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A B S T R A C T

The increasing prevalence of technology in modern airliners brings not just advantages, but also the potential for
cyber threats. Fortunately, there have been no significant attacks on civil aircraft to date, which allows the
handling of these emerging threats to be approached proactively. Although an ample body of research into
technical defense strategies exists, current research neglects to take the human operator into account. In this
study, we present an exploratory experiment focusing on pilots confronted with a cyber-attack. Results show that
the occurrence of an attack affects all dependent variables: pilots' workload, trust, eye-movements, and behavior.
Pilots experiencing an attack report heavier workload and weakened trust in the system than pilots whose
aircraft is not under attack. Further, pilots who experienced an attack monitored basic flying instruments less
and their performance deteriorated. A warning about a potential attack seems to moderate several of those
effects. Our analysis prompts us to recommend incorporating cyber-awareness into pilots' recurrent training; we
also argue that one has to consider all affected personnel when designing such training. Future research should
target the development of appropriate procedures and training techniques to prepare pilots to correctly identify
and respond to cyber-attacks.

1. Introduction

The exponentially increasing incidence of cyber-attacks is a growing
problem in various private and public domains (Wilshusen, 2013).
These range from personal cell phones and computers to critical in-
frastructures—including that of civil aviation (Elias, 2015; Zan,
d'Amore and Di Camillo, 2016). A cyber-attack implies deliberate ac-
tions “to alter, disrupt, deceive, degrade, or destroy adversary computer
systems or networks or the information and (or) programs resident in or
transiting these systems or networks” (Owens et al., 2009, p. S-1). In
aviation, the use of complex computer information technology such as
that for fly-by-wire or flight management systems has intensified in
recent decades. This trend has created potential vectors for cyber-at-
tacks (Sampigethaya and Poovendran, 2013). The interdependence
between complex aircraft systems and their integration into a modern
airliner can easily propagate the effects of a cyber-attack from one
system to another (Haass et al., 2016). Vereinigung Cockpit (2017) gave
an overview of how interlinked the different systems in the aviation
domain are, and where possible attack vectors might exist (see Fig. 1).

Several national and international aviation agencies (e.g., American

Institute of Aeronautics and Astronautics, 2013; European Aviation
Safety Agency, 2016; Iasiello, 2014; International Civil Aviation
Organization, 2012, 2016; International Federation of Air Line Pilots'
Associations, 2013; Lim, 2014) have already acknowledged that the
civil aviation domain is potentially subject to cyber-attacks. Cyber-at-
tacks against aircraft are still extremely rare at the time of writing;
however, their increasing incidence in the future is highly probable and
may lead to catastrophes, especially given the current rate of devel-
opment in information technologies (International Civil Aviation
Organization, 2016). Fox (2016) points out that although nothing ser-
ious has happened so far, it is a question of when rather than if. The
vulnerability of commercial aircraft systems was highlighted by the U.S
Department of Homeland Security, which was able to penetrate a
commercial aircraft via radio frequency communication in 2016
(Biesecker, 2017). The airline industry as well as regulators take this
problem very seriously and are following different approaches
(American Institute of Aeronautics and Astronautics, 2013; Iasiello,
2014) and also amended regulations (Federal Aviation Administration,
2013; 2014) to try to prevent potential attacks.

However, these approaches focus mainly on technical means to
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render potential attacks technically improbable. Very recently, a patent
was granted to Boeing, in which the inventors suggest a new system to
evaluate pilots' response to cyber-attacks in a simulation environment
(Nguyen et al., 2017). In their description of the evaluation system,
Nguyen et al. (2017) argue that “… because the pilot is such an integral
part of the operation and control of the aircraft, pilot reaction to a
cyber-attack is important” (p. 7). Besides erecting formidable technical
and organizational barriers to eliminate security hazards before they
reach the cockpit, we agree with Nguyen et al. (2017) that the human
operator has to be integrated as a defense layer (Boyce et al., 2011;
Langton and Baker, 2013), if not as the last line of defense (Vereinigung
Cockpit, 2017). In this context it is important to distinguish between
safety and security. Piètre-Cambacédès and Chaudet (2010) analyzed the
usage and definition of both constructs extensively. They found not
only that several researchers fail to explicitly define what they mean by
one or the other, but also that very different definitions are used in
different domains. Coming from the human factors domain, we favor
the distinction from Firesmith (2003, p. 2) who defines safety as “the
degree to which accidental harm is prevented, detected, and properly
reacted to.” Common safety issues might arise in the context of fatigue
(Caldwell, 2012; Rosekind et al., 1994), loss of manual flying skills
(Haslbeck and Hoermann, 2016), complex task switching (Gontar et al.,
2017a,b), or technical malfunctions involving effortful problem solving
and decision-making (Mosier and Fischer, 2010; Orasanu and Fischer,
2014) as well as intense team-communication (Gontar et al., 2017a,b).
Firesmith (2003, p.14) defines security as “the degree to which mal-
icious harm to a valuable asset is prevented, detected, and reacted to.”
Security is often seen as a technical challenge, although a successful
cyber breach could evoke pilot reactions resembling those to a safety
problem. However, from a human factors perspective, we think that
pilots perceive differences between a cyber-breach-induced malfunc-
tion and a purely technical one. We point out these differences in the
next section.

1.1. A human factors approach to cyber-attacks

Unfortunately, researchers have neglected human operators' re-
sponse behavior in earlier cyber security research (Mancuso et al.,
2014; Proctor and Chen, 2015). Horowitz and Lucero (2016) and
Heiges et al. (2015) used a scenario with a manipulated navigation

system showing false waypoints. Their main interest, however, was in
investigating which security requirements would be usefully satisfied in
engineering tools. Human factors analysis showed pilots' explicit wish
for technical support during a cyber-attack as well as their concern
about making ill-informed decisions. The major issue is that a successful
attack exposes pilots to great uncertainty (Dutt et al., 2013; Hirshfield
et al., 2015). Although individual cues might be ambiguous during the
very infrequent occasions when technical malfunctions occur, pilots can
normally apply procedures to solve the associated technical problems.
Faced with a purely technical problem, pilots can also anticipate not
only their own course of action but also the aircraft's behavior when, for
example, a hydraulic system is leaking. The pilots know that they will
receive an alert that hydraulic pressure is too low, maybe followed by
another alert that the fluid level is also too low. Further, the pilots
(depending on the aircraft type) might receive information from the
aircraft system about how the specific technical malfunction will affect
the aircraft's performance. In the example of a hydraulic system burst,
the pilots can anticipate how this malfunction will affect their future
flight—that their high-lift system will move slower, for instance—so
that they can prepare mentally. When pilots face a cyber-attack, in
contrast, they do not know whether the cues are trustworthy, or clear
cues that an aircraft-borne system is under a cyber-attack might be
absent. The pilots know neither whether the problem is solvable with
their checklists and procedures, nor whether they will experience an-
other problem right afterward. If pilots automatically follow their
procedures in such cases, one can imagine potential attackers exploiting
that knowledge to manipulate the pilots' behavior. Handling cyber-at-
tacks, which are likely characterized by ambiguous cues lacking clear
response options, becomes very effortful and also difficult for the pilots.
The cue-clarity model that Orasanu et al. (1993) developed helps to
understand how cue-clarity and response option availability can affect
pilots' decision-making and performance.

1.2. An issue of cue-clarity

Cue-clarity describes a cue's clearness or ambiguity. An example for
a clear cue could be a ‘green hydraulic low pressure’ warning in the
abovementioned loss of a hydraulic system, while an ambiguous cue
could be something like ‘expect weather changes on-route’. Indeed,
Dismukes et al. (2007) argue that weather information displays

Fig. 1. Visualization of interlinked systems in the civil aviation domain showing several potential vectors for cyber-attacks. The figure is based on Vereinigung Cockpit (2017).



onboard an aircraft are not specific and accurate enough to allow ex-
plicit weather assessment. Response options describes the number of
prescribed options available in a situation. Orasanu et al. (1993) dis-
tinguish three categories: single option (only one prescribed response),
multiple options (several prescribed responses from which the pilots
have to choose one), and none (no prescribed responses are available
and pilots have to generate new ones). Pilots experience extensive
workload when confronting a situation in which they have no pre-
scribed response options available (Orasanu et al., 1993). Cue ambi-
guity renders workload even higher. Both conditions prevail during a
successful cyber-attack. Prior research has demonstrated the influence
of excessive cognitive demand on decision-making under uncertainty
(Heereman and Walla, 2011) as well as the deterioration of decision
quality due to perceived stress (Starcke and Brand, 2016). Furthermore,
interpreting ambiguous cues engenders cognitive conflicts known to
impair pilots' performance (Dehais et al., 2003; Dehais et al., 2010).
Situations featuring unclear cues monopolize human operators' conflict
resolution resources to the detriment of monitoring primary parameters
(Dehais et al., 2015; Tessier and Dehais, 2012) which can in turn reduce
performance.

As cyber-attacks are not currently a topic in airline training, in-
dividual pilots will have to rely on their own knowledge and personal
experience with ordinary malfunctions to generate response options for
detecting a cyber-attack or making sense of available information (Dutt
et al., 2013; Grazioli, 2004; Hirshfield et al., 2015). Doing so could
become dangerous as pilots' assumption might not hold true during a
cyber-attack. As pilots undergo initial and mandatory recurrent training
to handle known safety hazards, one might assume that they are also
experts in handling situations such as cyber-attacks. To gain sufficient
expertise in handling such unforeseen events, pilots need to 1) have the
chance to learn and experience the relevant cues, and 2) the cues have
to be valid (Klein, 1999). Fortunately, opportunities to learn relevant
cues arise very infrequently during operation, because pilots very
seldom experience severe technical malfunctions and have not yet ex-
perienced real cyber breaches during normal operation. This means that
if pilots are to become experts at handling unusual, ambiguous situa-
tions, then pilot training has to provide an appropriate environment for
it. Current training, during which pilots often know what is going to
happen and can mentally prepare for it, seems not to feature sufficiently
valid cues when it comes to handling unforeseen events (Bergström
et al., 2014; Casner et al., 2013; Dahlström et al., 2009). Considering
the ambiguous cues in cyber-attacks as opposed to ordinary technical
malfunctions, it becomes obvious that they severely hinder even experts
from deciding quickly and correctly (see Orasanu et al., 1993).

1.3. Deception detection model

Given the lack of possibilities to gain sufficient expertise in handling
cyber-attacks and the fact that pilots cannot rely on their experience in
handling them, questions remain concerning how pilots detect and
handle cyber-attacks. Grazioli's deception detection model (2004) fo-
cuses on individuals' information processing and on detecting cyber-
attacks or deceptive information on the Internet. His model posits four
processes involved in detecting cyber-attacks. The first, activation, as-
sumes that individuals continually compare information (cues) from the
environment with their experience of and expectations about a situa-
tion. For instance, pilots compare their vertical to their horizontal speed
during an approach. Doing so enables them to calculate the descent
angle to ensure not capturing one of the instrument landing system’ side
lobes. Individuals become cognitively activated when a cue contradicts
their expectations about a situation. This would be the case when the
indicated airspeed and the vertical speed do not fit the desired glide
path angle. In other words, their attention is drawn to the discrepancies
between the cues and their expectations. Individuals generate different
hypotheses to explain these discrepancies. In the deception detection
model's next process, every hypothesis is evaluated by comparing it to a

domain-specific criterion, which may be difficult to define depending
on the context and the individual's knowledge and expertise. Users
accept or reject a hypothesis based on how it compares to the criterion.
All of the accepted hypotheses are ultimately combined into a global
assessment based upon which the user decides whether or not the in-
formation is deceptive. This theory holds that hypothesis generation
taking a cyber-attack into account is the key element. Only when
generating a correct hypothesis regarding a potential cyber-attack
would pilots be able to detect one, decide correctly, and act accord-
ingly. Hypothesis generation here depends mainly on cue interpreta-
tions and personal experience. Although the deception detection model
explains how operators decide whether information is deceptive or
trustworthy, it doesn't predict their potential reaction to it. The research
presented in this paper aims to fill this gap by analyzing how pilots
react to a successful cyber-attack and how such an attack influences
their behavior.

1.4. Research questions

Deception detection theory (Grazioli, 2004) requires the operator to
recognize a cyber-attack by following an analytic procedure to generate
and evaluate hypotheses. Different models and views all suggest that
such an analytic procedure places severe demands on cognitive re-
sources (Bobko et al., 2014; Boyce et al., 2011; Dutt et al., 2013;
Grazioli, 2004; Hirshfield et al., 2015; Rasmussen, 1983). Further,
Orasanu et al. (1993) argue that ambiguous cues such as those, we
argue, present during a cyber-attack also increase workload. Results of
empirical research indicate a positive relation between the occurrence
of a cyber-attack and operators' workload (Hirshfield et al., 2015). We
thus formulate the following research questions:

RQ 1: Does a cyber-attack relate positively to pilots' workload?
RQ 2: Does a cyber-attack warning attenuate the attack's effect on
pilots' workload?

From an operator's perspective, a cyber-attack can be interpreted as
a system error or as an unreliable part of a system. Furthermore, cue
ambiguity plays an important role as the pilots know neither whether
the cues are reliable nor what will happen next. Experiments in several
domains have shown that a system's high reliability and low error rate
strengthen trust in the system and vice versa (Dzindolet et al., 2003;
Moray et al., 2000; Vries et al., 2003; Yeh and Wickens, 2001). Wea-
kened operator trust can lead to system disuse (Muir, 1987) or non-
respondence, especially when the unreliability of warning systems re-
sults in false alarms or misses (Manzey et al., 2014). Experiencing false
alarms can lead to an operator's reluctance to acknowledge true alarm
as well as to delayed responses to alarms—an effect often referred to as
the cry-wolf effect (Breznitz, 1984; Wickens et al., 2009), which is
known to intensify under high workload conditions (Bliss and Dunn,
2000). This phenomenon can also spread to other functions (Lee and
Moray, 1992), although other empirical studies (e.g., Bahner et al.,
2008) found contradicting results. Furthermore, behavior predictability
influences trust (Lee and See, 2004; Rempel et al., 1985), which may
weaken when discrepancies between expected and actual system be-
havior are perceived as may happen due to a cyber-attack.

RQ 3: Does a cyber-attack influence pilots' trust in the system?
RQ 4: Does a cyber-attack warning attenuate the attack's effect on
pilots' trust?

The ambiguity of the cues associated with lacking response options
in face of a cyber-attack require pilots to apply problem-solving stra-
tegies. Previous research has suggested that eye movements could help
to better understand pilots' behavior and information acquisition stra-
tegies on the flight deck (Dehais et al., 2008; Gontar and Mulligan,
2015, 2016; Haslbeck et al., 2012; Haslbeck and Zhang, 2017;



Lefrançois et al., 2016; Reynal et al., 2016; Sarter, Mumaw and
Wickens, 2007). For instance, some studies have shown that conflicting
and unexpected situations impair visual scanning leading to either at-
tentional tunneling (Régis et al., 2014) or excessive and inefficient vi-
sual search patterns (Dehais et al., 2015). Further, Hergeth et al. (2016)
have shown that decreased monitoring frequency is associated with
strengthened trust in the system, which itself is associated with system
reliability (see also Oakley et al., 2003). We hypothesize that pilots'
information acquisition behavior changes when a cyber-attack or
warning confronts them.

RQ 5: Does a cyber-attack influence pilots' visual information ac-
quisition strategies?
RQ 6: Does a cyber-attack warning attenuate the attack's effect on
pilots' visual information acquisition strategies?

Since pilots are currently not trained in how to react to a cyber-
attack or how to handle a respective warning, we expect a wide variety
of responses from them as they have to develop new response options
(see Orasanu et al., 1993). The first question, however, is whether or
not the pilots' performance deteriorates under cyber-attack.

RQ 7: Does a cyber-attack influence pilots' performance?
RQ 8: Does a cyber-attack warning attenuate the attack's effect on
pilots' performance?

The extent to which pilots react to a cyber-attack is not yet suffi-
ciently investigated. This paper does not suggest a holistic solution to
handling cyber-attacks within the cockpit, but serves as a first step
toward understanding pilots' behavior in such situations and suggests
directions for future research. This might be the first experimental
study investigating the aforementioned aspects of workload, trust, vi-
sual information acquisition behavior, and performance when pilots
face a cyber-attack in the cockpit.

2. Method

2.1. Test design

To differentiate between the influences of a cyber-attack and a
warning about it, the experimental study was conducted as a mixed
(2× 2) design with the within-factor, warning, and the between-factor,
attack. One group experienced a cyber-attack (attack group); one group
did not (no-attack group). Participating pilots in both groups were
flying the same five scenarios in a flight simulator whereby two trials
were experimental trials and the others distractors. In one experimental
trial, both groups received a warning from the air traffic controller that
their aircraft might have been attacked (warning condition). We de-
liberately implemented an ambiguous warning in order to induce a high
degree of uncertainty.

We use the terminology of the receiver operator characteristic
(ROC) as introduced by Youden (1950) to make the study and the re-
sults easier to comprehend. For our scenario, the air traffic controller is
regarded as the operator who detects the attack resulting in a warning;
the attack is the stimulus (see Table 1). A present stimulus is defined as a
hit if it is detected and amiss if not. An absent stimulus is defined as false
alarm if it is detected and a correct rejection if it is not.

2.2. Sample

In total, twenty-two male pilots were recruited to participate in the
experiment. Each was randomly assigned to one of the experimental
groups. The participants' mean age was M=38.27 years (SD=11.55
years) ranging from 25 years to 63 years in the attack group and
M=28.45 years (SD=5.11 years) ranging from 22 years to 41 years in
the no-attack group. Participants in the attack group had
M=6062.73 h (SD=7106.38 h), ranging from 270 h to 23,000 h of
flight experience; participants in the no-attack group had M=950.86 h
(SD=971.62 h), ranging from 140 h to 3550 h. Participants received
no compensation except their travel expenses for their participation;
furthermore, all pilots were eligible to voluntarily participate in a lot-
tery for an online-shop voucher.

Minimum participation requirements were defined so that pilots
needed to have (1) passed a theoretical exam for an airline transport
pilot license (ATPL) or multi-crew pilot license (MPL), (2) an instru-
ment rating with more than 50 flight hours of instrument flight (IFR),
and (3) more than 32 flight hours in a turbine airplane.

2.3. Dependent measures

2.3.1. Workload
Pilots' workload was measured using the raw version of the NASA

TLX (Byers et al., 1989). The raw version of the NASA TLX (rTLX) does
not weigh the six different sub-scales (mental demand, physical de-
mand, temporal demand, performance, effort, and frustration) against
each other and is therefore easier for the participants to use while still
showing “essential equivalence with TLX” (Byers et al., 1989, p. 484).
Overall workload is defined as the mean value of the six subscales. It
ranges from 0 to 100, where 100 represents the heaviest possible
workload.

2.3.2. Trust
Pilots' trust in the system was evaluated with the German version

(Gold et al., 2015) of the trust questionnaire originally developed by
Jian et al. (2000) and validated by Spain et al. (2008). In the trust
questionnaire, participants had to rate their agreement with 12 state-
ments on a seven-point Likert scale from not at all to extremely. Five
statements are formulated in a negative manner and seven are for-
mulated in a positive manner. Overall trust is calculated as the mean of
each item on a scale from 1 to 7, where 7 indicates the strongest pos-
sible trust.

2.3.3. Gaze behavior
Pilots' gaze behavior was quantified by analyzing the attention ratio

toward three defined sets of areas of interest (AoIs) (see Fig. 2). The
attention ratio toward a specific AoI set is defined as the duration of all
glances onto this specific AoI set divided by the total duration of all
glances to any AoI set. For the analysis of the gaze behavior, we focus
on the interval that starts when the attack group comes under attack
and lasts for 25 s. This allows enough time for the pilot to determine
whether or not there is an attack.

We defined the three AoI sets representing the pilot's main tasks:
Aviate (A), navigate (N), and system management (M). Aviate consisted of
the two speed indications on the primary flight display and the navi-
gation display, the altimeter, and the attitude indicator. The navigate set
comprised glances on both heading indicators, the three distance-
measuring equipment systems (DMEs), and the map. The management
set contained the display showing the system status like an electronic
centralized aircraft monitor (ECAM) as well as the engine indicators.
The pilots' communicate task which priority would follow the navigate
task and precede the management task is not considered here since we
are focusing on gaze behavior only.

Table 1
Receiver operator characteristic for the groups and conditions.

Warning No-warning

Attack Hit Miss
No-attack False alarm Correct rejection



2.3.4. Performance
Pilots' performance criteria were defined by whether or not they

solved the problem correctly. To decide whether a decision was correct
or not, flight track parameters were used with a threshold defined ac-
cording to the approach map. We did not use expert evaluation, because
we had learned from previous research that rater reliability is not al-
ways sufficient (Gontar and Hoermann, 2015). Furthermore, classical
performance measures such as flight-track errors or procedural errors
do not reflect performance in the context of the presented scenar-
io—especially since no appropriate checklists exist yet. In addition to
the quantifiable dependent measures, we further chose a qualitative

approach and asked the pilots (1) what would have helped them in the
situation just-experienced and (2) what additional information they
would like to have had from the air traffic controller.

2.4. Materials and apparatus

2.4.1. Flight simulator
The experiment took place in a fixed-base simulator, which was

equipped with a generic glass cockpit and the flight dynamics of a
Dornier 728 (see Haslbeck and Bengler, 2016). The flight dynamic
model was chosen to control for the effects of familiarity that some
pilots might have with the Airbus A320. The auto-flight system and the
auto-throttle were disconnected so that pilots had to fly manually all
the time. Manual flight was forced to serve as a secondary task to fur-
ther increase workload during problem solving.

2.4.2. Eye-tracking system
We used the Dikablis Professional binocular head-mounted eye-

tracker from Ergoneers to track the pilots' eye movements. The system
samples at 60 Hz and provides a glance direction accuracy of± 1.8°
visual angle. The system had to be calibrated prior to use for every
participant to ensure sufficient precision. External markers on the in-
strument panel in form of barcodes were used to reference the gaze to
the respective instruments in the cockpit.

2.4.3. Scenario basis
The scenario started 5 nm out of the Munich (MUN) VOR1 at an

altitude of 5500 ft heading south before getting the clearance direct
MUN for the non-standard instrument landing system (ILS) approach to
runway 26L (see Fig. 3). Shortly after passing D16MDF (distance of
16 nm from the Milldorf (MDF) VOR), pilots were required to descent
according to the approach to a target altitude of 5000 ft. On their way
to D3.8MDF, air traffic control contacted the pilots and asked them to
confirm their current speed and altitude so the pilots were again
prompted to carefully fly according to the requirements. Pilots received
the landing clearance when passing D11MDF. When the pilots reached
D3.8MDF, they had to turn left to intercept the outbound radial 311° of
MDF to follow the approach. The scenario ended on the way to NELBI
since the final approach was irrelevant to the experiment.

2.4.4. Attack group
For the attack group, we decided to simulate manipulation of a

navigation aid, namely the MDF VOR station. It is important that this
reflects the manipulation of a ground facility rather than of an airborne
system in the aircraft. The attack group experienced a so-called needle-

Fig. 2. Cockpit interior from participant's point of view showing the definition of AoI sets:
Aviate (A), navigate (N), and system management (M).

Fig. 3. Scenario including the approach to runway 26L in Munich.
Reduced map excerpt is for the purpose of illustration only. NOT FOR NAVIGATION.

1 VOR refers to a very high frequency radio beacon that is used for navigation.



swing of the MDF VOR 8 nm before MDF. Although a needle-swing (the
VOR needle's rapid 180° direction change) indicating flight over a VOR
tells the pilots that they have just passed MDF, this was not so at
D8MDF. Since the pilots have to turn left 3.8 nm before MDF, they
would not expect any needle-swing on the MDF-tuned VOR during the
whole approach. We chose to manipulate that specific system as we
wanted to pose a problem that could be rather easily handled by the
pilots. The pilots could fly below the cloud layer to acquire visual re-
ference and use other VOR stations. Even if the pilots were not able to
solve the problem, they could still fly the aircraft. Furthermore, we
wanted to design the manipulation to imitate realistic aircraft behavior
(a needle swing is the actual behavior of an aircraft flying over a VOR
station). Our intention was to create just enough difficulty to defeat
about half the pilots, thus avoiding floor and ceiling effects, and also
producing meaningful sample sizes in the successful- and unsuccessful-
pilot groups.

2.4.5. Warning condition
Under the warning condition, the air traffic controller gave a

warning 11 nm before MDF. The air traffic controller contacted the
aircraft and communicated that “it is suspected that your aircraft could
be under a cyber-attack that might have compromised your systems”
and cleared the aircraft for landing on runway 26L. The air traffic
controller further stated that no more radio communication was al-
lowed for security reasons to preclude further information requests from
the pilots. In the attack group, the warning condition helped the pilots
to understand the situation, representing a hit, whereas in the no-attack
group, pilots experienced a false alarm. Under no-warning conditions
the attack group experienced a miss, the no-attack group a correct re-
jection, which can be seen as a baseline.

2.4.6. Flight-information package
The paper-based flight-information package contained a description

and instructions for use of the simulator (instrument equipment list
with detailed explanation), initial navigation setting, an approach map
as well as pitch-power settings, and current weather information. To
ensure that the simulator set-up was the same for every pilot and every
trial, pilots had to work through a simulator-preparation checklist in-
cluded in the package before the beginning of every trial.

2.5. Procedure

The study was performed within a period of 43 days during which
the 22 participants were tested. The experiment took between 120min

and 150min.
Participants filled out the demographic questionnaire after they

were welcomed and had given their written consent to participation in
the experiment. After that, participants received the flight-information
package and were briefed on the simulator and the upcoming task (see
Fig. 4 for an overview of the procedure). Pilots were told that the ex-
periment concerned a general ergonomic issue involving cockpit de-
sign. Participants next had a chance to get familiar with the simulator
and the approach via an exercise during which they were allowed to ask
questions. The eye-tracking system was configured and calibrated
afterward.

Participants flew the first scenario after calibration. Since there was
no experimental manipulation, we called it a distractor. The pilots
subsequently flew the experimental scenario and either did or did not
receive a warning during Trial 1. Following another distractor scenario,
participants flew Trial 2. The experiment ended with another distractor
scenario. After each scenario, pilots completed the NASA rTLX and trust
questionnaire. After completing all of the scenarios, the pilots filled out
the qualitative questionnaire and were debriefed by the investigators.
Participants then received travel compensation and had a chance to
participate in a lottery.

2.6. Data quality and processing

2.6.1. Eye-tracking
The pilots' gaze data was checked to ensure that it met the data-

availability quality criteria defined in ISO/TS 15007–2:2014–09. At
least 85% of the frames have to have valid pupil detection to achieve
good quality; 95% are needed for excellent quality. Pupil detection was
excellent (M=97.6%) on average with the lowest value being 93.3%.
The eye-tracker was recalibrated before computing gaze statistics in
case the head-based eye-tracker had been dislocated on any of the
participants' heads. Gaze statistics were calculated using D-Lab software
(version 3.10.7757).

2.6.2. Flight data
Simulator flight data was collected using MATLAB Simulink 2015b.

The data sample rate was set to 100 Hz.

2.6.3. Data exclusion
We had to exclude one participant from all analyses as he did not

meet the test-person requirements (see 2.2). This left 21 participants for
the performance measurement. We also had to exclude data from fur-
ther subjects due to technical problems, which left 20 data sets for the

Fig. 4. Experimental procedure.



analysis of workload and trust and 19 data sets for the eye-tracking
analyses.

3. Results

3.1. Statistical analysis

Statistical analyses were performed on a significance level of
α= .05. We used two-way mixed-model analysis of variance (ANOVA)
to test for differences between (factor attack) and within (factor
warning) the groups. P-values are reported two-sided unless stated
otherwise; partial eta-squares are used as measures of effect size with
η2partial > .14 regarded as a large effect. As several cells in the con-
tingency tables contained observed frequencies of less than 5, we did
not calculate chi-square statistics, but rather applied Fisher's exact
probability test and calculated Odd's ratio and the Relative Risk. Error
bars in the figures denote to± 1 standard deviation.

3.2. Workload

The two-way mixed ANOVA on subjectively perceived workload
(see Fig. 5) shows no main effect of the warning, F(1,18)= 1.03,
p= .32, but a significantly large effect from the attack, F(1,18)= 4.76,
p= .04, η2partial = .209, so that the workload is perceived to be heavier
in the attack-group than it is in the no-attack group. Further, the large
interaction effect was found to be significant, F(1,18)= 13.00,
p= .002, η2partial = .419.

We performed Bonferroni-corrected pairwise comparisons showing
significant differences under the no-warning condition between the no-
attack (M=24.10, SD=3.65) and attack group (M=48.90,
SD=5.85), p= .001, but no differences under the warning condition,
p= .561. Perceived workload was significantly heavier in the no-attack
group under the warning condition (M=36.95, SD=5.35) than under
the no-warning condition, p= .003. The attack group's members per-
ceived heavier workload under the no-warning condition than under
the warning condition (M=41.65, SD=5.85), p= .049 (one-tailed).

3.3. Trust

The trust rating (see Fig. 6) shows no significant difference whether
there is a warning or not, F(1,18)= .00, p= .996. The attack affects the
participants' trust, F(1,18)= 8.68, p= .009, η2partial = .325, so that
members of the no-attack group exhibit stronger overall trust in the
aircraft's systems than do members of the attack group.

The interaction effect between the warning and attack factor was
found to not be significant, F(1,18)= 2.66, p= .121. The no-attack
group's trust rating (M=5.49; SD= .22) was significantly greater than
that of the attack group (M=3.95; SD= .34), p < .001, under the no-
warning condition. No other pairwise comparisons were found to be
significant.

3.4. Eye-tracking

The analysis shows an attention distribution as depicted in Fig. 7 for
the three defined AOI-sets: Aviate, navigate, and system management. The
two-factorial mixed ANOVA on attention ratio on the aviate set shows a
large, statistically significant main effect of attack, F(1,17)= 7.07,
p= .017, η2partial = .294 giving the no-attack group a higher attention
ratio on the aviate set than that of the attack group. The warning's effect
was found to be non-significant, F(1,17)= 1.65, p= .216. A large and
statistically significant interaction effect was found, F(1,17)= 4.57,
p= .047, η2partial = .212. Pairwise comparison showed a significant
difference between the two groups where the no-attack group had a
higher attention ratio (M=59.67, SD=6.60) than the attack group
(M=35.21; SD=4.29) under the no-warning condition, p= .008. The
no-attack group showed a significantly higher attention ratio under the
no-warning condition (M=59.67, SD=6.60) than under the warning
condition (M=39.39, SD=4.53), p= .024.

A two-factorial mixed ANOVA on attention ratio on the navigate set
shows a large, statistically significant main effect of the attack, F
(1,17)= 16.21, p= .001, η2partial = .488, and a non-significant effect of
the warning, F(1,17)= 1.45, p= .245. Further, the interaction was
non-significant, F(1,17)= .11, p= .743. Participants in the attack
group had a significantly higher attention ratio on the navigate set than
did the no-attack group. Pairwise comparisons showed significant

Fig. 5. Subjective workload rating of the two groups (no-attack and attack) under the two
experimental conditions (no-warning and warning).

Fig. 6. System trust of the two groups (no-attack and attack) under the two experimental
conditions (no-warning and warning).

Fig. 7. Attention ratio of the two groups (no-attack and attack) on the aviate, navigate, and
system management sets under the two experimental conditions (no-warning and
warning). Note the lower and upper graphs' different scales.



differences under the no-warning condition between the attack group
(M=47.26, SD=5.58) and the no-attack group (M=27.26,
SD=4.91), p= .019, as well as under the warning condition. Here, the
attack group showed a significantly higher attention ratio (M=39.25,
SD=5.41) on the navigate set than did the no-attack group (M=22.73,
SD=3.61), p= .015. A third mixed ANOVA on the attention ratio on
the system management set was conducted showing a large significant
effect of the attack, F(1,17)= 4.79, p= .043, η2partial = .220, and a non-
significant effect of the warning, F(1,17)= 1.35, p= .261. The inter-
action effect was also found to be non-significant, F(1,17)= 1.17,
p= .294. As these data are not normally distributed, we did not con-
duct any further pairwise comparisons. Since ANOVAs have shown to
be robust against violations of normal distribution (Schmider et al.,
2010), we do not anticipate any problems when interpreting the re-
ported effects.

3.5. Performance

Figure 8 shows the participants' flight paths and the 3.8 nm circle
around the MDF VOR. Turns initiated before that circle were regarded
as unsuccessful and turns after the 3.8 nautical mile circle as successful
approach decisions.

The performance classification leads to the contingency table shown
in Table 2. Fisher's exact probability test shows that the group under
attack fails significantly more often than the group not under attack, p
(two-tailed)= .04. The Odd's ratio shows a medium effect with a value
of 5.2; the Relative Risk is 3.3.

As the observed frequency for both warning conditions is the same,
we conclude that the warning has no main effect on pilots' decision
quality. Fisher's exact probability test for comparing warning effects
within one group was found to be not significant.

4. Discussion

4.1. General points

The results showed a significant effect of the attack in all analyses,
whereas the effect of the warning was most obvious in a strong inter-
action effect. The effect of the attack can primarily be explained by the
additional effort and intense hypotheses testing pilots have to engage
in. The warning, in contrast, was shown to be a strong moderator in the
form of large interaction effects. This can also be explained in terms of
consistency: whereas information from the air traffic controller and the
actual aircraft state is consistent under hit and correct rejection

conditions, the information is inconsistent for false alarms and misses.

4.2. Workload (RQ 1 and RQ 2)

The results pertaining to the workload rating show that the warning
has no main effect, but that the attack does. Furthermore, an interaction
effect is present. This leads to the conclusion that the attack evokes
cognitive activation as described in the deception detection model
(Grazioli, 2004), which increases the workload. This result is consistent
with previous research by Hirshfield et al. (2015), who also reported
increased workload when users are under cyber-attack.

RQ 1: The presence of a cyber-attack increases pilots' workload.

This is especially true for misses. False alarms and hits both entail
heavier workload than correct rejections; misses, however, show the
highest rating. We argue that an appropriate warning can lighten the
workload, but want to point out that a false alarm is about as demanding
as a hit. This relationship can also be explained by the cue-clarity model
(Orasanu et al., 1993), which shows that cues associated with ambig-
uous problems (such as the attack in our case) require more cognitive
work than do those associated with unambiguous problems (like low
fuel). Correct rejection, which can also be seen as a baseline, features
neither an attack nor a warning so that pilots only have to complete the
flight task without any additional hypotheses generation or decision-
making. False alarms cause cognitive activation in the pilots and are
likely to increase the workload until he or she has checked all instru-
ments and ruled out an attack. Hits and misses require the pilots to make
decisions thereby increasing the workload. Inconsistency further ex-
acerbates this effect for a miss.

The VOR needle-swing and the pilot's lack of information about the
underlying situation rendered the aircraft's state ambiguous. A correct
warning helped the pilots, since it gave them an explanation for the
ambiguous state of the aircraft. In contrast, a false alarm created am-
biguity, because the pilots did not know the cause of the alarm. We can
conclude that consistent warnings can lighten pilots' workload but in-
consistent ones increase it.

RQ 2: An attack warning lightens pilots' workload for a hit and in-
crease it for a false alarm.

Based on the results here, one could argue that false alarms are
better than misses; however, we want to point out that the pilots ex-
perienced only one false alarm or miss in our study. One has to design
the alarm system to carefully avoid evoking cry-wolf effects (e.g., Bliss
et al., 1995) caused by excessive sensitivity thereby weakening trust in
the system finally resulting in its disuse.

4.3. Trust (RQ 3 and RQ 4)

The attack group exhibited less trust than did the no-attack group,
which we attribute to the system's perceived unreliability. An analysis
from Bliss (2003) showed that about 40% of alarm-related events in the
Aviation Safety Reporting System database are either false alarms or
misses. That lower perceived technical reliability weakens trust in the
system is already known from several other domains (see section 1.2)
and culminates in pilots deactivating the alarm systems (Sorkin, 1988).

Fig. 8. The 21 participants' flight paths including the 3.8 nm circle around the MDF VOR
at which pilots had to turn in this scenario. Dashed flight paths signify the attack group;
solid flight paths denote to the no-attack group. Reduced map excerpt is for the purpose of
illustration only. NOT FOR NAVIGATION.

Table 2
Contingency table for successful and unsuccessful approach decisions.

Warning No-warning Sum

Attack 7 (3) 4 (6) 11 (9)
No-attack 8 (3) 11 (0) 19 (3)
Sum 15 (6) 15 (6) 30 (12)



RQ 3: The presence of a cyber-attack weakens pilots' trust in the
system.

Trust is weakest when pilots are confronted with a miss, whereas a
false alarm does not seem to influence the trust rating on its first oc-
currence. It seems that a miss has a larger negative effect on pilot's trust
than a false alarm has. We are nevertheless of the opinion that higher
occurrence rates of false alarms would considerably reduce the trust
rating —a manifestation of the cry-wolf effect (see also Manzey et al.
(2014) and Wickens et al. (2009) for further discussion). Furthermore,
the missing cry-wolf effect in our setting might be due to the design of
the warning which was enunciated with a certain degree of uncertainty
about the presence of a threat (ATC: “… aircraft could be under attack
…”).

RQ 4: A warning of an attack did not attenuate the attack's effect on
pilots' trust.

Detailed information about the confidence of the alarm system it-
self, as discussed by Antifakos et al. (2005), might positively influence
pilots' trust. The trust ratings obtained seem to be inversely related to
the workload ratings. It seems that the heavier the perceived workload,
the weaker the trust in the system is and vice versa. This relation might
be explained by pilots' flying experience: In daily operation, pilots
perceive highest workload when there is a technical problem which is
attributable to reduced system reliability and leads to reduced trust.

4.4. Eye-tracking (RQ 5 and RQ 6)

We observed an elevated attention ratio of about 60% in case of
correct rejection toward aviate as well as about 25% toward navigate. For
false alarm, the warning seems to shift attention from aviate to other
areas. Although this difference is not statistically significant, it shows
that pilots are checking further instruments to rule out an attack. The
air traffic controller's warning seems not to affect the navigate set, be-
cause the former gives no further information about either the source of
the problem or the affected systems. The attack group evinces a greater
effect than the no-attack group in that the attention ratio is significantly
larger in the navigate set. This effect is attributable to the attack pri-
marily affecting the navigational task and not the flying or stabilizing of
the airplane (aviation set) per se. For the management set, we expected
to see a very different picture where the presence of a warning or an
attack would cause the attention ratio to be higher than in the correct
rejection (baseline). However, the contrary relation seems to prevail in
that the warning and the presence of an attack absorb so much atten-
tion that there is none left for management activities. Such attention
tunneling might contribute to greater risk because necessary mon-
itoring of the basic flying instruments might no longer be given (Dehais
et al., 2015; Tessier and Dehais, 2012).

RQ 5: A genuine cyber-attack influences pilots' attention ratio across
all analyzed sets of areas because attention shifts toward problem-
solving and monitoring of basic instruments might be neglected.
RQ 6: A cyber-attack false alarm leads to a decrease in monitoring
basic flying instruments.

Ongoing analyses focus on the relation between cue consistency and
gaze behavior, trust, and workload estimates as well as on their inter-
dependencies. Based on the studies of Hergeth et al. (2016) and Oakley
et al. (2003), we hypothesize a negative relationship between attention
ratio and trust in the system; system reliability influences the latter.

4.5. Performance (RQ 7 and RQ 8)

The results showed that the success rate of the attack group was
significantly lower than that of the no-attack group—regardless of the

warning. We nevertheless see that without a warning, more than half of
the pilots in the attack group thought they had overshot the VOR and
immediately turned left.

RQ 7: A cyber-attack leads to more incorrect decisions.

Decision-making quality can be treated as a performance measure.
Pilots' infrequent need to make decisions in situations lacking proce-
dural guidance also seems to explain the rather low success rates. The
pilots' scant opportunity to train and strengthen their decision-making
skills for coping with uncertainty during unforeseen events further
depresses the success rate. This is also in line with the results of Gontar
et al. (2015), who found that pilots are mainly trying to apply analytical
decision-making strategies (as they are taught to) rather than making
recognition-primed decisions based on their experience. We argue that
while under cyber-attack, recognition-primed decisions should be ex-
pected to be especially rare because pilots are not currently trained in
how to respond to such unforeseen events nor do they have a chance to
accumulate experience in handling them. This combined with the lack
of procedures seems to make it even harder for the pilots to react ap-
propriately.

RQ 8: Consistent warnings tend to help the pilots but inconsistent
ones further decrease their performance.

Warnings show no significant main effect on pilots' performance. No
significant difference in the influence of warnings was found within
groups. Nevertheless, we believe that consistent warnings might help
the pilots whereas inconsistent ones further confuse them. A false alarm
confused three participants in the no-attack group causing them to
decide incorrectly about when to turn. This might indicate that navi-
gational tasks are already severely challenging some pilots because they
are flying their aircraft normally with flight-director and autopilot en-
gaged (Haslbeck and Hoermann, 2016). Raw data flying—flying ac-
cording to the needles—seems to challenge some of the pilots even
without any further tasks, but especially when confronted with a sec-
ondary task such as verifying their instruments in an ambiguous, un-
expected situation.

4.6. Qualitative data

When we asked our participants what “would have helped you in
this situation?” in a qualitative questionnaire, they answered that
deeper knowledge of the system and understanding of which systems
are generally vulnerable to cyber-attacks would have helped them.
They further stated that more practice would have supported them
during the manual flying task. Other participants stated that an in-
dependent, non-electrical back-up system would be of great support
along with a virus scanner equipped to detect potential intrusion. The
qualitative data obtained prompts us to conclude that pilots are not
only unable to hypothesize that they are under attack, but that their
knowledge about how to respond is also inadequate. Answers to the
question “What information would you like to have had in the air traffic
controller message?” also reflects this. Here, pilots stated that they
wanted to have more information about the cyber-attack itself, which
aircraft components are affected, and what consequences this might
have.

5. Limitations of the study

One of the study's limitations is its rather small sample size of 22
participants. Another is the very heterogeneous distribution of experi-
ence, as we did not control for experience effects and randomly as-
signed participants to either of the groups. We were nonetheless able to
ensure that the sample's broad heterogeneity covered diverse aspects of
operator response, which we think is important in an exploratory study.



We are, however, most concerned about the overrepresentation of false
alarms and misses, because a well-functioning system would exhibit a
smaller probability of their occurrence. Although we do not know how
the pilots' behavior would change after experiencing several false
alarms, we do anticipate cry-wolf effects here. As we did not manipulate
the alarms' ambiguity and degree of uncertainty, we cannot conclude
how these factors influence the pilots' behavior. Further research ad-
dressing these specific aspects is needed. Moreover, future researchers
should manipulate the complexity and severity of the cyber-attacks.
Such variations constitute the number of manipulated systems or flight
instruments involved to determine whether our observed effects are
invariant across different types of attacks. Although we implemented a
scenario that was rather easy to deal with, we found a considerable
number of pronounced effects. Specifically, we assume very high drop-
out rates and fewer conclusions to be drawn when presenting very
complex scenarios or ones that are unmanageable for the pilots.

6. Conclusion and recommendations

Our results show that cyber-attacks influence pilots' workload, trust
in the system, visual information acquisition behavior, and perfor-
mance. We were able to show that a warning about an impending
cyber-attack can moderate several of those effects but cannot com-
pletely obviate them. Thus the cyber-attack and the warning have to be
taken into account when one wants to attenuate the aforementioned
effects.

6.1. Blunting the impact of the attack effect

Of course, technical and organizational efforts should be expended
to establish every possible barrier for reducing the probability of a
successful cyber-attack. As we argue, even the most sophisticated bar-
riers cannot completely exclude the possibility of successful breaches,
which the pilots then have to handle. From a human-factors perspec-
tive, one very important outcome of this study was that pilots did not
take any cyber-attacks into account when they tried to solve the pro-
blem they faced. From a decision-making viewpoint, the mere variety of
potential attacks seems to render pattern recognition nearly impossible.
Since different underlying manipulations can even introduce the same
errors from the operator's perspective, it even seems detrimental if pi-
lots apply their experience, as the cues that they perceive might be
invalid in a given context and can change from case to case. Taking the
qualitative data into account, we recommend incorporating the fol-
lowing approaches to diminish the effect of the attack itself (see also
International Federation of Air Line Pilots' Associations (2013) for
further training approaches):

1) Cyber-attack awareness training: Pilots need training that raises
their awareness of potential threats and of how an aircraft can be
infected with malicious software. This should also include aspects of
everyday behavior such as connecting a mobile phone to the elec-
tronic flight bag's USB port for charging, which can be sufficient to
infect the aircraft. Although we concentrated mainly on the pilots in
this article, we believe that such training is also very important for
other staff members such as the cabin or maintenance personal to
establish “collective awareness of cyber threats” (International Civil
Aviation Organization, 2016, p. 2). One approach to such training
might be to train pilots using simulation games in the classroom, or
using unforeseen events in the simulator. Since we generally re-
commend incorporating unforeseen events into simulator training,
doing so in this context might also be helpful.

2) General decision skill training: Even if pilots are aware of the
potential threat, they need training that helps them to resolve the
situation. Although not even a fraction of all possible attack

scenarios can be trained, the underlying skills should be. That is,
pilots should be trained in handling unforeseen and unexpected
events. Such training could also be incorporated into current
training syllabi as we are aware of cost pressure and acknowledge
that several hours of extra training for each pilot are infeasible.
Another approach involves using tools such as ShadowBox (Klein
and Borders, 2016). These authors acknowledge that subject-matter
experts “are good at the skill they are teaching but may not be good
at teaching that skill” (Klein and Borders, 2016, p. 268) and also
that the requisite subject-matter experts are very expensive. When
using this tool, trainees are presented with an unusual scenario in
form of narratives, video, or audio material (Mosier et al., 2018). At
specific decision points, trainees are asked to prioritize different
decision aspects such as actions to take, information selection, and
cue interpretation. They subsequently give the rationale for their
choice. The trainees' choices and rationales are then compared to
those of subject-matter experts (Klein and Borders, 2016). Such an
approach could facilitate the teaching of decision-making skills for
unforeseen events in a very general and thus useful way while in-
curring only minimal cost.

6.2. Blunting the impact of the warning effect

Our research showed how warnings profoundly influenced different
operator characteristics. In a recent analysis of alerting systems' role in
aviation accidents, Mumaw (2017) found that pilots quite often failed
to detect or even understand incoming visual or auditory alerts (see also
Bliss, 2003). Poorly designed alarms are particularly worrisome in that
they can greatly increase stress or distract pilots (Peryer et al., 2005;
Doll et al., 1983) thereby failing to establish sufficient awareness—an
effect that is especially prominent during flight phases that put severe
demands on the pilots (Durantin et al., 2017). In contrast, correct and
trustworthy alarms can reduce not only pilots' cognitive load but also
establish an appropriate picture of the situation and hence enhance
their performance. In line with the results of the qualitative data, we
recommend implementing warning systems based on systems compar-
able to virus scanners or firewalls.

3) Cyber-attack warnings: Cyber-attack warning systems comparable
to virus-scanners or firewalls designed to protect computers should
be installed to inform pilots when parts of the system have been
infiltrated. To diminish the cry-wolf effects, such warning systems
should be designed as likelihood alarms (see Sorkin, 1988). That is,
a well-designed alarm not only communicates which system might
be affected, but also how certain the threat is. Ideally, the warning
system would also suggest different options for handling the im-
pending threat including a very brief rationale for each option. Such
alarms could enhance the salience, importance, and meaning of the
relevant parameters, thus supporting pilots in providing clear cues
fostering good decision-making. We are very aware that such
warning systems can substitute for neither pilot decision-making nor
awareness training. The warning system can nonetheless represent
an altogether valuable support tool for pilots.

With the rising number of threats, there will also be an increased
number of attacks against civil aircraft. As long as we have pilots flying
our aircraft, they will be the last line of defense. We therefore have to
support them with procedures and training in every possible way so
that they are aware of, can correctly detect, and appropriately handle
impending cyber-attacks. Such approaches could be implemented in
form of a security management system analogous to well-established
safety management systems in every airline. The research reported here
takes a first step into the human-factors related research necessary for
this endeavor.
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