ2 (62)

The squared bias is the deviation between the average estimation E [ŷ(u)] and the real, noise-free value of
the output y∗. This term should be equal to zero under the hypothesis of an unbiased model y∗(t) = ŷ(t, θ∗).
This hypothesis is however very optimistic in practice and requires a model with a large number of degrees
of freedom (parameters). The variance is the expected deviation of the prediction ŷ(u) around its mean.
It can be evaluated by propagating the parameter uncertainty cov(θ̂) into an output uncertainty. The last
term is an irreducible error due to the measurement noise. Fig. 5 illustrates the bias-variance tradeoff in the
search of the lowest prediction error.
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Figure 5: Bias-variance trade off

(a) (b) (c)

Figure 6: Splitting data for cross-validation

Evaluating the exact prediction error requires a separate dataset from the one used for training purposes.
Cross-validation is a convenient way to assess the generalization ability of a model by splitting the original
dataset in several samples. The most intuitive approach is the holdout method which splits the original data
in two sets (Fig. 6(a): a training set used to fit the model (typically two thirds of the original data) and a
test set for its validation. Alternatively, k-fold cross-validation (Fig. 6(b)) splits the original sample into k
subsamples. k − 1 samples are used as training data while the remaining sample is used as validation data.
The process is then repeated k times by using each subsample once for validation. This method can give
estimates of the variability of the true estimation error. In a data-rich situation, the best approach is to split
the dataset into three parts [Hastie et al., 2001] as shown on Fig. 6(c): a training set used to fit the models;
a validation set used to estimate prediction error for model selection; a test set to assess the generalization
error of the selected model.

4.4 Example: 2R2C model
The Levenberg-Marquardt used for least-square estimation of the 2R2C model (see code in Appendix A.1)
returns not only point values of the parameters, but also an estimation of the covariance matrix cov

(
θ̂LS

)
.

Using this matrix in Eq. 54, as is shown in the code, returns the standard deviation of estimated parameters
and their correlation matrix.

• Results of the test for parameter significance are shown on Tab. 2: all parameters are considered
relevant according to this analysis.

• The correlation matrix Rθ̂ is shown on Tab. 4 for the assessment of parameter interactions.

Results show some strong interactions between parameters. The highest correlation coefficient is between
R2 and C2. This can be illustrated by likelihood-based confidence regions. A grid of R2 − C2 values is
first defined. On each point of the grid, the inverse problem is solved on all remaining parameters and
the likelihood ratio function (Eq. 55) is calculated. This allows drawing two-dimensional likelihood-based
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Table 4: Correlation matrix of the parameter estimates in the 2R2C example
R1 R2 C1 C2 Te(0)

R1 1 -0.22 0.09 -0.41 -0.59
R2 -0.22 1 0.37 0.79 -0.43
C1 0.09 0.037 1 0.13 -0.24
C2 -0.41 0.79 0.13 1 -0.10
Te(0) -0.59 -0.43 -0.24 0.10 1

confidence regions according to Eq. 56. This is illustrated by Fig. 7, which results from the code written in
Appendix A.3.

Figure 7: Likelihood-based confidence regions of the R2 − C2 parameter pair. Grey levels show quantiles of
the χ2 distribution

Although all parameters of the model are theoretically identifiable, there is a strong interaction between
some of them which was not shown by the prior identifiability analysis. In this specific case, the data seems
insufficient to properly identify the R2 and C2 parameters simultaneously, as is shown by the size of their
likelihood-based confidence regions.

5 Improving the identification
What is meant here by improving the identification is the set of techniques that allow an optimal use of data,
so that we learn the most of it without making the mistake of overfitting.

5.1 Model selection
When given a measurement data set from which to learn parameter values, it is tempting to choose a
comprehensive model that attempts to explain all variations of the data. As already mentioned above, this
might not be the wisest choice because of the risk of overfitting and poor performance prediction. If the
goal of the inverse problem is not prediction, but only to characterise thermophysical properties from an
experiment, a complex model will yield large uncertainty intervals for the parameter estimates.

The goal of model selection is to find exactly to what extent the data can be interpreted without coming to
erroneous conclusions. The user is given the choice of several model structures, each representing the reality
with a different level of detail, and must choose one that will accurately explain the observed phenomena
without running into issues of practical identifiability and overfitting. Selecting the most appropriate model
for prediction purposes is a matter of bias-variance tradeoff.

A comparison of several model selection criteria and statistical tests was proposed by [Posada and Buckley, 2004].
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Figure 8: Iterative processes for model selection and optimal experiment design

Prediction error

The first possibility is to use the results of cross-validation as a criterion for model selection. The
predictive capability of each model is assessed by one of the methods mentioned on Fig. 6, by using a
different dataset from the training data. Whichever model yields the lowest prediction error (Eq. 62) is
preferred. The disadvantage of this method is that is requires enough data to split it in separate sets.
Moreover, the error estimates may tend to be biased to be conservative, indicating higher error than in
reality [Hastie et al., 2001]

Information criteria

Model selection can also be done without using a separate dataset for cross-validation, by estimating the
in-sample prediction error [Hastie et al., 2001]. Information criteria are an attempt to quantify the loss of
information between an ideal model that generated the data, and a candidate model. They are applicable
to parametric models that enable the calculation of likelihoods. Akaike’s Information Criteria (AIC) is a
function of the maximized likelihood of a model and of its number of parameters p. The Bayesian Information
Criterion (BIC) is similar, but accounts for the number of observations N .

AIC = −2 lnLy (θ) + 2 p (63)

BIC = −2 lnLy (θ) + p lnN (64)

These criteria can be seen as a slight modification of the maximum likelihood criterion, with an additional
term to penalize high model complexity. AIC tends to be preferred if the model is to be used for forecasting
or control, and BIC is advised is the model is used for identification of physical properties. BIC tends to
penalize complex models more and give preference to simpler models in selection [Hastie et al., 2001].

It is very simple to rank several calibrated candidate models by either their AIC or BIC: model selection
simply comes down to choosing the model that minimizes them. The criteria are applicable in settings
where the fitting is carried out by maximization of a log-likelihood. However, they may also be applied to
least-square fitting, since it is equivalent to maximum likelihood estimation under the hypothesis of additive
Gaussian noise.
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Likelihood ratio

The third category of model selection is applicable to nested models: a set of hierarchically ranked
submodels built by removing parts of a larger model. The hierarchical likelihood ratio tests consist in
performing pairwise likelihood ratio tests in order of increasing complexity, until it is found that adding
parameters is statistically irrelevant. A detailed application of this technique to building thermal models
is shown by [Bacher and Madsen, 2011]. Its performance has been compared to other statistical tests by
[Pŕıvara et al., 2012].

Let us suppose a model with parameters θ ∈ Rp and a simpler submodel θ0 ∈ Rp0 with p0 < p. The
likelihood ratio function is the ratio of the maximum likelihood values obtained with a dataset y over the
respective search spaces of both models:

λ(y) = maxθ0 Ly(θ0)
maxθ Ly(θ) (65)

The maximum likelihood of the larger model is always higher than that of its submodel, but the question is
whether this performance is significantly better in a statistical sense. The test statistic −2 lnλ(y) is used to
test the hypothesis H0 that the data is better explained by the submodel, versus the hypothesis Ha that it is
better explained by the larger model. It converges asymptotically to a χ2 distributed variable with (p− p0)
degrees of freedom [Madsen and Thyregod, 2010].

A detailed methodology of model description, fitting, selection and validation was shown by [Bacher and Madsen, 2011].
The authors defined seventeen RC models to describe the thermal behaviour of a test building with different
numbers of states and parameters. They applied the likelihood ratio test to find the sufficient complexity
and validated the selected model with the criteria of residuals autocorrelation function.

5.2 Optimal experiment design
While a model selection procedure searches among candidate models which one is most suited to explain one
dataset, Optimal Experiment Design (OED) is the search for the dataset that will give the most informative
training to a predefined model. This is particularly necessary when a model is defined by the needs of a project
and cannot be simplified (material characterisation, fault detection, disaggregation of heat losses, etc.). For
instance, an inverse problem of material characterisation must include the target physical properties in its
parameters, and the possibilities of model selection are limited. The preferable way of improving parameter
identifiability is through the enrichment of data.

Optimal experiment design can be defined as the search for the experimental setup and conditions of
data acquisition that will maximise the information gain by a given model, at the lowest possible price.
The “price” of data is measured in terms of the duration of the identification experiment, the perturbation
induced by the excitation signal, the number of sensors, or any combination of these [Bombois et al., 2006,
Gevers et al., 2009]. The goal of optimal experimental design is to minimise the estimate covariance cov(θ̂)
[Emery and Nenarokomov, 1998], and thus to improve the practical identifiability without redefining the
model structure. Note that no design of experiment can make up for a lack of structural identifiability.

There are essentially three ways to improve the richness of measurements for identification purposes:
performing longer experiments or adding sensors, i.e. acquiring more data points; carefully selecting sensor
placement; imposing an enriched input signal. These options, especially the first one, result in an increase
cost of the experiment. The third option requires an experiment in controlled conditions. In most of the
optimal experiment design studies, the number of sensors and duration of the experiment are fixed settings,
so that the point is to search for the optimal conditions (input signal and sensor positions) at a constant
experiment cost. OED principles and optimality criteria have been reviewed by [Fedorov, 2010].

General guidelines

The first option is to define guidelines by expert knowledge for a more or less empirical enrichment of
the inputs. Several guidelines are given in [Madsen, 2016] to make controllable inputs more informative:
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• The excitation signal should be periodic with a frequency matching the time constants of the system.
These time constants can be easily approximated in the case of linear systems, by writing them in the
form of transfer functions.

• The amplitude of the fluctuations should be high, while remaining within realistic values.

• If the system has several inputs, they should be uncorrelated. For instance, if the system is subjected
to solar radiation and a controlled excitation (such as indoor heating), then this controlled input should
not present periodic fluctuations of 24 hour.

Several highly informative excitation signals have been designed for the identification of linear systems, such
as the pseudo-random binary signal (PRBS) and harmonic signals [Godfrey, 1980].

Optimisation

If the system is complex, non-linear or black-box with little prior information on its time constants and
expected response, it might be difficult to design an informative excitation for it from the above general
guidelines. Another possibility is then to perform a dedicated optimisation of the information gained by
the model from the experiment. As a reminder, this amount of information is quantified by the Fisher
Information Matrix:

F(θ) = E

[(
∂ lnLy(θ)

∂θ

)T (
∂ lnLy(θ)

∂θ

)]
(66)

Under the usual hypotheses of additive white noise on the measurements, an equivalent information matrix
can also be written without using the likelihood function [Walter and Pronzato, 1997, Agbi et al., 2012,
Cai et al., 2016]:

F(θ) = 1
σ2 STS =

N∑
i=1

[
∂ŷi(θ)
∂θ

]T 1
σ2

[
∂ŷi(θ)
∂θ

]
(67)

As already mentioned, the central limit theorem states that an unbiased maximum likelihood estimator is
asymptotically gaussian. Its covariance has a lower bound given by the Cramer-Rao theorem [Walter and Pronzato, 1997]:

cov
(
θ̂
)
≥ F(θ̂)−1 (68)

As underlined by [Gevers et al., 2009], the existence of a finite covariance matrix relies on a positive definite
information matrix. Increasing the size of the FIM thus reduces the uncertainty of the parameter estimates.
In order to quantify the size of the FIM, several scalar indicators are available [Bastogne, 2008]. For instance,
the D-optimality criterion is the determinant of the FIM, and the goal of OED is to maximize it:

ΨD = det F (69)

This is a quantitative measure of practical identifiability. Other criteria include the minimum eigenvalue
or the trace of the information matrix. It is preferable to bring all parameters within the same order of
magnitude through normalizing constant before calculating the FIM and the optimality criteria.

A controllable input signal can be parameterised as a weighted sum of elementary functions or a harmonic
signal, which allows reconstructing custom forms from a finite number of parameters. The experiment is
described by these parameters and some additional experiment settings such as sensor positions. OED
seeks the set of these experiment parameters that maximizes a scalar measure of information gain. It is an
iterative procedure, since the optimal inputs are determined by supposing that the sought system parameters
are known. It was found by [Gevers et al., 2009] that the solutions of optimal experiment design problems
are most easily expressed in the form of multisines, i.e. input signals that have a discrete spectrum.

To this day, OED has seen more applications to the optimal estimation of heat transfer properties than to
the field of building sciences. As a few examples: [Artyukhin and Budnik, 1985] researched the optimal sen-
sor placement in the inverse heat conduction boundary problem. [Nenarokomov and Titov, 2005] estimate
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the emissivity of insulated materials and analyze the influence of the external heat flux on the accuracy of
the solution of the inverse problem. [Karalashvili et al., 2015] use OED to design an optimal falling film ex-
periment for the identification of mass transport coefficients. The D-optimality criterion is used to maximize
the FIM. This paper is an interesting example of an incremential workflow implying OED and model selec-
tion, for a maximized utilization of data. [Berger et al., 2017] is an example of OED applied to a non-linear
problem: the estimation of heat and moisture transfer properties of building materials; [Cai et al., 2016]
proposed generating an optimal training data set for zone temperature setpoints to maximise the accuracy
of parameter estimates in an RC building model.

6 Conclusion
What is referred to here as inverse problems are actually a broad field that encompasses any study where
data is gathered and mined for information: material and component characterisation, building energy per-
formance assessment from in-situ measurements, system identification for model predictive control... These
scientific challenges are gaining visibility due to the increasing availability of data (smart meters, building
management systems...), the increasing popularity of data mining methods, and the available computational
power to address them. Many engineers and researchers however lack the tools for a critical analysis of their
results.

A scientist who wishes to gain knowledge from measurements should follow a workflow that allows them
to get the most information from data without making mistakes. The paper is an overview of guidelines to
reach this aim:

• The identifiability of the model structure can be checked before solving the inverse problem, in order
to avoid parameter interactions and redundant parameters.

• The impact of approximation errors cannot be overlooked. All models are biased to some extent, which
adds up to the effect of measurement uncertainty, and may result in disastrous estimation errors if the
proper validation steps are not carried.

• Validation steps should include residual analysis in order to diagnose unaccounted phenomena, and an
estimation of the confidence regions of parameter estimates. Note that these confidence regions should
not necessarily be trusted if the model bias is important.

• Choosing the appropriate model structure is a bias-variance tradeoff: a detailed model offers a better
fit with data than a simple one, but an excessive complexity will offer poor prediction accuracy.

• The information gained by a model from an experiment can be measured by information indicators,
and maximised by tuning the experiment design.
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A Python code
A.1 Least-square estimation of the 2R2C model
This is the Python code that runs the 2R2C parameter estimation described in Sec. 2.5. It relies on a
datafile called data.csv, available upon contacting the author. Alternatively, the user can change the data
importing section according to their needs. They can also use this template to test other types of models.

#==============================================================================
# Various imports and d e f i n i t i o n s
#==============================================================================
import numpy as np
from sc ipy . l i n a l g import expm
from numpy . l i n a l g import inv

de f dot3 (A,B,C) :
r e turn np . dot (A, np . dot (B,C) )

de f s tack4 (A,B,C,D) :
r e turn np . vstack ( ( np . hstack ( (A,B) ) , np . hstack ( (C,D) ) ) )
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#==============================================================================
# Importing the data
#==============================================================================
”””
In t h i s example , data i s conta ined in a f i l e c a l l e d data . csv with l a b e l e d columns
You should o f course adapt t h i s s e c t i o n to your case
”””
import pandas
datase t = pandas . r ead c sv ( ’ data . csv ’ )

t ime = np . array ( datase t [ ’ Time ’ ] )
T in = np . array ( datase t [ ’ T int ’ ] ) # indoor temperature
T ext = np . array ( datase t [ ’ T ext ’ ] ) # outdoor temperature
q = np . array ( datase t [ ’ q ’ ] ) # indoor p r e s c r i b e d heat

d e l t a t = t ime [ 1 ] − t ime [ 0 ] # time step s i z e
u = np . vstack ( [ T ext , q ] ) . T

#==============================================================================
# D e f i n i t i o n o f the model
#==============================================================================
”””
This i s the s imu la t i on func t i on o f the very s imple 2R2C model
This c l a s s i s extendable to any other RC model s t r u c t u r e
”””
de f RC model s imulation ( time , R1 , R2 , C1 , C2 , xe 0 ) :

# Matr ices o f the system in cont inuous form
Ac = np . array ( [ [ −1/(C1∗R1)−1/(C1∗R2) , 1/(C1∗R2 ) ] ,

[ 1 / ( C2∗R2) , −1/(C2∗R2 ) ] ] )
Bc = np . array ( [ [ 1 / ( C1∗R1) , 0 ] ,

[ 0 , 1/C2 ] ] )

# Matr ices o f the d i s c r e t i z e d s tate−space model
F = expm(Ac∗ d e l t a t )
G = dot3 ( inv (Ac) , F−np . eye ( 2 ) , Bc)
H = np . array ( [ [ 0 , 1 ] ] )

# I n i t i a l i s a t i o n o f the s t a t e s
x = np . z e ro s ( ( l en ( t ime ) , 2 ) )
x [ 0 ] = np . array ( ( xe 0 , T in [ 0 ] ) )

# Simulat ion
f o r i in range (1 , l en ( t ime ) ) :

x [ i ] = np . dot (F , x [ i −1]) + np . dot (G, u [ i −1])

# This func t i on r e tu rn s the second s imulated s t a t e only
re turn np . dot (H, x .T) . f l a t t e n ( )

#==============================================================================
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# Curve f i t t i n g
#==============================================================================
”””
This s e c t i o n eva lua t e s the parameters o f the model us ing obs e rva t i on s T int
Note that the i n i t i a l cond i t i on on the unobserved s t a t e i s an unknown parameter

You should prov ide an i n i t i a l guess f o r the parameters
i n i t i a l guess f o r r e s i s t a n c e s : 1e−2 W/K
i n i t i a l guess f o r capac i t ance s : 1 e7 J/K
i n i t i a l guess f o r the i n i t i a l enve lope temperature : 30 C
”””

from sc ipy . opt imize import c u r v e f i t

t h e t a i n i t = [ 1 e−2, 1e−2, 1e7 , 1e7 , 20 ]
popt , pcov = c u r v e f i t ( RC model simulation ,

xdata = time ,
ydata = T in ,
p0 = t h e t a i n i t ,
method=’lm ’ )

# Ca l cu l a t ing the indoor temperature p r ed i c t ed with the optimal parameters
T in opt = RC model s imulation ( time , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] , popt [ 3 ] , popt [ 4 ] )
# Least square c r i t e r i o n f o r the optimal parameters
r op t = np . sum ( ( T in opt−T in )∗∗2)

”””
Test f o r parameter s i g n i f i c a n c e and c o r r e l a t i o n
”””
# Standard dev i a t i on o f the parameter e s t imate s
stdev = np . diag ( pcov )∗∗0 . 5
# Cor r e l a t i on matrix
R = dot3 ( np . l i n a l g . inv (np . d iag ( stdev ) ) , pcov , np . l i n a l g . inv (np . diag ( stdev ) ) )
# t−s t a t i s t i c
t s t a t = popt / stdev

A.2 Sensitivity analysis
This is the Python code that runs the sensitivity analysis which is part of the identifiability analysis of the
2R2C model, described in Sec. 3.3. The SALib1 Python library is required. It is advised to run the code in
the previous section first.

# SALib r e q u i r e s the ’ problem ’ to be de f ined in a d i c t i o n a r y f i r s t
problem = { ’ num vars ’ : 5 ,

’ names ’ : [ ’ R1 ’ , ’R2 ’ , ’C1 ’ , ’C2 ’ , ’ xe 0 ’ ] ,
’ bounds ’ : [ [ 1 e−2, 3e−2] ,

[ 1 e−3, 3e−3] ,
[ 1 e7 , 2 e7 ] ,
[ 1 . 5 e6 , 2 . 5 e6 ] ,
[ 2 5 , 3 5 ] ] }

1https://salib.readthedocs.io/en/latest/
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# Create a matrix o f model inputs f o r the FAST method
from SALib . sample import f a s t s a m p l e r
X = f a s t s a m p l e r . sample ( problem , 5000 , M=4)
# Evaluate the output on each parameter o f the sample
Y = np . z e ro s ( l en (X) )
f o r i , theta in enumerate (X) :

y = RC model s imulation ( time , theta [ 0 ] , theta [ 1 ] , theta [ 2 ] , theta [ 3 ] , theta [ 4 ] )
Y[ i ] = np . sum ( ( y−T in )∗∗2)

# Analyse and return s e n s i t i v i t y c o e f f i c i e n t s
from SALib . ana lyze import f a s t
s a r e s u l t s = f a s t . ana lyze ( problem , Y, M=4)

A.3 Likelihood profiles
This is the Python code for calculating and drawing the likelihood-based confidence regions for the R2 and
C2 parameters of the 2R2C model.

# D e f i n i t i o n o f a g r id o f va lue s f o r R2 and C2
R2 vec = np . l i n s p a c e (2 e−3, 3e−3, num=50)
C2 vec = np . l i n s p a c e (1 e6 , 3e6 , num=50)
Ri , Ci = np . meshgrid ( R2 vec , C2 vec )

# S e r i e s o f op t im i za t i on s where the R2 and C2 parameters are f i x e d
t h e t a i n i t = [ 1 e−2, 1e7 , 20 ]
r e s i d u a l s = np . z e r o s l i k e ( Ri . r a v e l ( ) )
f o r i in range ( l en ( Ri . r a v e l ( ) ) ) :

de f RC model s imulation R2C2fixed ( time , R1 , C1 , xe 0 ) :
r e turn RC model s imulation ( time , R1 , Ri . r a v e l ( ) [ i ] , C1 , Ci . r a v e l ( ) [ i ] , xe 0 )

popt , pcov = c u r v e f i t ( RC model simulation R2C2fixed ,
xdata = time ,
ydata = T in ,
p0 = t h e t a i n i t ,
method=’lm ’ )

y = RC model s imulation ( time , popt [ 0 ] , Ri . r a v e l ( ) [ i ] , popt [ 1 ] ,
Ci . r a v e l ( ) [ i ] , popt [ 2 ] )

r e s i d u a l s [ i ] = np . sum ( ( y−T in )∗∗2)

# This i s equ iva l en t to the L ike l i hood r a t i o func t i on
p r o f i l e l i k e l i h o o d = np . reshape ( ( r e s i d u a l s−r op t ) , ( 50 , 50 ) )

# Quant i l e s o f the ch i2 d i s t r i b u t i o n
p e r c e n t i l e s = [ 0 , 50 , 75 , 95 , 99 , 100 ]
l e v e l s = [ np . p e r c e n t i l e (np . random . ch i square (2 , s i z e = 9000) , q= )

f o r in p e r c e n t i l e s ]

# P lo t t i ng
f i g = p l t . f i g u r e ( )
cax = p l t . contour f ( Ri ∗1000 , Ci/1e6 , p r o f i l e l i k e l i h o o d ,

l e v e l s = l e v e l s , cmap = ’ Greys r ’ )
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p l t . x l a b e l ( ’ Thermal r e s i s t a n c e $R 2$ ( . $10ˆ{−3}$ W/K) ’ )
p l t . y l a b e l ( ’ Thermal capac i tance $C 2$ ( . $10 ˆ6$ J/K) ’ )
cbar = f i g . c o l o rba r ( cax , t i c k s=l e v e l s )
cbar . ax . s e t y t i c k l a b e l s ( p e r c e n t i l e s ) # v e r t i c a l l y o r i en t ed co l o rba r

37


