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Change detection for urban areas using very high
resolution satellite images

Gang Liu, Yann Gousseau, Florence Tupin,

Abstract—Change detection is a key problem for many remote
sensing applications. In this paper, we present a novel unsuper-
vised method for change detection between two high resolution
remote sensing images possibly acquired by two different sensors.
This method is based on keypoints matching, evaluation and
grouping to indicate changes, and does not require any image
co-registration. It works in two main steps. First, global and local
mapping functions are estimated through keypoint extraction
and matching. Secondly, based on these mappings, keypoint
matchings are evaluated to detect changes and then grouped
to extract regions of changes. Both steps are defined through
an a contrario framework simplifying the parameter setting and
providing a robust pipeline. The proposed approach is then
evaluated on synthetic and real data from different optic sensors
with different resolutions, incidence angles and illumination
conditions.

I. INTRODUCTION

Change detection, aiming at detecting changes between
remote sensing images, has been widely studied in the litera-
ture [1]–[18]. Many applications have been investigated based
on change detection, such as disaster evaluation [4], [19]–
[22] or land use monitoring [9], [23]–[26]. The unsupervised
change detection, which requires less human intervention, has
attracted more and more attention [3], [7], [18], [27]–[35].

In the past few years, two main trends have led to drastic
changes in the change detection approaches. First, numerous
sensors have been launched both by national or international
space agencies and by private actors. This wealth of sensors
(either optic or SAR) and acquisition conditions (sensor agility,
acquisition mode diversity) makes it necessary to develop ro-
bust approaches overcoming changes of resolutions, of lighting
conditions and incidence angles. The challenges are specially
difficult when dealing with urban areas where object elevation
impairs the fine registration, particularly in the absence of a
Digital Surface Model (DSM). Secondly, the spatial resolution
improvement leads to scenes with higher complexity [36], the
abundance of small and potentially moving objects giving rise
to many irrelevant changes.

Traditional change detection approaches usually rely on a
first step of co-registration [37]–[39], followed by a pixel-
based comparison. For this second step, many methods have
been proposed to efficiently discriminate between changed
and unchanged pixels, relying on SVM [28], MRFs [40], a
contrario methods [26], [41], [42], morphological attribute
profiles [21] or neural network (NN) models [43].
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As previously mentioned these pixel-based approaches rely
on a fine registration step which may not be possible for
urban areas because of object elevation and parallax effects.
When a DSM is available, more sophisticated approaches have
been proposed. They usually rely on an explicit modeling of
buildings [44]–[47] and provide robust results. However, they
necessitate the knowledge of DSM models and/or the use of
sophisticated acquisition procedures such as LIDAR, which
may be impracticable in cases such as disaster evaluations.

Without such information and to overcome the drawbacks
of pixel-based approaches, feature-based approaches or object-
based approaches have been developed (see [48] for a review).
Local descriptors may have the advantage of being able to
encode radiometric or geometric invariance as this is the case
for the SIFT descriptors [49]. Therefore they are well adapted
to deal with challenging situations such as multi-sensor change
detection where strong geometric and radiometric distorsions
may occur. Although widely used in computer vision, these
descriptors have been mostly used for the pre-registration step
of remote sensing images [50], and hardly for the change
detection step itself, with the exception of [51].

In this paper, which is an extended version of the conference
paper [52], we go futher into some ideas of [51] to propose
a complete processing pipeline for change detection between
optic images acquired by heterogeneous sensors. Our method
does not require a pre-registration step and is able to cope with
radiometric and geometric distorsions. The proposed approach
relies on local descriptors and is robust to parallax effects
thanks to the modeling of local deformations. The difficult
setting of parameters discriminating change and ”no change”
situations relies on the a contrario framework [53] giving an
intuitive understanding of their behaviour.

The method is divided into two main steps. First, using
SIFT-like descriptors extraction and matching, we compute a
global mapping and several local mappings between the two
images. Indeed, the a contrario framework permits the reliable
search of multiple local mappings. This step allows to take
into account local geometric deformations due to ground or
building elevation. The output of this first step is a new set of
optimally matched local descriptors. The second step of the
method consists in detecting changes between descriptors. The
a contrario model yields thresholds to detect changes, defined
through an expected number of false detections. These changes
are then grouped to detect changed areas by evaluating the
number of changed keypoint under a no change hypothesis,
again in an a contrario framework. The proposed method is
then evaluated on synthetic and real images through quantita-
tive and qualitative experiments.
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The paper is organized as follows (see the flowchart Fig.
1). The first step computing the global and local mappings
through keypoints and descriptors matching is presented in
Section II. The second step of change detection and grouping
in an a contrario framework is described in Section III. Then
Section IV presents and discusses experiments of the proposed
approach on synthetic and real data.

Fig. 1: The flowchart of the proposed approach. The keypoint
matching and mapping computations are presented in section
II.A and II.B, while the keypoints evaluation for change
detection is described in section III.A and the grouping in
section III.B.

II. FINE SPARSE REGISTRATION

The first step of the algorithm is, starting from two unreg-
istered images, to establish accurate and reliable correspon-
dences between spatial positions. First, keypoints matching
permits the estimation of one global transform and then
the same matching permit the estimation of locally refined
transforms. Then, for each keypoint in the first image, its best
corresponding spatial position is found in the other image,
using the various refined transforms to generate candidate
positions. The same is performed between the second and
first image. In short, we perform an accurate registration of
the positions given by local keypoints.

A. Keypoints matching

We choose to rely on a SIFT-like procedure to extract and
characterize local keypoints since SIFT is robust to scale and
illumination changes, and robust to affine changes to a certain
extent. Precisely, we use a robust variant of the SIFT [49]
method, as described in [54]. Since SIFT is robust to scale
and illumination changes, and robust to affine changes to a
certain extent, it proves to be a robust and discriminative
feature. For example, SIFT has been applied in image stitching
[55] and image classification [56], [57]. Note however that the
approach proposed for change detection is generic and that
other descriptors could be used.

The first step of the procedure is to identify interesting
spatial positions. This is classically performed by detecting
scale-space extrema of the Laplacian operator. Similarly as in
the original SIFT, we use 13 scales with a scale ratio of 1.2.
Then, the detected maxima are filtered by applying a multi-
scale Harris test. For a point x detected in an image Iσ at
scale σ, this test is classically defined [58] as:

Det(Mσ)− kTr(Cσ)2 > t,

where Cσ is a smoothed structure tensor computed on the
image Iσ , and k, t are two parameters. The outcome of this
step is a set of keypoints, each of which is associated to a
detection scale.

The next step is to compute SIFT-like descriptors at each
keypoint. Again, we follow a robust statistical procedure as
explained in [54]. Dominant directions are first associated to
each keypoint, using the robust statistical procedure from [59]
(a maximum of two directions is retained). Then, for each
point having scale σ and each dominant direction, a circular
region with radius 12σ is associated to it, divided into S sub-
regions [54] (in all experiments in this paper, we use S = 9).
For each sub-region, a histogram of the orientation of the
gradient with respect to the dominant direction is built over
12 bins. As in the original SIFT, orientations are weighted
by the magnitude of the gradient. The final descriptor is
made of the concatenation of the histograms. Observe that
the building of these descriptors is given for completeness
and is in no case a contribution of the present work. Again
the approach to be described next is generic and could be
applied with different local descriptors. In what follows, we
write {pai ,dai }i=1,2,··· ,Na for the Na keypoints and descriptors
extracted from the first image Ia, and similarly for those
extracted from the second image Ib.

The last step of this classical preliminary matching of key-
points is the matching step. We compare descriptors using the
Circular Earth Mover Distance (CEMD) (noted as DCEMD

in what follows), obtained by summing circular transportation
distances between orientation histograms, see [60]. For setting
matching thresholds, we use the automatic a contrario proce-
dure from [54]. An alternative would be to use the criterion
on the ratio of distances proposed in [49]. The outcome of
this step is a set of matched keypoints pairs between images
Ia and Ib.

The previous procedure is able to deal with unregistered
pairs of images having arbitrary displacement between them.
However, the procedure is straightforwardly speeded up by
assuming a maximum displacement amplitude between the
two images (e.g. by using a rough pre-registration). In our
experiments, we restrict the search for similar keypoints to
a window of size W , a parameter to be specified in the
experimental section.

B. Keypoints mapping

The next step of our procedure is to refine the spatial
correspondences found in the previous section by keypoint
matching. There are two reasons for this. First, the detection
of keypoints may be unstable from one image to the other,
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in particular when images are acquired with different sensors.
Second, many keypoints in one image are not matched with
any keypoint in the other image, or are wrongly matched. In
order to associate to each keypoint a reliable corresponding
position in the other image, we rely on the robust estimation
of local transforms.

1) Global and local mappings extraction: From the
matched pairs of keypoints, we seek a set of transforms that
will be complete enough so that, for each keypoint, one of the
transform will map the keypoint to its corresponding position
in the other image. These transforms mostly account for two
sources of disparity between images: one global rigid disparity
and several local disparities due to parallax effects between
images acquired with different incidence angles. These effects
are particularly strong in high resolution urban images, where
tall buildings can shift over a large number of pixels.

The global transform will first be estimated thanks to all
keypoints correspondances, and then parallax effects will be
accounted for by the estimations of local transforms over
sliding windows. In all the paper, we consider affine transforms
(six parameters), both for the global mapping and the local
ones, a reasonable choice in urban scenes for which structures
are locally flat.

Both global and local transforms are classicaly obtained
using a RANSAC procedure. Once the global transform has
been estimated, the difficulty is to obtain locally the remaining
local transforms needed to explain the disparity. For this, we
rely on a multiple RANSAC procedure, the so-called Multiple
a contrario RANSAC (MAC-RANSAC) introduced in [61].

The global mapping, that we denote f0, is computed from
all pairs of matched keypoints. It is obtained by a classical
RANSAC procedure (or equivalently by retaining the most
meaningful transform returned by the MAC-RANSAC algo-
rithm). Then, we consider sliding windows in the first image,
with size 2L× 2L and 50 percent overlap. For each window,
the corresponding set of pairs of matched keypoints are used to
feed the MAC-RANSAC algorithm, resulting in a set of local
transforms. It is worth emphasizing that estimating several
transforms using a RANSAC procedure is a tricky task, here
permitted by the use of MAC-RANSAC. In particular, this
algorithm automatically set the number of transforms that
should be retained for each window.

Next, we map each point in the first image to its corre-
sponding position in the second one, a position that we call the
mapping of the point. For each keypoint pai in Ia, we consider
the global transform f0 and the n local transforms f1, . . . , fn
corresponding to the local windows the point belongs to.
The mapping of pai is defined as the position fk(pai ) in Ib
most similar to pai . To assess the similarity and characterize
the mapping, each position fk(pai ) is associated a new local
descriptor, the scale and orientation of which are those of
dai , the descriptor associated to the keypoint pai . For the
experiments considered in this paper, images roughly have the
same scales and orientations. If this is not the case, the scales
and orientations of the new descriptors have to be computed
(in case the two images differ by a known rigid transform)
or estimated as in the original descriptor definition. We write
dbi,k for this ”projected” descriptor. The mapping of pai is then

defined as fk̂(pai ), where the index k̂ is defined as

k̂ = arg min
k

(
DCEMD(dai ,d

b
i,k)
)
, k = 0, 1, · · · , n, (1)

D being the Circular Earth Mover’s Distance(CEMD) between
descriptors and the set of transforms f0, f1, . . . , fn being
obtained as described above from all local windows containing
the point pai .

Similarly, each keypoint in Ib is mapped to a position in Ia.
Observe that the global transform f0 is added to the set of

candidate transforms in Equation (1). This is useful if no local
transform is found by the MAC-RANSAC procedure.

Following the mapping of keypoints just described (from Ia
to Ib and conversely) we obtain a set of pairs of descriptors
that should correspond to the same physical positions on the
scene. We write {

xai , x
b
i ,d

a
i ,d

b
i

}
i=1,...,N

for these positions and for the associated descriptors.
2) Experiments on local mapping: A simple situation illus-

trating the computation of local mappings is given in Fig.2,
where the two colored (red and yellow) windows correspond
to group of buildings with different heights. Thanks to the
MAC-RANSAC algorithm, different local mappings are found
for each window.

To further illustrate the utility of the local mappings, we
perform two experiments. In the first one, a synthetic image
is obtained by juxtaposing two buildings extracted from a
larger image. A second synthetic image is obtained by placing
the buildings in different relative positions. We can see on
Fig.3 that the matched keypoints are detected as two different
groups (corresponding to two different local transforms) by
the MAC-RANSAC procedure. In Fig.4, we show a more
realistic experiment. We compare two small images containing
buildings with different heights, extracted respectively from
Geoeye-1 and Wordview-2. The MAC-RANSAC algorithm
detect a different group (local transforms) for each building.

Fig. 2: A simple situations where two local transforms cor-
respond to two groups of buildings with different heights,
yielding different transform by parallax effect. Buildings in
the red window are lower that in the yellow window and
correspond to much smaller displacements.
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Fig. 3: Synthetic images. The first image is made of the
juxtaposition of two subimages of buildings, the second is
made from the same subimages in different relative positions.
In the first row, all the matched key points are displayed in
red. With a MAC-RANSAC method, we obtain two different
local transforms, one from the green matched points (second
row) and the other from the red matched points (third row).

Fig. 4: Two image patches cut from Geoeye-1 (left) and
Worldview-2 (right). First row: all matched keypoints. Second
row: points corresponding to a first local transform. Third row:
points corresponding to a second local transform associated to
the elevation of another building.

III. CHANGE DETECTION

The main idea to detect changes is quite simple. First,
we identify descriptors corresponding to the same physical
location (that is, pairs (dai ,d

b
i )) that have changed signifi-

cantly. Second, we perform spatial grouping of these changed
descriptors. For both steps, we draw on an a contrario method-
ology [62], that yields robust decision criteria.

A. Detection of changed keypoints

For each pair of positions (xai , x
b
i ) (ideally corresponding to

the same physical location if the previous step has succeeded)
we want to check if a change has occurred between images Ia
and Ib. This is achieved by computing a distance between the
descriptors and then setting a threshold thanks to a statistical
procedure. For this, we rely on an a contrario approach [53],
both for robustness and genericity. The approach is similar
to the one introduced in [54] for the comparison of local

descriptors, except that in our case we want to assert the
dissimilarity of local descriptors and not their resemblance.

The principle of a contrario methods is to set a random
model, called background model or null hypothesis, for which
it is assumed that no event should be detected. In our case
”no change” should be detected and thresholds will be chosen
large enough so that, assuming the random model, most pairs
of descriptors will be at a distance smaller than this threshold.

In order to define the background model, we assume
that the distance D between descriptors can be written as
D(dai ,d

b
i ) =

∑S
s=1 d(sai,s, s

b
i,s), where S is the number of

sectors composing the local descriptors (see Section II-A),
sai,s is the sth sector of descriptor dai , and d is some distance
between sectors. This is in particular the case for the distance
DCEMD that we use, initially introduced in [54], for which
d is the circular earth mover distance between orientation
histograms.

As it is done in most a contrario approaches, the random
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model is defined through an independence assumption. In our
case, this results in the following definition for the background
model (or null hypothesis).

Hypothesis 1 (Background model H0) for any i, the ran-
dom variables {d(dai,s,d

b
i,s)}s=1,··· ,S are mutually indepen-

dent.

We denote z the random variable corresponding to the
distance between two descriptors under H0 hypothesis (back-
ground model for ”no change” case). Using the previous
independence assumption, we get that the probability that z is
larger than a threshold is:

Θ(δ) := P(z ≥ δ|H0) =

∫ +∞

δ

S∗
s=1

Gs(z)dz. (2)

where the probability density function (PDF) of the random
variable d(dai,s,d

b
i,s) is denoted as Gs and ∗ is the convolution.

The next step is then to set a threshold δ on distances,
so that false alarms are controlled. One of the key idea of
a contrario methods is that it is much easier to compute the
expected number of false alarms than the probability that a
certain number of false alarms occurs [53]. Observing that the
total number of comparisons between descriptors is N = Na+
Nb, we define as changed any pair (xai , x

b
i ), i = 1, 2, · · · , N,

satisfying:

Θ
(
DCEMD(dai ,d

b
i )
)

:= P(z ≥ DCEMD(dai ,d
b
i )|H0) ≤ ε1

N
,

(3)

where ε1 sets the bound on the expected number of false
detections. With such a definition of ”changed keypoints”, we
easily get that if we perform N comparisons between descrip-
tors under H0, the expected number of changed keypoints is
smaller than ε1.

In order to be able to compute the probability given by
Equation (2), we must estimate the density Gs. In this work,
in a way similar to [63], the densities are empirically estimated
through the histograms of observed distances d(dai,s,d

b
i,s), for

i = 1, . . . , N .

B. Changed keypoints grouping

In the previous section, we have set a threshold on the
distance between descriptors. After this step, we retain all
pairs of descriptors at distance larger than the threshold as
”changed”.

Although the descriptors and matching method used are
robust, they only use local information (at the scale of the
descriptors) and some isolated changes, such as cars that have
moved, may be detected. In most circumstances, such as the
monitoring of natural disasters or for urban planning, such
changes are not relevant. Therefore, we now introduce an
automatic way to group the descriptors detected as changed,
yielding larger ”changed” areas that will be the final output of
our algorithm. Again, this grouping is performed using an a
contrario method. More precisely, we will first define a set of
candidate regions by multi-scale circulars centered at each key-
points, and then for each region we will compare the number
of detected keypoints and the number of changed descriptors.

When these two numbers are suspiciously different (according
to a statistical criterion to be defined) we will detect the region
as ”changed”. Eventually, a maximality principle permits to
avoid the detection of multiple regions.

We arbitrarily choose to perform the grouping in image
Ia, but performing it on Ib would yield very similar results.
Because keypoints are mapped symmetrically, so image Ia
and image Ib have same distribution of keypoints and changed
keypoints.

In order to estimate when the number of changed descriptors
is high in a given region, we must first compute the probability
that a descriptor is changed between the two images. We
assume that this probability can be estimated globally over
the image, although using a local estimation could also provide
interesting results. If Nc is the total number of changed de-
scriptors (according to the procedure of the previous section),
then the probability % that a descriptor is changed is estimated
as % = Nc/N .

Following the a contrario methodology, we detect groups
of changed keypoints that are very unlikely under some
background model. Again, this background model relies on
an independence assumption between the individual elements
to be grouped, in our cases changed descriptors. This hypoth-
esis asserts that each descriptor may be changed with some
probability, independently of the other descriptors. That is, we
define the background model H′0 as:

Hypothesis 2 (H′
0) The number of changed keypoints in a

local region containing n keypoints follows a binomial distri-
bution B(n, %).

Therefore, the probability that this region contains more
than m changed keypoints is

Ψ(m,n) := P(k > m|H′0) =

n∑
k=m

B(k, n, %), (4)

where B(k, n, %) =
(
n
k

)
· %k · (1− %)n−k.

The meaningfulness of a given region is then defined
through a Number of False Alarm (NFA) [62]. If the region
has m changed descriptors for a total number of n keypoints,
then the NFA is defined as Ψ(m,n) times the total number of
considered regions [53]. In order to be able to detect changed
regions with various scales, we consider, for each keypoint, a
set of disks with different radiuses centered on this point. The
set of radiuses we consider is obtained by uniformly sampling
the interval [rmin, rmax], with a step of nr. Therefore the total
number of tested regions is Λ = nr ·N . Therefore, the NFA of
a region containing n keypoints among which m descriptors
have changed is:

NFA = Λ ·Ψ(m,n). (5)

When working with large images, numerical values of the
NFAs may become intractably small. In such cases, one can
rely on the Hoeffding bound [64] on the tail of the binomial
distribution to get an approximation of the NFA.

Then, a region will be detected if its NFA is smaller than
a detection parameter ε2. As before, this detection parameter
has an intuitive meaning since it is an upper bound of the
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number of (false) groups that should be detected if hypothesis
H′0 is true.

The last step in order to decide which regions are changed
is a maximality principle. Indeed, the set of all meaningful
changed regions (regions for which the NFA is smaller than
ε2) is highly redundant and in particular contains many nested
regions. Now, a strong asset of the NFA is that it may be
compared between entities of different sizes (see e.g. [53],
[65]). More precisely, We use a multi-scale strategy here,
which means that at each change keypoint, we select several
candidate regions with different sizes. Therefore, among all
meaningful regions (disks) centered on a given keypoint, we
only retain the most meaningful one, that is, the one having
the smallest number of false alarms.

C. Algorithm pipeline

The complete approach is summarized in Algorithm 1. The
choice of parameters will be discussed in the next section,
where we gather experimental results.

Algorithm 1 Change detection between two digital images

Input: Two images Ia and Ib, searching scope W , threshold
for NFA ε1 and ε2.

Output: Change detection result (a binary mask)
1: Extract SIFT-like keypoints and descriptors
2: Match keypoints using an a contrario approach;
3: Mappings. Compute a global transform; compute local

transforms for each local regions (overlapping sliding
windows)

4: Best match computation. Using the estimated transforms,
associate to each keypoint a mapping (best corresponding
position) in the other image, yielding pairs of keypoints
and descriptors through Eq.1

5: Change detection. Calculate the CEMD distance between
each pair of descriptors and evaluate whether the pair
is changed or not, using an a contrario approach with
threshold ε1 through Eq 2 and Eq. 3.

6: Grouping. Consider multi-scale concentric circular regions
centered at each key point and decide whether a region
is changed (containing a large number of changed key-
points), by using an a contrario approach with threshold
ε2 through Eq.4 and Eq.5.

IV. EXPERIMENTS AND ANALYSIS

We now proceed to the experimental validation of the
proposed approach for change detection. We first present the
experimental setup, including a presentation of the parameters
of the algorithm. Then, we provide a numerical evaluation.

In order to quantify the results, we build pairs of synthetic
images on which changes are artificially added. Next, we show
the utility of the local transforms involved in our algorithm.
Eventually, we provide results on real and challenging high
resolution image pairs, originating from different satellites or
even directly acquired from Google Earth.

A. Experimental setup

Four parameters need to be set by users in our method. This
section describes them in detail.
• Searching scope W :

This parameter controls the searching scope used in
the matching step. For each keypoint, only keypoints at
distance smaller than W in the other image are sought for.
This restriction relies on the hypothesis that images are
very roughly registered and is mostly aimed at speeding
up the process (although it may prevent from some
outliers). As such, it is not critical and can easily be
adapted to a given situation. In our case, the resolution
of experimental images pairs are 0.46m and they are
roughly registered by their latitude and longitude, we
set W = 50 (roughly 23m) to ensure that keypoints are
able to be matched between image pairs. Note W = 100
are also tested and comparable results are obtained, but
consuming longer time.

• Local patch size w:
This parameter controls the size of the sliding windows
on which local transforms are computed. It should be
big enough to contain the larger building of the analyzed
scene and can be fixed depending on the image resolu-
tion.Roughly speaking, w is set up by experience. In our
cases, the resolution of experimental images are 0.46m.
So a local patch with w=50 can cover a 23m region. We
observe this size of patch is small but can cover single
buildings most of the time. However, there are some
huge buildings that can not be covered in a single patch.
For these huge buildings, several local patches will be
considered separately. Besides, w should not be too small
because in this case we can not get enough keypoints to
estimate the local mapping functions.

• Threshold for the detection of changed descriptors ε1:
Descriptors corresponding to the same spatial position in
the two images are evaluated as changed or not by an
a contrario method. This requires to set a bound ε1 on
the number of false detections. Since this parameter has
a statistical meaning, its setting is easier and more robust
than the setting of a threshold on the spatial distance
D(pai , p

b
i ). Refer Sec. IV E for more information.

• Threshold for the grouping of changed keypoints ε2:
The changed key points are grouped into changed regions
using an a contrario multiscale strategy. Again this
requires the setting of a parameter ε2, for which the
same remarks as for ε1 apply. Refer Sec. IV E for more
information.

We provide the setting of these parameters and discuss their
effects for each forecoming experiment.

B. Numerical evaluation on synthetic realistic images

We first consider synthetic images, on which the changes are
artificially added, permitting a numerical evaluation. We start
from three pairs of images aquired by two different satellites,
Geoeye-1 and Worldview-2, respectivelly in 2009 and 2010,
on which no major change has been visually identified. All
images have a pixel sampling around 0.5m.
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For each pair, we create changes by inserting excerpts from
other images from the same satellites. These excerpts locations
then provide the reference data for the detection of changes.
Images are available on this web site1. The performances
of our algorithm are then compared to methods relying on
pixel-based comparisons. These methods are applied after a
global registration using an homography estimated by SIFT
and RANSAC-based methods. We use the same protocol as
the one recently proposed in [66]. Performances are compared
through ROC curves, displayed in Fig. 5. The first curve, on
the left, evaluates the detection of changed descriptors. The
Probability of False Alarms and the Probability of Detection
are computed using each detected keypoint. Keypoints outside
the artificially added excerpt are considered as not changed,
and the other ones as changed. We can see on this curve
that the proposed method outperforms pixel-based ones, even
though the correlation method gives good results in this case.

The second curve, in the middle, evaluates the grouping of
keypoints. Contrarily to the previous ROC curve, this curve is
obtained by considering all pixels of the image. Indeed the ul-
timate goal is to correctly classified all pixels as ”changed” or
”not changed”. Here we can see that the proposed approach is
clearly better than pixel-based approaches, which in particular
are not able to deal with parallax effects.

The third curve in Fig. 5 includes also a comparison with
the state of art method [66]. For this comparison, we use the
candidate images from [66]. The used reference data not only
includes the removed buildings, but also includes the changed
plain ground, which is not taken into account by our method.
As a consequence, the comparison is not balanced but we
presented it for the sake of completeness.

C. Usefulness of the local transforms

This section shows the necessity of estimating local trans-
forms for the detection of changes between descriptors. In
order to do so, we compare the results obtained with and
without introducing the local transforms in addition to the
global transform on two real images of the same sensor.

The corresponding results are shown in Fig. 6. The first
column shows the input images Ia and Ib, the second col-
umn shows the evaluated changed keypoints when only a
global mapping function is used. The third column shows the
evaluated changed keypoints by using the proposed algorithm
(combination of global and local transforms). Framed in blue
and pink are details of the results. In particular, one sees that
when no local transform is used, points on the circular elevated
structure are mapped to wrong positions, which results in
false detections of changed keypoints (red points in the blue
rectangles for image Ia and Ib). This is corrected by the
estimation of local transforms (pink rectangles).

D. Experimental results on heterogeneous images

In this section, we perform change detection on non-
synthetic images, acquired by different satellites on the city of
Toulouse. Then, we apply our algorithm on images extracted

1http://idiap.ch/∼gliu/eusipco2016/changedet.html

from Google Earth, for which no calibration information is
available.

1) Experiment 1: In this first experiment, we apply our
algorithm to high resolution remote sensing images from two
different satellites, GeoEye-1 and Worldview-2.

The GeoEye-1 satellite sensor was launched in 2008 and
provides a sub-metric resolution (between 0.4 and 0.6m de-
pending on the viewing angle). WorldView-2 was launched in
2009 and also provides approximately a 0.5m resolution.

The images are obtained on the city of Toulouse, France.
The image from GeoEye-1 was taken in 2010, while the image
from Worldview-2 was taken in 2012. We choose two pairs
of parts of the images and detect the changes between them.
The first two images have a size of 700× 700 pixels and the
second pair is made of images with a size of 850×700 pixels.
Both images have a pixel size around 0.5m.

In this experiment, the parameter W , which used to restrict
the searching scope for each key point, is set to W = 50.
The two parameters ε1 and ε2, which are used to control the
number of false alarm (NFA) are set to be ε1 = 1 and ε2 =
10−5 respectively.

The corresponding results are shown in Fig.7, Fig.8 and
Fig.9 respectively. In this experiment, images (a) and (b) are
not registered and not aligned at the pixel level. In particular,
it can be noticed in the left bottom corner of Fig. 8 (a)
and (b), that the pixels corresponding to a tall building shift
widely from the first image to the second one, over roughly
7 pixels. However, applying the MAC-RANSAC method over
each local region with the matched keypoints, we can obtain
multiple mapping functions. Ideally, the matched keypoints
belonging to any single building can be grouped into a single
set and be mapped to the other image. Thus, in any local
region, each keypoint in the first image can be mapped to
several locations in the second image. By choosing the most
similar ones as the mapped keypoints, we are able to ensure
that most keypoints are mapped to the correct places in the
second image.

Fig. (f) in Fig.7, Fig.8 and Fig.9 illustrate the grouping
results. Green keypoints are the points eventually detected
as ”changed”. Note that our results are not so accurate at
the border of the changed region. This is due to the use
of sparse SIFT-like keypoints rather than a dense patching.
Nevertheless, the final region covers most of the (manually
estimated) ground truth.

Observe also that due to the use of SIFT descriptors, the
proposed change detection procedure is not sensitive to very
small changes, such as the moving cars in the street. This
may be seen as an advantage, since change detections in high
resolution remote sensing images are usually more concerned
by changes on buildings than on moving cars. Of course,
this aspect may be finely tuned by selecting the scale of
the considered SIFT descriptors, depending on the targeted
application.

2) Experiment 2: In this experiment, we process two pairs
of optical remote sensing images extracted from Google Earth.
Each pair is taken at the same place but at different times.
More importantly, they also appear to be taken by satellites
at different incident angles. Thus, the buildings in the image
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Fig. 5: Left: evaluation of the detection of changed descriptors. Middle: evaluation of the detection of changed regions. Right:
comparison with the approach from BNP-MRF [66].

Fig. 6: This figure illustrates the utility of estimating local transforms. On the first column are the two original images taken by
different sensors (Geoeye-1 and Worldview-2). On the second column, changed keypoints (in red) using the global approach
(a single transform is estimated to map the keypoints) are shown for image Ia on the top and image Ib on the bottom. On
the third column are shown changed keypoints obtained when estimating local transforms for both images. The fourth column
displays details on the top without local transforms and on the bottom with local transforms.

shift heavily from the first image to the second image. It is
also worth noticing that these images have unknown origin,
and in particular have undergone unknown processing stages
(enhancement, compressions, etc.). This is both a challenging
and realistic application case. As in the previous experiment,
the ground truth is obtained manually.

Images (a) and (b) of Fig. 10 have been acquired near
Avenue du Général Leclerc, Paris, France, in 2008 and 2014
respectively, with sizes 850× 1000. In particular, a large bus
deposit was demolished between these dates and at this place
(bottom right of the image). Images (a) and (b) of Fig. 11
have been acquired at Issy-les-Moulineaux, France, in 2005

and 2007 respectively, with sizes 550× 550.
In this experiment, the parameter W , which used to restrict

the searching scope of each keypoint, is set to W = 50. The
parameter ε1 which is used to control the number of false
alarm (NFA) when detecting changed key points is set to be
ε1 = 1. However, as these high resolution remote sensing im-
ages from Google Earth are acquired in different situations, the
other parameter ε2, used to control the number of false alarm
(NFA) when grouping of key points, is adjusted accordingly.
For the experiment of Fig. 10, it is set to ε2 = 10−5, while
for Fig. 11, it is set to ε2 = 1.

In Fig. 10 (e), our result indicates the exact location of the
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(a) (b) (c)

(d) (e) (f)
Fig. 7: Change detection on a pair of optical satellite images taken by different sensors (Geoeye-1 and Worldview-2). Both
images have a resolution of 0.46m. Figure (a) and figure (b) show the original images without co-registration. The middle
two images, (c) and (d), show the changed key points (in green) for each image. Figure (e) shows the final result of change
detection (green) overlaid on image (a) and figure (f) is the manual annotation.

(manually evaluated) changed region. However, compared to
the ground truth in (f), our mask does not cover some flat parts
of the region. This is because the are few SIFT keypoints in
these flat regions. This is one of the limitation of our algorithm,
which should be adapted to dense points comparisons.

Fig. 11 shows a more difficult situation. In the scene, there
are buildings, sport court, trees etc. Many changes occur
from (a) to (b). Compared to the ground truth (f), our result
indicates all the changed regions. However, our result also
gives a missing detection (indicated by a red rectangle in (e)).
Two factors caused this error. The first one is the detection
of small changes and the second is due to the shadows of
the buildings. These two factors introduce many noise and
suppress the detection of positive target. The SIFT descriptor
is robust to illumination, and therefore to some extent robust to
the shadows. Nevertheless, the edge of the shadow introduces
some coherent differences between shadows, a limitation that
has to be addressed in future works.

E. Discussion on the choice of parameters

In contrast with other methods, and in particular the pixel-
based methods, the proposed method is largely based on an a

contrario strategy, which alleviates the choice of parameters to
some extend. Nevertheless, and as it was illustrated on Google
images, this parameter choice still has its importance.

The first parameter ε1 is the threshold for detecting changed
descriptors. The bigger this value, the more descriptors will
be classified as changed. Fig.12 illustrates the relationship be-
tween the number of changed descriptors and ε1, from which
we can see that the total number of changed descriptors in-
creases slowly as ε1 becomes larger. Fig.14 shows the changed
descriptors for four different values of ε1 = 2−3, 20, 23, 26. If
ε1 is very small, we detect less keypoints in changed and
unchanged regions. On the contrary, if ε1 becomes larger, we
detect more keypoints in both changed and unchanged regions.
Under the a contrario hypothesis, the final result is robust if
ε1 varies, which can be seen from Fig.12 and Fig.14. It can
be seen that the parameter ε1 is a robust parameter. In our
experiment, we set ε1 = 1.

The second parameter ε2 is the threshold for grouping the
keypoints. In Fig.13 we show the regions whose number of
false alarm (NFA) are less than 1. Here for better visual-
izing, the NFA value is transformed by − log(NFA). We
can observe that the NFA is different in different regions.
As expected, the regions with a larger number of changed
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(a) (b) (c)

(d) (e) (f)
Fig. 8: Change detection on a pair of optical satellite images taken by different sensors (Geoeye-1 and Worldview-2). Both
images have a pixel sampling of approximately 0.5m. Figure (a) and figure (b) show the original images without co-registration.
The middle two images, (c) and (d), show the changed key points (in green). Figure (e) shows the final result of change detection
(green) and figure (f) is the manually annotation.

descriptors have a larger value − log(NFA). In Fig.13, the
region where a construction site has completely disapeared
has the largest value − log(NFA), while the regions with
small changes like moving cars have a smaller value for
− log(NFA). This indicates that the NFA is a reasonable
indicator of the magnitude of changes. Fig.15 illustrates the
detection results with ε2 = 20, 2−3, 2−6, 2−9.

V. CONCLUSION

In this work, we have proposed a change detection method
enabling one to compare images that are not registered. Thanks
to the use of invariant local descriptors, the method is robust to
radiometric changes and local geometric distortions. Because
these descriptors are adapted to geometric structures, the
method is especially adapted to high resolution urban scenes.
There are several ways this work could be continued. First,
we wish to produce a larger scale evaluation involving ground
truth on high resolution urban images. Next, one should take
into account shadows that in practice are responsible for
frequent false detections. Last, the method will fail in case of

low contrast scenes, where few keypoints are detected. In such
situations, a dense keypoint extraction could be considered.
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Fig. 11: Change detection on a pair of optical satellite images taken from Google Earth. Figure (a) and figure (b) show the
original images without co-registration. The middle two images, (c) and (d), show the changed key points (in green). Figure
(e) shows the final result of change detection (green) and figure (f) is the ground truth.
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− log(x).
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