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Interaction of unequal anti-parallel
vortex tubes

By J. S. M A R S H A L L,
P. B R A N C H E R  AND  A. G I O V A N N I N I

Institut de Mécanique des Fluides de Toulouse,
Allée du Professeur Camille Soula 31400 Toulouse, France

A computational study is reported of the close interaction of nominally anti-parallel
vortex tubes with unequal strengths,Γ1 and −Γ2, whereΓ2/Γ1 6 1. The computations 
are performed using a spectral method, with periodic boundary conditions and vortex
Reynolds number Re ≡Γ1/ν = 1500, and the vortices are perturbed by a wavelength 
for which the pair is unstable because of their mutual interaction. The numerical
method is tested for the case of equal-strength vortices, which exhibits the classic
vortex reconnection phenomenon typified by bridging between the vortex cores and
formation of thin vorticity threads as the bridged sections advect away under their
self-induced velocity. Computations for vortices of unequal strengths are reported for
cases with small, moderate and large strength differences, for whichΓ2/Γ1 = 0.82,
0.54 and 0.25 are chosen as representative values. The bridges between the vortex
structures form loops that twist owing to the unequal vortex strengths. In the thread
region, the vortex interaction is controlled by competition between the effects of
stretching of the weak vortex as it wraps around the stronger vortex and the core
distortion induced on each vortex owing to the straining imposed by the opposing
vortex. For cases with large vortex strength difference, the strong vortex remains
nearly straight as the weak vortex wraps around it, inducing an interlaced pattern
of positive and negative vorticity spirals within the core of the strong vortex. Over
long time, the bridge regions form loops that propagate away from the thread region
for cases with small strength difference and wrap around the nearly columnar strong
vortex for cases with large strength difference.

1. Introduction
The process by which two approaching vortices are cut and reconnect to each

other has been of interest to the fluid dynamics community for several decades. This
process has at various times been proposed as a key ingredient in the turbulence energy
cascade (Kida & Takaoka 1994) and in generation of aerodynamic noise (Takai &
Hussain 1985), and it is clearly important in controlling breakup of aircraft wake
vortices under certain atmospheric conditions (Tombach 1973; Liu 1992). However,
the main reason for interest in the vortex reconnection problem is perhaps more
fundamental, arising from the fact that it is associated with a topological change in
the vortical structures that underlie most fluid motions.

Previous work on vortex reconnection has principally focused on one of two



geometrical configurations – the impact of two equal-strength vortex rings, in which
the self-induced velocity of the rings drives the vortices together, and the interaction
of two anti-parallel vortex tubes of equal strength, in which the vortices are driven
together by their mutual instability. A review of research on vortex reconnection
in general is given by Kida & Takaoka (1994). The interaction of anti-parallel
vortex tubes is of particular interest since, as noted by Siggia (1985) and Zabusky
& Melander (1989), vortex tubes with arbitrary initial orientation tend to become
reoriented in an anti-parallel manner as they approach each other owing to their
self- and mutually-induced velocity fields. Computational studies of equal-strength
anti-parallel vortex tubes have been performed by Pumir & Kerr (1987), Melander
& Zabusky (1988), Melander & Hussain (1989), and Shelley, Meiron & Orszag
(1993), where the latter paper focuses on evaluation of a theoretical model of vortex
reconnection due to Saffman (1990). From this work, a fairly clear understanding of
the physical processes of reconnection of equal-strength vortices has arisen, which we
review in § 3 of the paper.

With the notable exception of aircraft wake vortices, interacting vortices in nature
are rarely of equal strength. Indeed, the interaction of vortices of very different
strength is central to understanding vortex dissipation at high Reynolds number, as
illustrated in the direct numerical simulation of vortex interaction with surrounding
turbulence by Melander & Hussain (1993) and the experimental work on decay
of airfoil trailing vortices subjected to surrounding turbulence by Bandyopadhyay,
Stead & Ash (1991). This problem is fundamental to development of more physically
grounded models for turbulence cascade processes and for subgrid-scale models used
in large-eddy turbulence simulation. On a more practical basis, understanding of the
interaction of vortices of different strengths may be useful for control of vortical
flows. For instance, one approach to enhance dissipation of aircraft trailing vortices
is to introduce nearby weaker vortices with opposite-sign vorticity, which might be
generated by spoilers, flaps or other control devices (Corsiglia & Dunham 1976;
Croom 1976; Quackenbush et al. 1997, 1998). In future aircraft, it may even be
possible to actively perturb the weaker vortex so as to enhance its interaction with
the principal wake vortex. Similar control techniques might also be effective for
suppression of coherent structures in turbulent boundary layers, where the secondary
vortices may be produced by localized blowing (Acarlar & Smith 1987) or by small
control surfaces attached to the boundary.

A stability analysis for anti-parallel vortices of unequal strength is given by Klein,
Majda & Damodaran (1995), which extends the classic Crow (1970) theory for
equal-strength vortices. Previous investigations focusing on the core dynamics during
close interaction of vortices of unequal strength have been performed for various
geometrical configurations, including computations of the impact of a vortex pair on
an orthogonally offset vortex (Zabusky & Melander 1989), the wrapping of an initially
elliptical vortex around a columnar vortex (Krishnamoorthy & Marshall 1998), and
the axisymmetric interaction between periodic vortex rings and a columnar vortex
placed along the symmetry axis (Marshall 1997). These previous studies suggest
some of the physical features of the vortex response to this interaction, including
deformation of the core cross-section, wrapping of the weak vortex around the
strong, and (in some cases) ejection of vorticity from the strong vortex.

This paper presents a study of the effect of strength difference on interaction of
anti-parallel vortex tubes, focusing on the core dynamics as the vortices impact upon
each other. A description of the numerical method and checks of grid and time
step resolution are described in § 2. The problem of vortex reconnection for equal-
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Figure 1. Diagram showing initial configuration of the vortex tubes, with wavelength λ,
nominal separation distance b, and strengths Γ1 and −Γ2.

Identification Γ2/Γ1 σ2/σ1 λ ∆t

A 1 1 7.3 0.10
B 0.82 1 7.2 0.10
C 0.54 1 7.0 0.10
D 0.25 1 6.2 0.08
E 0.25 0.5 6.2 0.08

Table 1. Summary of computational parameters for different runs.

strength anti-parallel vortices is reviewed in § 3. The vortex reconnection problem for
unequal-strength vortex pairs is examined in §§ 4–6 for values of the strength ratio
Γ2/Γ1 ranging from near unity (slight strength differences) to near zero (large strength
differences). The vortex reconnection process is found to be significantly modified as
Γ2/Γ1 is decreased from unity, even for slight differences in the vortex strengths.
The long-time evolution of the vortices is examined in § 7, for a case with slight
difference in vortex strength and another with large strength difference. Conclusions
are presented in § 8.

2. Numerical method
Numerical computations are performed on a cubic domain with 1283 grid points

and periodic boundary conditions. A schematic of the vortex initial condition is shown
in figure 1. All variables are non-dimensionalized using the nominal vortex separation
distance b and the inverse of the maximum vorticity of the unperturbed strong vortex
to determine length and time scales. The initial vorticity profile is Gaussian with radial
length scale σ1 = 0.2 for the strongest vortex. The vortices are initially symmetrically
perturbed at angles of ±45◦ with amplitude A0 = 0.2. The length λ of the periodic
computational domain is chosen such that the vortex pair is unstable according
to the three-dimensional linear stability theory (Klein et al. 1995). The parameters
used in the various cases considered, denoted A–E, are summarized in table 1. All
computations are performed for a vortex Reynolds number Re = Γ1/ν = 1500.

A pseudo-spectral method is used with second-order Adams–Bashforth time step-
ping, which is dealiased using the standard two-thirds wavenumber truncation. The
spectral Navier–Stokes equations are evolved in time after having been projected onto
a divergence-free space using the operator Pij = kikj/k

2 − δij and with exact time
integration of the viscous term, according to the expression

ûn+1 = ûn exp(−ν ′k2∆t)+∆tP ·[ 3
2
(u×ω)n exp(−ν ′k2∆t)− 1

2
(u×ω)n−1 exp(−2ν ′k2∆t)] (1)



where u and ω are the velocity and vorticity vectors, a top hat denotes Fourier
transform, a subscript indicates the time step, and ν ′ ≡ πσ2

1/Re. The time step is
held fixed during the computations at ∆t0 = 0.002λ2, such that the CFL number,
umax∆t/∆x, is less than 0.15 for all cases considered. The computations are initialized
by specifying a vorticity field and taking its Fourier transform, and then inverting the
spectral form of the vorticity definition ω̂ = ik × û to obtain û. The computations
were performed on a Cray T-90 and require about 3.2 CPU seconds per time step.

These computations are intended to describe the evolution of two nominally anti-
parallel vortices subject to periodic perturbations in the axial direction. The neigh-
bouring periods of the flow in the transverse directions are a consequence of the
use of Fourier decomposition in the numerical method. The computational domain
is a cube with length λ in all directions, where λ varies between 6.2 and 7.3 for the
different computations. The transverse length scale for vortex interaction during the
initial instability of the pair is the nominal distance between the vortices, b = 1.
For the part of the computation during which the weak vortex impinges upon and
partially reconnects with the core of the stronger vortex, the typical transverse length
scale is equal to the vortex radius, σ1 = 0.2, which is smaller than the side length of
the cubic domain by a factor of over 30. Thus, although the neighbouring periods of
the flow in the transverse directions may have some small effect on the growth rate
during the initial vortex instability, it is unlikely that they have a discernable influence
on the core dynamics during close interaction of the vortices, which is the principal
focus of the current paper.

Calculations with Γ2/Γ1 = 0.54 (case C) are repeated with 643 grid points and a
time step of ∆t = 2∆t0 in order to verify grid and time-step independence of the
computed results. This case was chosen as typical of the computations with unequal
vortex strength. One measure of the sensitivity of the computations to choice of grid
size or time step is given by comparing the variation of global flow measures for
computations with different resolution. For instance, the enstrophy E, defined by

E = 1
2

∫
V

ω · ω dv, (2)

where V denotes the computational domain, increases owing to vorticity stretching
and decreases under the action of viscous dissipation. Previous investigators have
reported substantial decrease in enstrophy during reconnection of symmetric vortices
(Kida & Takaoka 1994). Enstrophy variation over time is shown in figure 2 for both
the high resolution 1283 case and the medium resolution 643 case. The enstrophy
decreases by a factor of nearly 10 during the computation and exhibits close agreement
between the 643 and 1283 cases.

Another test of the computational resolution is to plot time variation of global
quantities that are supposed to remain invariant during the computation. Among
these, we consider in particular the total circulation Γtot over the symmetry plane
x = 0 and the integral Vx of vorticity in the x-direction over the entire flow field,
defined by

Γtot =

∫ λ/2

−λ/2

∫ λ/2

−λ/2
ωx(0, y, z) dy dz, Vx =

∫
V

ωx dv. (3)

A plot of time variation of Γtot and Vx are given in figure 3 for both (a) the 1283 case
and (b) the 643 case. In the 1283 case, Vx decays by about 4% during the computation
and Γtot is observed to fluctuate slightly, with maximum deviation of about 3% of the
average value. These results suggest that the grid is sufficiently fine that numerical
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Figure 2. Variation of enstrophy with time for case C, showing results for computations with
—–, 1283 grid and ∆t = ∆t0 and - - -, with 643 grid and ∆t = 2∆t0.
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Figure 3. Time variation of the total circulation in the x = 0 symmetry plane and the integral of
ωx over the computational domain, for computations with (a) 1283 grid and ∆t = ∆t0 and (b) with
643 grid and ∆t = 2∆t0.

dissipation of vorticity is small during the computations. Sensitivity of these measures
on grid resolution can be evaluated by examining the results for the 643 case, for
which Vx is again fairly constant but much greater fluctuations of Γtot are observed,
with deviations of up to 15%.

3. Reconnection of equal-strength vortices
A computation of reconnection of equal-strength vortex tubes (case A) is performed

in order to establish a basis for comparison for cases with unequal vortex strengths.
A time series showing the vortex interaction during reconnection is given in figure 4,
in which the λ2-technique of Jeong & Hussain (1995) is used to identify the boundary
of the vortex structures. In figure 4, and in other figures using this technique in the
remainder of the paper, we plot iso-surfaces with λ2 = −0.0002, where λ2 is the middle
eigenvalue of the symmetric tensor with components Hij = SikSkj + ΩikΩkj . Here, Sij
and Ωij are the components of the deformation rate tensor and the vorticity tensor,
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Figure 4. Iso-surface of λ2 for symmetric vortex reconnection (case A) at times
t = 0, 53, 107, 160 and 213.
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Figure 5. Contours of ωx in the x = 0 symmetry plane for the first four times shown in figure 4.

respectively. If the vorticity vanishes at any point, the tensor H is positive definite and
all of its eigenvalues are positive. Iso-surfaces with negative value of λ2 therefore lie
within the vorticity-containing part of the flow. Plots with other small negative values
of λ2 exhibit similar structural forms to those given in figure 4. Vorticity contours in
the x = 0 symmetry plane at four times are shown in figure 5, corresponding to the
first four frames of figure 4.

The vortex interaction illustrated in figures 4 and 5 exhibits the classic vortex re-
connection stages, as described by several previous authors (e.g. Melander & Hussain
1989, Kida & Takaoka 1994). The vortex perturbations first grow as predicted by
the unstable symmetric mode of the Crow (1970) instability analysis. The vorticity
contours within the core become increasingly deformed as the vortices move toward
each other, developing into the head-trail structure shown in figure 5(c). This stage is
characterized by active cross-diffusion, which by necessity is accompanied by bridg-
ing between the two vortex structures as a consequence of the requirement that the
strength of a vortex tube remains constant. As the bridges linking the two vortex
tubes begin to form, their self-induced velocity causes them to propagate upward
and away from each other. Because of this motion of the bridges, the vorticity cross-
diffusion between the two structures does not have a chance to completely annihilate
the vorticity in the central region. The remnants of vorticity as the bridges pull away
from each other, called the threads, arc upward owing to the velocity induced by
the bridges. The curvature of the threads leads to a self-induced velocity driving
them away from each other. The velocity induced by the bridges also causes strong
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Figure 6. Time variation of circulation in the (y, z)- and (x, z)-half-planes
for symmetric vortex reconnection.
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Figure 7. Time variation of the maximum vorticity values in the x- and y-directions
for symmetric vortex reconnection.

stretching of the threads, which intensifies the vorticity within the thread cores and
introduces a radial inflow that counters their self-induced velocity. Consequently, the
threads appear to remain in contact but the cross-diffusion between them is slow.

One way of quantifying the reconnection process is to plot the time variation of
circulation in half of the (y, z)- and (x, z)-symmetry planes, denoted by Γyz and Γxz ,
as shown in figure 6. The circulation in the (x, z)-plane is initially zero and that in
the (y, z)-plane is nearly constant in time as the vortices advect towards each other.
A sudden drop in Γyz occurs at a time of about 80, with a corresponding increase
in Γxz , as the vortices move sufficiently close together that active cross-diffusion can
occur. At a time of around 200, most of the bridging has been completed and the
two vortex loops advect away from each other, leaving the threads behind. For times
later than about 280, Γyz and Γxz remain fairly constant, although there is a gradual
decrease of Γyz because of diffusion between the threads.

While the vorticity magnitude generally decreases under the action of viscous
diffusion during the computation, it is observed in figure 7 that peak values of both
ωx and the transverse vorticity, represented by ωy , occur owing to vortex stretching
during the bridging process. The peak in ωx occurs during the early part of the
reconnection as the bridges are being formed. The peak in ωy occurs later, after
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Figure 8. Series of iso-surfaces of λ2 for case B at times t = 0, 52, 104, 156 and 207. The surfaces
are shaded dark grey for ωx > 0 and light grey for ωx < 0.

the bridges have formed and are starting to pull away from each other. Following
reconnection, both vorticity measures decay significantly.

4. Interaction of vortices with small strength differences
When the vortex strength is not equal, the symmetry between the two vortex tubes

over the (x, z)-plane is broken. The resulting asymmetry can significantly alter the
nature of the vortex reconnection, even for fairly slight vortex strength differences.
The effects of this asymmetry are examined in the current section using computations
of vortex interaction with Γ2/Γ1 = 0.82 (case B). This interaction is illustrated using a
time series of iso-λ2 surfaces in figure 8, with corresponding plots of contours of ωx in
the x = 0 symmetry plane given in figure 9. In order to help distinguish between the
two vortex structures, the iso-λ2 surfaces are shaded dark grey for points with positive
ωx and light grey for points with negative ωx. The vorticity contour plots in figure 9
are shaded grey for negative values of ωx, corresponding to the weak vortex. Use
of this shading scheme to identify from which vortex the vorticity originates should
be employed with care during the late stages of the vortex interaction, both because
the vortex with negative ωx may fold back in the positive x-direction and because it
is not clear how to identify vorticity motion in three-dimensional flows with strong
diffusion (see Kida & Takaoka 1994, for further discussion of this point).

Even for this small strength difference, the weak vortex is observed to wrap
around the strong vortex with only modest bending of the strong vortex, which is in
qualitative agreement with the vortex filament computations reported by Klein et al.
(1995). The instability thus leads to a large amount of stretching within the central
part of the weak vortex, but much less within the strong vortex. During the initial
part of the interaction, the core cross-section of both the weak and strong vortices
deform in a nearly symmetric manner owing to the straining induced by the opposing
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Figure 9. Contours of ωx in the x = 0 symmetry plane for the same times as shown in figure 8.
Contours with negative values are shaded.
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Figure 10. Iso-surface of vorticity magnitude (ω = 0.02) for case B at time t = 207,
showing projections in the (x, y)- and (x, z)-planes.

vortex. We might expect that the strong vortex would eventually be victorious in this
contest as the vortices are driven increasingly close together, and that the weak vortex
core would be torn apart after sufficiently long time. Surprisingly, the computations
indicate that for small vortex strength differences, just the opposite occurs. While the
total strength of the weak vortex is less, the vorticity magnitude within the weak
vortex core becomes greater than that within the strong vortex owing to the large
amount of stretching associated with the vortex instability and the resulting wrapping
of the weak vortex about the strong vortex. Hence, it is the weak vortex that at long
times maintains a coherent, nearly circular, shape and the strong vortex whose core
is deformed into an elongated sheet, as shown in the final frames of figures 8 and 9.

The iso-λ2 plots are useful for presenting the motion of the dominant vortex
structures during the interaction; however, they lose some of the detail of the vorticity
field when it becomes highly deformed. Iso-surface plots of vorticity magnitude are
therefore used to provide an alternative view of the vorticity field in the late stages of
the interaction, where the threshold value ω = 0.02 is used for all such plots presented
in the paper. The vorticity magnitude iso-surface for case B at time t = 207 is shown
in figure 10, with projections in both the (x, y)- and (x, z)-planes. In the top view in
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Figure 11. Time variation of the circulation measures Γ+ and Γ− in the
x = 0 symmetry plane for case B.

figure 10 ((x, y)-plane), the weak vortex is observed to bend down and connect to
the strong vortex, leaving a coherent thread of vorticity with nearly circular core
connecting the two half loops. The broad region of vorticity on top of this thread is
the deformed remnant of the strong vortex.

To quantify the vorticity cross-diffusion during the interaction, we plot in figure 11
time variation of two circulation measures, Γ+ and Γ−, obtained by integrating over
the entire x = 0 symmetry plane the vorticity for all points with positive and negative
values of ωx, respectively. As in the case of symmetric reconnection, the circulation
measures remain nearly constant during the first part of the interaction as the vortices
advect toward each other, decrease rapidly during the second part of the interaction
in which cross-diffusion is active, and then decay gradually during the final part of
the interaction as the reconnected loops advect away from the x = 0 symmetry plane.
The negative circulation measure does not go to zero, at least not during the length of
the current computation, so the highly asymmetric thread structures remaining have
x vorticity components of both positive and negative signs. The difference between
the initial and current values of Γ+ is equal to the strength of the vorticity bridge
connecting the two vortices at a given time.

The maximum vorticity values in the x- and y-directions are plotted as functions
of time in figure 12. Both vorticity components exhibit local peaks during the vortex
interaction, at approximately the same times as for the symmetric reconnection case.
However, both peak values are significantly smaller than in the symmetric case. The
y-vorticity in particular increases only to a value of about 0.4, which is about half of
the peak value for the symmetric reconnection.

5. Interaction of vortices with moderate strength differences
As the difference in strength between the two vortices increases, the part of the weak

vortex that wraps around the strong vortex becomes increasingly less able to withstand
the core straining induced by the stronger vortex. We classify the interaction as one
of moderate strength difference when the weak vortex core is eventually deformed
by the stronger vortex, but it is still strong enough to simultaneously inflict serious
deformation of the strong vortex.

An example of vortex interaction with moderate strength difference is given by the
case with Γ2/Γ1 = 0.54 (case C). A time series of plots showing iso-λ2 surfaces and
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Figure 12. Time variation of the maximum vorticity values in the x- and y-directions for case B.
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Figure 13. Series of iso-surfaces of λ2 for case C at times t = 0, 49, 98, 147 and 196.

contours of ωx in the x = 0 symmetry plane are given in figures 13 and 14. The vortex
instability results in wrapping of the weak vortex around the strong vortex, with
deformation of both vortex cores as the vortices move close to each other. While the
vorticity within the weak vortex core is enhanced by the stretching associated with the
wrapping process, it is also decreased by rapid cross-diffusion with the strong vortex.
At long times, the main part of the weak vortex connects to the strong vortex core in
a series of twisted loops. This connection is best observed from the plot in figure 15,
which shows the projections of an iso-surface of vorticity magnitude at time t = 245
in the (x, y)- and (x, z)-planes. Of the remaining vorticity near the central part of the
computational domain, the weak vortex core eventually becomes weak and elongated
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Figure 14. Contours of ωx in the x = 0 symmetry plane for case C at times t = 0, 49, 98, 147, 196
and 245. Contours with negative values are shaded.
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Figure 15. Iso-surface of vorticity magnitude (ω = 0.02) for case C at time t = 245,
showing projections in the (x, y)- and (x, z)-planes.

while that of the strong vortex rolls into a coherent tube-like structure. Vorticity that
has been ejected from the strong vortex during this interaction spirals behind as a
vorticity sheet.

Since at time t = 245 the projection of the strong vortex appears to be approx-
imately straight in the (x, y)-plane, it is possible to examine the vorticity response
within the strong vortex core by plotting vorticity components on a cross-section at
y = −1, which slices nearly through the centre of the strong vortex. Contours of
the vorticity component ωx in the nominal axial direction and the vorticity com-
ponent ωy normal to the cross-sectional plane are shown in figure 16, where grey
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Figure 16. Contours of (a) ωx and (b) ωy over a planar cut at y = −1 for case C at time t = 245.
Contours with negative values are shaded.

shading indicates negative contours. In figure 16(a), shaded contours of ωx identify
the location of the weak vortex, whereas unshaded contours fall within the strong
vortex core. In figure 16(b), the ωy contours indicate a series of oppositely signed
patches as we proceed vertically from top to bottom on either side. By comparing
with the top plot, we see that the outermost patches are due to the wrapping of the
weak vortex. However, in the inner part of this alternating series we find generation
of ωy patches with sign opposite to that of the nearby weak vortex cross-section.
As discussed by Marshall (1997), the generation of azimuthal vorticity (associated
with ωy) within the strong vortex plays an important role in regulating the vortex
response to external straining exerted by the weak vortex as it wraps around the
strong vortex core. The velocity induced by the weak vortex attempts to strip vor-
ticity from the strong vortex core, whereas the azimuthal vorticity within the strong
vortex attempts to restore the core to a state of uniform cross-sectional area. In the
axisymmetric model system examined by Marshall (1997), it is found that forcing
by the wrapped vortex structures results only in periodic standing waves on the
strong vortex if the wrapped vortices are weak enough that their straining can be
countered by the azimuthal vorticity generated within the strong vortex core. On
the other hand, when the wrapped vortex structures are sufficiently strong, vorticity
will be stripped from the core of the strong vortex in thin sheets. The mechanism
responsible for generation of azimuthal vorticity within the core is described in
§ 6.

Time variation of the circulation measures Γ+ and Γ− on the x = 0 symmetry
plane is plotted in figure 17. The three phases of reconnection phenomena – advection,
bridging and threading – are still clearly detectable in the circulation plots, as in the
symmetric reconnection case. The strong vortex circulation Γ+ levels out at a value,
that is approximately half of its initial value, and the weak vortex circulation Γ−
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Figure 17. Time variation of the circulation measures Γ+ and Γ− in the
x = 0 symmetry plane for case C.
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Figure 18. Time variation of the maximum vorticity values in the x- and y-directions for case C.

decays nearly to zero near the end of the computation, indicating that cross-diffusion
has completely eliminated the weak vortex on the x = 0 symmetry plane.

Time variation of the maximum x and y vorticity components is plotted in figure 18.
The x-component exhibits a small local maximum near time 160, after which it
steadily decays. The y-component increases gradually during the first part of the
computation to about twice its initial value, after which it remains approximately
constant. Somewhat surprisingly, the vortex wrapping process does not exhibit the
large vorticity increases that are characteristic of a flow with strong stretching, even
compared to the symmetric reconnection case. Vortex interaction with moderate to
small values of Γ2/Γ1 appears instead to be dominated by the processes of vorticity
cross-diffusion and the quasi-two-dimensional deformation of the vortex cores, and
although stretching certainly is not small enough to be negligible, its role in the
interaction seems to become progressively less important as Γ2/Γ1 is decreased. It is
not clear to what extent this result is influenced by the choice of Reynolds number
and vortex core radius and whether it would continue to hold for vortex interaction
at much higher Reynolds numbers or with large differences in core radius.
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Figure 19. Series of iso-surfaces of λ2 for case D at times t = 0, 77, 154 and 231.
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Figure 20. Contours of ωx in the x = 0 symmetry plane for the same times as shown in figure 19.
Contours with negative values are shaded.

6. Interaction of vortices with large strength differences
For cases with large differences in strength between the two vortex structures, the

weak vortex becomes but a minor perturbation to the large vortex. This case is of
primary interest for potential vortex control applications, in which it is desired to
trigger breakup of a strong vortex structure by injection of weak nearby vortices. If
such a control method is shown to be reasonable, it could be employed in appli-
cations as diverse as breakup of aircraft wake vortices to disruption of the coherent
turbulent structures responsible for turbulence production in wall boundary layers or
entrainment in fluid jets.

A computation showing anti-parallel vortex interaction with large strength differ-
ence is reported for Γ2/Γ1 = 0.25 (case D). This choice for vortex strength ratio was
guided in part by the fact that the weak vortex becomes unstable to two-dimensional
perturbations in the initial configuration for Γ2/Γ1 < 0.14. For values of Γ2/Γ1 below
this limit, the ratio of strain rate induced by the strong vortex at the position of
the weak vortex centreline to the vorticity of the weak vortex exceeds 0.15, which
is the limiting value for existence of a steady-state solution for a uniform vorticity
patch (Moore & Saffman 1971). Computations with values of Γ2/Γ1 above this limit
would therefore be sensitive to the amplitude of the initial vortex perturbation, which
determines the time required for development of the three-dimensional vortex pair
instability.

The vortex interaction for case D is illustrated in the plots of iso-λ2 surfaces and
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Figure 21. Iso-surface of vorticity magnitude (ω = 0.02) for case D at time t = 231,
showing projections in the (x, y)- and (x, z)-planes.
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Figure 22. Time variation of the circulation measures Γ+ and Γ− in the
x = 0 symmetry plane for case D.

the contours of ωx in the x = 0 symmetry plane in figures 19 and 20, respectively.
The weak vortex core elongates and its strength is reduced by cross-diffusion as it
approaches and wraps around the strong vortex. By contrast, the strong vortex core
remains nearly circular in cross-section, with only slight bending and cross-sectional
deformation. Another view of the late stage of vortex interaction is given in figure 21,
which shows prospective views of an iso-surface of vorticity magnitude at time t = 231
in the (x, y)- and (x, z)-planes. The weak vortex core is seen as a flattened structure
that wraps around and attaches to the core of the strong vortex.

Time variation of the circulation measures Γ+ and Γ− in the x = 0 symmetry
plane is shown in figure 22. The circulation measures decay more gradually than for
cases with nearly equal vortex strength, which is a consequence of the fact that in
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Figure 23. Time variation of the maximum vorticity values in the x- and y-directions for case D.

the limit of small Γ2/Γ1, it is mainly the self-induced velocity of the weak vortex
that is responsible for driving the two vortices together. This self-induced velocity
is naturally reduced as the weak vortex strength is reduced. The strength of the
weak vortex in the x = 0 symmetry plane approaches zero near the end of the
computation.

Variation of the maximum vorticity components in the x- and y-directions is plotted
versus time in figure 23. The vorticity component in the x-direction decays steadily in
time, with only a gradual flattening during the vortex interaction. The y-component
of vorticity is nearly constant in time.

We thus see that for moderate and small values of Γ2/Γ1, the rate of stretching
of the weak vortex decreases with decrease in Γ2/Γ1, which occurs because the self-
induced velocity of the weak vortex, which is primarily responsible for driving the
vortex cores together, is proportional to the weak vortex strength. Stretching causes
the vorticity within the weak vortex core to increase, thus decreasing the ratio of
transverse straining rate (induced by the strong vortex) to vorticity within the weak
vortex core. Decrease in Γ2/Γ1 thus leads to increased deformation of the weak vortex
core.

The vorticity response within the strong vortex can be examined by plotting the x
and y vorticity components in the cross-plane y = −0.7 at time t = 231 (figure 24),
which slices down the middle of the strong vortex. The contours with negative values
are shaded, so the regions of the cross-plane occupied by the weak and strong vorticies
can be identified from the plot of ωx contours in figure 24(a). The ωy contours in
figure 24(b) exhibit alternating signs as we proceed vertically from top to bottom,
similar to that observed for case C (figure 16).

The mechanism for generation of azimuthal vorticity within the strong vortex
may be understood by considering an axisymmetric model problem, consisting of a
columnar vortex centred on the symmetry axis that is enclosed by a series of periodic
vortex rings of alternating signs. The velocity induced by the vortex rings cause a
periodic axial stretching and compression of the columnar vortex core, resulting in
alternating bulging and thinning of the core, as sketched in figure 25. Associated with
this bulging and thinning is a radial tilting of the predominately axial vorticity within
the columnar vortex core, where the vorticity vectors on the lateral surface of the
core follow the slope of the core boundary. The inviscid vorticity transport equation
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Figure 25. Schematic diagram illustrating the mechanism of azimuthal vorticity generation within
the core of a columnar vortex owing to axial stretching and compression induced by wrapped
vorticity structures.

for the azimuthal vorticity in an axisymmetric flow can be expressed as (Saffman
1992)

D

Dt

(ωθ
r

)
= −2uθωr

r2
, (4)

where D/Dt is the material derivative and (r, θ, z) are cylindrical polar coordinates.
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Figure 26. Vorticity contours in the x = 0 symmetry plane, for the same times as shown in
figure 19, for case E. Contours with negative values are shaded.

Using the vorticity definition in an axisymmetric flow, (4) can be written alternatively
as

Dωθ
Dt

=
urωθ

r
+ r

[
ωr

∂

∂r

(uθ
r

)
+ ωz

∂

∂z

(uθ
r

)]
. (5)

The first term on the right-hand side of (5) represents stretching of existing az-
imuthal vorticity by the radial velocity and the second term (which is equal to
the right-hand side of (4)) represents generation of new azimuthal vorticity by tilt-
ing of the radial and axial vorticity components in the azimuthal direction ow-
ing to radial and axial gradients, respectively, of the angular rotation rate uθ/r.
Equation (4) indicates that positive azimuthal vorticity is generated in locations
with negative radial vorticity and vice versa, resulting in an alternating distribu-
tion of azimuthal vorticity within the columnar vortex of opposite sign to that
of the nearby wrapped vortex structure, as represented by the patches of posi-
tive and negative azimuthal vorticity within the columnar vortex core in figure 25.
In the computational vorticity contours shown in figure 24(b), the vorticity gen-
erated by this radial tilting mechanism is superimposed on that associated with
the slight bending of the strong vortex. Nevertheless, the mechanism described
above is primarily responsible for the generation of vorticity that allows the strong
vortex to resist the axial straining induced by the wrapped weak vortex struc-
ture.

One potential application of this research is the control of strong vortex struc-
tures by injection of weaker nearby vortices. For such applications to be practical,
it is usually required that the weaker vortex has a strength that is much less than
that of the stronger vortex. The computations reported in the current paper indicate
no dramatic breakup of the strong vortex caused by interaction with much weaker
vortices for cases where the two vortex structures have nearly the same core radius.
In cases with very different core radii, the vorticity within the weak vortex may be
comparable to or higher than that within the strong vortex, which would make the
weak vortex more resistant to straining and more able to strip vorticity from the
strong vortex core. To examine the effect of unequal core radii, the computation
with Γ2/Γ1 = 0.25 is repeated for a case with σ2/σ1 = 0.5 (case E), such that the
initial maximum vorticity within the two structures is approximately equal. The weak
vortex is observed to wrap around the stronger vortex at approximately the same
rate as observed in figure 19. The vorticity contours in the x = 0 symmetry plane
are plotted in figure 26, and an iso-surface of vorticity magnitude at time t = 231
is plotted in figure 27. The vorticity contours in the symmetry plane exhibit strong
core deformation of both vortex structures as the weaker vortex moves towards and
wraps around the stronger vortex. Eventually, the weak vortex is depleted by cross-
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Figure 27. Iso-surface of vorticity magnitude for case E at time t = 231,
showing projections in the (x, y)- and (x, z)-planes.
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Figure 28. Time variation of the maximum vorticity values in the x- and y-directions for case E.

diffusion to such an extent that it becomes unstable to two-dimensional straining,
and consequently is stretched into an elongated shape. The strong vortex rolls back
up into a nearly circular shape at long time, with a tail of ejected vorticity spiralling
behind.

Another difference between the flows with equal vortex cores (case D) and that
with unequal core radii (case E) can be observed by comparing the time variation
of vorticity components in the x- and y-directions, plotted in figures 23 and 28. The
maximum value of ωx first decays and then peaks at a time of about 170 in the
unequal core radii case (E), with a more gradual peak in ωy at nearly the same time.
This increase in the maximum vorticity value is indicative of significant stretching
within the strong vortex owing to the wrapped weak vortex structure. By contrast,
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Figure 29. Iso-surfaces of λ2 for case B at times (a) t = 415, (b) t = 622.

the maximum value of ωx decays monotonically in time for the equal-core case (D),
suggesting that vortex stretching has a much less significant role.

7. Long-time vortex evolution
Sections 4–6 show that when an anti-parallel vortex pair is driven together by

the vortex mutual instability, the vorticity field separates into two regions. One of
these regions forms from the vorticity ‘bridges’ spanning between the two structures.
Neighbouring bridges propagate toward each other owing to the self-induced velocity
caused by the curvature associated with wrapping of the weak vortex around the
strong vortex, eventually pinching off to form a loop formed of vorticity originating
half from the weak vortex and half from the strong vortex. The second vorticity
region consists of the ‘threads’ or remnants of the vortices that are left behind. The
strength of the loop formed by the bridges must be equal to or less than that of
the weak vortex, and the net circulation about the threads must be equal to or less
than the difference between the strong and weak vortex strengths. The current section
examines the long-time evolution of these two vorticity regions for a case with slight
vortex strength difference (case B) and another with large strength difference (case D).

For slight strength differences, the thread region is weak and hence not able to exert
much influence on the motion of the loop formed from the bridges. The self-induced
velocity of these loops causes them to eventually advect away from the threads, while
the threads remain approximately fixed in space and roll up over long time into a
weak columnar vortex. A plot of a λ2 iso-surface showing this behaviour for case B is
given in figure 29 for times t = 415 and 622. The figure has been rearranged to focus
on the vortex loop by translating half of the flow domain one period length in the
positive x-direction. Figure 29(a) shows the different orientations of vortex filaments
that are produced when the loop formed from the bridges tears away from the initial
columnar vortices. These filaments die away with time owing to cross-diffusion, so that
after the vortex loop has propagated some distance away (figure 29b) the remaining
vorticity progressively rolls up into a columnar vortex.

For large strength differences, the vortex loop formed from the bridge regions
is weak compared to the remaining vorticity within the strong vortex, which has
an approximately columnar form. The vortex loop is therefore not able to escape,
but instead wraps around the strong vortex as shown in figure 30. The self-induced
velocity of the vortex loop, due to the curvature induced by wrapping around the



(a) (b)

Figure 30. Iso-surfaces of λ2 for case D at times (a) t = 461, (b) t = 769.

strong vortex, causes the two legs of the loop to propagate toward each other
(figure 30a). The vortex loop thus evolves into a tight hairpin (figure 30b), while
at the same time advecting radially outward from the strong vortex owing to the
mutually induced velocity between the two vortex legs. The stretching associated with
outward radial motion causes a decrease in the core radius of the loop.

8. Conclusions
A study is reported which examines the effect of unequal vortex strength on the

interaction of nominally anti-parallel vortex tubes that are driven together by the
three-dimensional vortex pair instability. The effect of unequal vortex strength on
the vortex reconnection phenomenon is examined using a series of computations for
vortices with equal initial core radius but different strengths. The difference in vortex
strength breaks the symmetry over the (x, z)-plane, resulting in wrapping of the weak
vortex around the strong vortex.

The vortex interaction is dominated by a combination of vorticity cross-diffusion
(with the associated bridging of vorticity between the two structures) and deformation
of the vortex cores caused by the mutual straining between the two vortices. In all cases
considered, the weak vortex attaches to the strong vortex in a series of loops, which
are connected by the remnants of the weak and strong vortices. The vorticity structure
within these remnants depends on the difference in vortex strength. For cases with
slight vortex strength difference, the stretching associated with the wrapping process
sufficiently enhances the vorticity within the core of the weak vortex that the remnant
of the weak vortex is able to remain roughly circular during the later stages of the
reconnection process, while the strong vortex core is deformed into an elongated sheet.
For moderate vortex strength differences, both the weak and strong vortex cores are
deformed during the interaction, whereas for large strength differences only the weak
vortex core is significantly deformed. Decrease in core radius of the weak vortex is
shown to make the weak vortex more resistant to straining and better able to strip
vorticity from the strong vortex. For cases with large vortex strength difference, the
weak vortex wraps around the strong vortex with only small deflection of the strong
vortex. The radial tilting of vorticity within the strong vortex core, induced by the
wrapped loops of the weak vortex, induces formation of an interlaced pattern of
positive and negative vorticity spirals within the strong vortex core.

Over long time, the bridge regions tear away from the columnar vortices to form
loops composed of vorticity originating from both the weak and strong vortices. For
slight vortex strength difference, the threads are weak relative to the loops, so that
over time the loops propagate away leaving the threads behind. For large strength



difference, the loops are weak relative to the strong vortex, which remains nearly
columnar as the loops wrap around it.

Future work might consider the effect of increased Reynolds number on the vortex
interaction. Although the Reynolds number used in this paper may be characteristic
of interaction of coherent vortices in engineering-scale turbulent flows with smaller-
scale turbulence, it is much smaller than would typically be observed for large-scale
vortex flows, such as aircraft wake vortices. In cases with higher Reynolds number,
the weak vortex will wrap a larger number of times around the strong vortex, and
hence experience more stretching and reduction in core radius, prior to significant
formation of bridges connecting the weak and strong vortices. Stretching enhances the
core vorticity of the weak vortex (for a given vortex strength), thereby enhancing the
ability of the weak vortex to strip vorticity from the strong vortex core. Unfortunately,
significantly higher Reynolds numbers and larger differences in vortex core radii
introduce severe challenges for numerical computation.
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for Advanced Computational Infrastructure, San Diego, California.
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