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Abstract Purpose: We present a hybrid 2D-3D ultrasound (US) rigid regis-
tration method for navigated prostate biopsy that enables continuous local-
ization of the biopsy trajectory during the exam.

Methods: Current clinical computer-assisted biopsy systems use either sensor-
based or image-based approaches. We combine the advantages of both in order
to obtain an accurate and real-time navigation based only on an approximate
localization of the US probe. Starting with features extracted in both 2D and
3D images, our method introduces a variant of the Iterative Closest Point
(ICP) algorithm. Among other differences to ICP, a combination of both the
euclidean distance of feature positions and the similarity distance of feature
descriptors is used to find matches between 2D and 3D features. The evaluation
of the method is twofold. First, an analysis of variance on input parameters is
conducted to estimate the sensitivity of our method to their initialization. Sec-
ondly, for a selected set of their values, the Target Registration Error (TRE)
was calculated on 29,760 (resp. 4,000) registrations in two different experi-
ments. It was obtained using manually identified anatomical fiducials.

Results: For 160 US volumes, from 20 patients, recorded during routine
biopsy procedures performed in two hospitals by 6 operators, the mean TRE
was 3.91±3.22 mm (resp. 4.37±2.62 mm).

Conclusion: This work allows envisioning further developments for prostate
navigation and their clinical transfer.
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Fig. 1 TRUS-guided procedure

1 Introduction

Prostate biopsy is the confirmatory examination for diagnosis of prostate can-
cer, one of the most common cancer world-wide. Biopsy procedures are per-
formed for histological analysis of tissue samples of the gland. Clinicians guide
needles through patient’s rectal wall using live 2D ultrasound (US) informa-
tion acquired using a TransRectal US (TRUS) probe (see Fig.1). Random
sampling (typically with 12-cores) and/or targeted sampling (when suspicious
regions are detected in a Magnetic Resonance Imaging exam) are taken for
further diagnosis. Random samples should be as evenly distributed as possible
in the gland to maximize the probability of cancer detection if any. Moreover,
knowing precisely sample locations may be crucial for reliable cancer diagno-
sis and appropriate treatment decision. This may also allow to envision the
development of focal treatments.

However, this procedure is made difficult for several reasons: the biopsy is
a 3D gesture while the provided information is bi-dimensional, the prostate
is quite a symmetric organ, the US images are of low quality and present a
lack of intrinsic contrast between tumor and non-tumor. As the prostate may
be deformed and displaced during the procedure, current clinical techniques
result in inaccurate biopsy sample location. This leads to a low correlation
between the theoretical biopsy core locations and the histologic maps of the
prostatectomy specimen [1].

To locate the exact position of the samples and to guide the clinician ac-
curately towards a target, two different approaches were implemented in com-
mercially available guidance systems proposed to clinicians: the sensor-based
approach and the organ-based approach. The sensor-based approach involves a
preoperative 3D-3D MRI to US registration just before the procedure. The US
probe is then tracked during the procedure using an electromagnetic tracker [2]
or mechanical arm [3] in order to update of the needle positioning. The organ-
based approach also involves a preoperative 3D/3D MRI to US registration
just before the procedure. The prostate is then localized in the images for
each biopsy using 3D-3D US to US registration [4]. In [2,3] 3D pre-operative
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information is reconstructed from a set of localized 2D images whilst, in [4] a
3D US probe directly provides 3D intra-operative information. In both cases,
the biopsy needle is inserted in a mechanical guide attached to the US probe
and the probe position defines the potential needle trajectory in a fix exter-
nal reference frame. The sensor-based real-time solution may lack accuracy
because it can not take into account prostate and patient motions when the
needle trajectory is updated. The organ-based solution demonstrates better
accuracy but the update of the needle trajectory with respect to the prostate
cannot be performed in real-time due to the 3D volume acquisition time and
the non-rigid registration computation time.

2D-3D US registration for prostate biopsy navigation potentially offers an
interesting compromise between fast computing time and accuracy. However
using it for real-time navigation is very challenging due to (1) limited informa-
tion from the 2D image about off-plane displacement and deformation of the
prostate, (2) US imaging shortcomings (noise, artifact shadows and US signal
attenuation with depth) and (3) the need for short computation time. Based
on their previous work [3], De Silva et al. [5] describes 2D-3D rigid registra-
tion of prostate images using Normalized Cross Correlation maximization by
Powell’s method. The probe position and orientation, given by a mechanical
arm holding the probe, are used for registration initialization. For 3D data sets
of 10 patients acquired under different probe pressures, the resulting TRE is
3.18±1.6 mm. More recently, De Silva et al. [6] proposes an enhanced algo-
rithm whose optimization is based on learned prostate motion characteristics.
After incorporating the learned initialization positions and directions in Pow-
ell’s method, they obtain a registration error of 2.33±1.09 mm with ∼3 s mean
execution time per registration. Gillies et al. [7] optimize the 2D-3D registra-
tion algorithm presented in [5] and obtain a computation times of 31 ms per
registration in phantom experiments.

Khallaghi et al. [8] also proposed a slice-to-volume registration method for
freehand prostate biopsies. It includes a trajectory-based rigid registration and
a non-rigid model-based registration. The latter takes the prostate deformation
into account by using a Finite Elements Model (FEM). Both stages use sum of
square differences to determine image similarity. The 2D US probe is tracked
using a magnetic system. The accuracy after non-rigid registration is 4.63±1.05
mm. The computation time is about 30 s (resp. 10 min) for rigid and (resp.
non-rigid) registration, which is not compatible with real-time navigation.

Our objective is to add real-time navigation abilities in the previously
developed organ-based approach without the need for a complex localization
device1. We propose the following approach (Fig. 2): similarly to [4], a) a
pre-operative 3D-3D MRI to US non-rigid registration may be performed at
the beginning of the procedure in order to map the potential targets in a
reference 3D US image; and b) a 3D-3D US to US non-rigid registration is
also performed at each biopsy site in order to obtain an accurate localization

1 Cumbersome equipment such as an articulated arm to hold the probe or constraining
equipment such as a magnetic localizer that can be perturbed by metallic objects.
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Fig. 2 The global approach

of the biopsy with respect to the reference image; in addition c) , “live” 2D US
images are continuously acquired and registered to the 3D US volume acquired
at the previous biopsy site in order to provide a continuous guidance for the
clinician between two biopsy site. To improve the slice-to-volume registration
robustness, an inertial sensor is attached to the probe. This paper describes
the hybrid method that rigidly and rapidly registers a live 2D image to a 3D
volume.

The method introduces a variant of the Iterative Closest Point (ICP) algo-
rithm using a combination of an euclidean distance of feature positions and a
similarity distance of feature descriptors. The main steps of our algorithm are
(see Fig. 3) : (1) feature extraction from live 2D and reference 3D ultrasound
images, (2) feature description using pixel-based and voxel-based information,
and (3) matching of nearby 2D-3D features in order to compute the spatial
transformation between images. As many choices are possible for these three
steps, we first estimated the sensitivity of the method to different parameter
settings using an analysis of variance. Then, based on a selected set of param-
eter values, the performance of our method was evaluated in terms of accu-
racy and computation time on a large patient data set (160 volumes from 20
anonymized patients) randomly selected from routine biopsy performed in two
different hospitals by 6 operators. Computed transformations were compared
to ground truth transformations obtained using manually identified anatom-
ical fiducials. Section 2 describes the registration method. Section 3 presents
the validation approach, the conducted experiments and reports the obtained
results. Section 4 includes a discussion and an outlook on future work.
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Fig. 3 Workflow of our algorithm

Fig. 4 Feature extraction using the Harris method (on the left) and the multi-scale method
(on the right).

2 Methods

2.1 Feature Extraction

The first step of our method consists in automatically extracting the most
significant interest points from the 2D live and 3D reference US images. These
interest points are image salient points. 3D features are extracted only once,
just before the biopsy starts, while the 2D features have to be extracted on each
new live 2D image. The features are extracted on the whole images to avoid
the need for prostate segmentation. This is especially important when consid-
ering the use of 2D live images and to permit registration of images where the
prostate is only partly visible. We compared two different feature extraction
methods (see Fig. 4) to detect significant intensity changes: the first one, also
called the Harris method, detects rotation-invariant features, the second one,
also called the multilevel method, detects scale and rotation-invariant features.

For rotation-invariant features, we use the Harris corner detection [12]
based on Hessian matrix approximation. In order to reduce the computational
cost, only the N2D

H features with the highest corner response values are kept.
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Fig. 5 Iterative loop of 2D-3D registrations performed between two 3D-3D registrations.

The same principles are applied to extract N3D
H features in the 3D images.

To achieve scale-invariance, a multilevel method is used to detect features using
a multilevel image pyramid [10]. The idea consists in detecting key points iden-
tified for different image scales. Salient points are then extracted by locating
local extrema in series of difference of Gaussian images for different sampling.
The Gaussian distribution std dev σ2D and σ3D controls the resulting number
of features.

2.2 Feature Matching

The second step of our method consists in computing the best rigid transfor-
mation between the set of the 2D features F2D and the set of 3D features F3D.
This transformation is computed by a variant of ICP which works as follows.

2.2.1 Initial Transformation.

Firstly, the algorithm is initialized with a rough approximation Ti transform
given by a 3D-3D registration. A relative transform ∆Tsensor[i+k] estimating
the probe displacement since the previous 3D-3D registration Ti+k is computed
and given for instance by an inertial sensor fixed on the US probe (see Fig. 5).
This transformation initializes the process and each 2D feature can be initially
positioned in the 3D image space.

2.2.2 Geometry-Based Selection.

Using this current position, candidates in F2D, named inliers, are selected by
considering their closest geometric neighbors in F3D. To obtain an efficient
selection, we use a kd-tree. Any 2D feature that has no 3D feature inside
a neighborhood of radius dε will not be considered in the next steps. This
step is crucial for outliers elimination when only a part of F2D overlaps F3D.
This selection of a subset of possible matches prioritizes best candidates and
reduces computational cost. Then, for each preselected feature f2D ∈ F2D, the
nn geometrically closest 3D feature neighbors are finally selected in F3D.
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2.2.3 Image-Based Pairing.

The next stage of the ICP algorithm is to associate to each preselected 2D
feature a single 3D feature among potential candidates. For each selected 2D
and 3D features, we compute the image intensity I, the mean intensity Ī, the
intensity histogram H and the mean histogram H̄ = 1

N

∑
ΩH(Ω) for a given

neighborhood Ω, where N is the total number of histogram bins and possible
range of the pixel value. These values are noted using an index of 1 and 2 for
2D feature and 3D feature respectively. We then define a similarity distance
d(f2D, f3D) that combines three terms based on local intensity of the features:

d(f2D, f3D) = α1d1 + α2d2 + α3d3, (1)

where
∑3
i=1 αi = 1. d1 = ‖Ī1−Ī2‖

N compares the mean intensity in the neigh-
borhood of the features.

d2 uses the Bhattacharyya distance which quantifies the similarity of two
normalized histograms: d2=

√
1− 1

N
√

H̄1H̄2

∑
I

√
H1(I)H2(I). d3 is the sum of squared

differences: d3 = 1
N2

1
|Ω|

∑
j∈Ω(I1(j)− I2(j))2.

At the end of this step, pairs composed of one 2D feature and one 3D fea-
ture are created by selecting for each 2D feature f2D ∈ F2D the 3D feature
f3D ∈ F3D that minimizes d(f2D, f3D).

2.2.4 Rejection.

The pairs with the biggest d(f2D, f3D) are then rejected in order to eliminate
potentially erroneous pairings. pr defines the percentage of such pairs.

2.2.5 Updating Transformation.

The final step of the ICP algorithm computes the transformation T which
minimizes the geometric distance between the remaining pairs using the Arun
algorithm for direct least-square error minimization [11]. In order to give higher
importance to the features located inside the prostate, pairs with a 3D feature
inside the pre-segmented prostate are weighted with wp. This partly overcomes
the limits of rigid registration on the whole image. Other pairs have a default
weight of 1. The rationale is that information relative to the prostate could be
more relevant for biopsy guidance using rigid registration.

2.2.6 Stopping Criterion.

The ICP algorithm convergence criterion is reached when a stable transfor-
mation T is obtained. Let Rres = R−1

k−1 ∗ Rk be the the rotation difference
and tres = tk − tk−1 be the translation difference between the ICP iterations
k − 1 and k, we defined the convergence criterion as ‖Rres‖ < 10−3 and
‖tres‖ < 0.05mm. If the convergence criterion is not satisfied, the algorithm
starts again at the geometry-based selection step (see figure 3). A maximum
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number of iterations (150) found experimentally is used for stopping non con-
verging registrations.

3 Validation and Results

In our previous feasibility study [9], the ability of the registration method to
converge back to the original transform after applying a given perturbation
was evaluated. To do this the patient data were used in a simplified way by
artificially slicing a 3D volume of interest to generate 2D images, arbitrarily
perturbing their positions, and finally registering them back to the 3D volume.
Different feature extractors and parametrization were also explored. This ap-
proach provided a ground truth as the real position of the slice was exactly
known. However, this did not take into account the complexity of the real case,
where 2D live images have to be registered to a previously acquired 3D volume.
The efficiency of the method could be extremely challenged by the presence
of different noise patterns and potential deformation of the organ. This paper
presents a more complex evaluation that includes a sensitivity analysis and a
much more realistic 3D/2D registration from routine patient data.

3.1 Patient Data Set

We randomly selected the validation database from a larger database of rou-
tinely acquired patient biopsy. The validation database contains 20 patient
data sets for a total of 160 volumes acquired with two different versions of a

commercial system (Urostationr and Trinityr from Koelis SAS). Volumes
have been acquired using a 3D TRUS probe. They have been recorded during
routine prostate biopsy procedures by six different operators from two different
hospitals (Grenoble University Hospital Center and Paris University Hospital
Center). Each anonymized patient data set is composed of a reference volume,
acquired at the start of the procedure, and of 2 to 17 biopsy volumes, acquired
for each performed biopsy sample. Live 2D US images are simulated by ex-
tracting the central image of the biopsy volumes. As the 3D volume position
with respect to the gland depends on the biopsy site, the extracted central slice
may show different part of the prostate in terms of size, shape, and position.
As biopsy needles may be visible in these images (see figures 7.a and 8.a), a
local mask is applied to discard 2D features at the needle location in the 2D
image.

3.2 Ground Truth

For each biopsy volume, we identified from 4 to 6 anatomic fiducials within the
prostate (visible micro-calcifications) also visible in the corresponding patient
reference volume to create fiducial pairs. Volumes that did not contain enough
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Fig. 6 In our experiment, the slice extracted from the biopsy volume is registered to the
reference volume with the gold standard transform TGT .

visible micro-calcifications were discarded from the validation database. These
fiducial pairs were used to compute a ground truth transformation TGT using
paired-point matching [11]. To estimate the manual landmarks segmentation
error, we repeated the fiducial selection on 5 different patient volumes once
every day for 5 days and obtained a variance of 0.38 mm. The Fiducial Reg-
istration Error (FRE) between a given reference volume and a given biopsy

volume is defined by FRE(mm) =

√∑Nf
i=1 ‖fi

ref−TGT (fi
biospy)‖2

Nf
, where f iref and

f ibiopsy are the ith manually paired fiducial positions and Nf the number of
fiducials. The mean±std FRE for the 160 volumes is 0.74±0.34 mm. This
relatively small FRE shows that using a rigid registration on actual clinical
data-sets is a reasonable choice.

3.3 Registration Under Simulated Rotation and Translation

For each biopsy volume, artificial rotations and translations were generated
from the initial TGT in order to simulate the TRUS probe or prostate move-
ments. The ranges of the disturbance were chosen to simulate an acquisition
noise on the probe position given by the inertial sensor. Experiment 1 consists
in varying a single degree of freedom (DOF) of the rigid transformation: the
range of the rotation DOF disturbance was [−15◦, 15◦] (by steps of 1◦) and
the range of the translation DOF disturbance was [−15mm, 15mm] (by steps
of 1mm). This resulted in 186 different initial transformations. Experiment 2
consists in randomly selecting 25 disturbances six DOF at the same time: the
rotation range was [−5◦, 5◦] and the translation range was [−7.5mm, 7.5mm].
Experiments 1 and 2 are repeated for each of the 160 biopsy volumes.
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3.4 Parameter Sensitivity Analysis

Among all possible parameter combinations, we selected a limited number of
configurations for the parameter sensitivity study based on our previous work
[9]. Experiment 1 was therefore performed in 20 configurations, corresponding
to 420,360 registrations.

We focused on the feature extraction method, the number of features and
inliers selection and studied the effect of:

– Feature extraction method: either the Harris method with (N 2D
H = 300,

N 3D
H = 20, 000) or with (N 2D

H = 350, N 3D
H = 25, 000), or the multi-scale method

with (σ2D = 0.6 2 and σ3D = 0.5) or (σ2D = 0.5 and σ3D = 0.35)
– Inliers selection distance: dε = 1.5 mm, dε = 2 mm or no outliers elimina-

tion,
– Similarity distance weights: either (αi = 1

3 ) or (α1 = 1
2 ;α2 = 1

2 ;α3 = 0),
– Number of geometrically closed 3D features selected: nn = 5 or nn = 10,
– Rejection rate: pr = 0%, pr = 10% or pr = 20%,
– Weight for the pair inside the prostate: wp = 1.0, wp = 4.0 or wp = 10.0,
– Ω size is fixed to 10 (based on previous experiments [9]).

We use a multivariate general linear model on a subset of volumes of the
data set. Statistical analysis of results using R package showed some significant
differences on mean TRE. For instance, choice of feature type, inliers selec-
tion and weight for the pair inside the prostate had a significant impact on
the accuracy and the trends were homogeneous (TRE always increasing or de-
creasing depending on the choice). For the others, we chose parameters with an
optimal ratio accuracy/computation time. The ANOVA studies showed that
the best results were obtained with the multi-scale method, σ2D = 0.5 and
σ3D = 0.35, dε = 2mm, α1,2,3 = 1

3 , nn = 5, pr = 0%, and wp = 4.0. The
remaining experimental studies were conducted using these values.

3.5 Experimental Results

3.5.1 Registration Accuracy.

The mean TRE using the anatomical fiducials were computed for experi-
ments 1 and 2 before and after rigid registration, see Table 1. We performed
a Wilcoxon rank sum test which rejects the hypothesis that TREs for pre-
registration vs after registration belong to a distribution with equal medians.
The improvements in mean TRE is statistically significant. Considering that
clinically significant tumor are above 0.5 cc (equivalent to a sphere of radius
5 mm)[13], TRE under 5mm is clinically acceptable and relevant. 74.8% of
overall TRE are under 5mm. Figure 7 provides an example of registration.
Figure 9 plots registration accuracy for one patient with 17 biopsy datasets.

2 For the muti-scale method, the number of features is not preset but depends on image
quality or echogenicity and is related to the selected size of the Gaussian.
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(b)(a) (c)

Fig. 7 Registration example. (a) 2D live image acquired during a biopsy (red arrow points
to the needle). (b) Corresponding slice extracted from the reference volume after registration
(TRE=1.48mm - before registration TRE=9.31 mm). (c) Slice extracted from the reference
volume using Ground truth transformation (FRE=0.48 mm).

Fig. 8 Example of inaccurate registration. (a) 2D live image acquired during a biopsy (red
arrow points to the needle). (b) Corresponding slice extracted from the reference volume
after registration (TRE=9.14 mm - before registration TRE=15.02 mm). (c) Slice extracted
from the reference volume using Ground truth transformation (FRE=1.37 mm).

Table 1 Registration results

Number of registrations TRE before registration TRE after registration

Experiment 1 29,760 5.63 ± 4.12 mm 3.91 ± 3.22 mm
Experiment 2 4,000 7.48 ± 2.25 mm 4.37 ± 2.62 mm

It is important to underline that these results include all the registrations
even non converging registrations which represents 2.8% of all registrations.
The non-convergence sources of these are : (1) a lack of image overlap when
the biopsy is performed close to organ extremities (apex, base, very lateral
biopsy) - see for instance figure 8, (2) a very large prostate deformation or (3)
a low quality of the images, limiting the number of extracted features.

3.5.2 Computation Times.

Our method is implemented in C++ without any code optimization using the
CamiTK [14] open source development framework. The code was executed on
a Windows 7 machine with an Intel Core i7-3840QM. The computational com-
plexity of the feature extraction is linear in the number of pixels/voxels. The
matching is O(n log n) where n is the number of 2D features. Before starting
the procedure, the 3D features are extracted in about 8 s. The computation
time of the 2D features extraction is in the order of 1.9 s for 1, 000 features.
For the multi-scale method, the obtained number of features which depends
directly on the value of σ (cf. section 3.4), varied from around 600 to around
800. The mean number of iterations of the ICP algorithm is 45.9± 29.4. The



12 Sonia-Yuki Selmi et al.

Fig. 9 Registration performance for one patient (experiment 1). The box plot shows results
for the 186 registrations per biopsy volume

mean computation time of the ICP algorithm is 1.8 s and ranges from 40 ms
to 6000 ms. We classically observed that the convergence is faster when the
registration transformation is closer to the solution.

4 Discussion and conclusion

We proposed a 2D-3D ultrasound registration for navigated prostate biopsy
and its evaluation on a significant patient data set recorded in routine uncon-
trolled conditions. For a total of 160 volumes acquired on 20 randomly selected
patients, 35,760 registrations were run exploring possible initializations. The
accuracy was measured on anatomical fiducials (4 to 6 per volume). The re-
sults (cf. table 1) have to be discussed with respect to related work. In [5],
for a total of 16 registrations involving 16 live 2D images for 8 patients, the
TRE was 1.87±0.81mm (4.75±2.62 mm before registration). This was evalu-
ated on fiducials extracted in 2D slices and 3D data (3 or 4 per image). The
initialization came from the position of the probe held by a robotic arm. In a
second dedicated set-up, three 3D volumes of 10 patients were recorded with
3 levels of probe pressure; slices were simulated in 2 of the 3 volumes and
registered to the third one. For the 20 registrations, the TRE measured on
3D fiducials was 3.18+/-1.6mm (6.89±4.1 mm before registration). In [8], 115
registrations for 10 volumes and 115 live 2D images were executed based on
the trajectory and orientation of the probe from magnetic tracking. Measured
on fiducials extracted on 2D and 3D data (about 6 per image), the TRE after
non rigid registration was 4.63±1.05 mm (6.31±1.86 mm before registration).
The accuracy we obtained is slightly lower or similar to the one reported in
the literature but it must be kept in mind that it corresponds to experiments
on a much larger data set obtained from routine recorded data. Also, we com-
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puted gold standard transforms based on fiducials on 3D volumes, whereas in
[8] and [5], the fiducials were identified on 2D slices. Our gold standard trans-
forms computed with 3D fiducials are therefore probably more precise. The
testing also explores in a more systematic way the basin of attraction of our
method. This shows that our method is rather robust in spite of inaccurate
initialization. Let us stress the fact that in clinics, such inaccurate initializa-
tion may happen very often due to prostate or patient uncontrolled motions.
In [8], the computation time is about 30 s (resp. 10 min) for rigid and (resp.
FEM-based) registration which is not compatible with real-time navigation.
[5] reports mean running time of 1.1 s for the experiments listed above with
a GPU implementation of their method. Considering the potential of paral-
lelization of most of our method steps, we are optimistic about our ability to
significantly decrease the computational cost of our method also using GPU
to reach similar performances.

The proposed framework is intended to be incorporated in a navigation
process with repeated registration during probe motion from one biopsy to
the following. [5] reports the improvement of the registration accuracy (from
1.63 to 1.81 mm in average) on the same database of 16 images for 8 patients
by repeating the registration every second. Repeated registration also results
in better initialization and improved convergence. This could also allow us to
decrease nn to improve the performance. Moreover, a GPU implementation
would give us the possibility to test more parameters values.

The next step consists in evaluating our method on real conditions using
inertial sensor data and images during a live session.
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