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Balanced Black and White Coloring Problem on knights chessboards

 proposed the problem of placing b black queens and w white queens on a n × n chessboard such that no two queens of different color can attack to each other, the complexity of this problem remains open. In this work we deal with the knight piece under the balance property, since this special case is the most difficult for brute force algorithms.

Introduction

Graph Anticoloring Problem (GAC) was introduced by Hansen et al. [START_REF] Hansen | Splitting trees[END_REF] as a generalization of Vertex Separator Problem (VSP), proposed by Lipton and Tarjan in [START_REF] Lipton | A separator theorem for planar graphs[END_REF] to solve the Problem 1.3 for rooks.

Problem 1.1 (GAC).

Input: A graph G = (V, E), a set of positive integers {c 1 , c 2 . . . c k }. Output: 1 If it is possible coloring c i vertices of G with color i ∈ {1, 2, . . . , k} such that, for each {u, v} ∈ E, u and v have the same color or at least one is uncolored.

If we limit k = 2, we have the Black and White Coloring Problem(BWC), defined as follows:

Problem 1.2 (BWC). Input: A graph G = (V, E), b and w two positive integers. Output: 1 If it is possible coloring b vertices of G with color black and w vertices of G with color white, such that, for each {u, v} ∈ E, u and v have the same color or at least one is uncolored.

Problem 1.3 (BWC-chessboards).

Input: A m × n chessboard, b black chessboard pieces and w white chessboard pieces, with the same piece type. Output: 1 If it is possible to place b black pieces and w white pieces in m × n chessboard, without attacking each other, 0 otherwise.

Lipton and Tarjan solved the Problem 1.3 with rook pieces. Hansen et al. showed that the BWC is NP-complete for general graphs in [START_REF] Hansen | Splitting trees[END_REF]. Until this work the complexity of Problem 1.3 with knights and queens remained open.

In our case we deal with knight chessboards. One way to answer the Problem 1.3 with knights is to fix the value of b and maximize the size of white knights set. This problem is named Optimization Black and White Coloring Problem for Knights (OBWC-Knights). In [START_REF] Berend | Anticoloring of a family of grid graphs[END_REF] Berend et al., proposed the Problem 1.4 over n × n chessboards with each original piece of chess since this special case is the most difficult one. They solved the cases of kings, bishops and towers, as well they proposed two conjectureectures, one for the case of knights and one for the case of queens. In this work we give a proof for the knights case on m × n chessboards.

Problem 1.4 (Balanced BWC).

Input: A m × n chessboard and a type of piece of chess. Output: max{min{b, w}}, of the specified piece.

The knights case

First, we model the Problem 1.4 as an integer program. Given a m × n chessboard. For each position (i, j) on the board we define the following variables:

x ij =
1 if a black piece is placed on i,j 0 otherwise

y ij = 1 if a white piece is placed on i,j 0 otherwise max θ (1) θ ≤ b (2) θ ≤ w (3) m i=1 n j=1 x ij = b (4) m i=1 n j=1 y ij = w (5) s,r∈N [i,j] y sr ≤ |N [i, j]| (1 -x ij ) ∀ (i, j) (6) x i,j , y i,j ∈ {0, 1} b, w ∈ Z + (7)
where b and w are the number of blacks and whites respectively and N [i, j] is the closed neighborhood of the vertex (i, j). The Balanced BWC formulation (1 -7) is valid for any chessboard piece, even if the studied object is a graph. Now we define φ t (m, n) as the optimal result of the integer program (1 -7) for the piece t ∈ {knight, bishop, queen, king, rook}. In [START_REF] Berend | Anticoloring of a family of grid graphs[END_REF] Berend et al. proposed the conjectureecture 2.1 for the value of φ knight (n, n). The left side of Figure 1 shows the case of even n where conjectureecture 2.1 it is fulfilled and the right side shows the case of odd n where the conjectureecture is not fulfilled. conjectureecture 2.1 is not true because it is not fulfilled when n is odd and we have a better solution for this case, also the value of φ(n, n) does not work with values of n ≤ 6. In the Figure 2 we shows a solution for 5 × 5 chessboard with 10 black and 10 white knights. The solution provided by the conjectureecture 2.1 give us φ knight (5, 5) = 5(1) + 2 = 7. The difference is because on 5 × 5 chessboard there are some positions that can not be reached by knights in one movement.

Conjecture 2.1. Given a n × n chessboard. The value of φ knight (n, n) is: φ knight (n, n) =    n n-2 2 if n is even n n-3 2 + n-1 2 if n is odd
We can proof a general version of this conjectureecture in Theorem 2.1.

Theorem 2.1. Given a m × n chessboard, m ≤ n, m ≥ 7, n ≥ 7. The value of φ knight (m, n) is: φ knight (m, n) =    m n-2 2
if n is even The values of φ knight (1, n) and φ knight (2, n) are n 2 and n respectively and its proofs are trivial. In the case of m = 3, 4, 5, 6 the value of φ knight (m, n) have a few pathological cases for small values of n and the rest can be solved by the application of Theorem 2.1 with a few modifications. For example in the case of m = 3, n must be greater equal than 7 due with n ≤ 6 there are zones that knights can not reach in one movement.

m n-3 2 + m 2 otherwise
Proposition 2.1. Given a 3 × n chessboard with n ≥ 7, then

φ knight (3, n) =    3 n-2 2 if n is even 3 n-3 2 + 2 if n is odd
Proof: We assume that b = φ knight (3, n), now we proof that the optimal number of white knights is φ knight (3, n). By the size of b exists at least one column k on the chessboard with 2 black knights and this column is the one that more knights has, the other columns have at most 2 black knights, by this fact the number of non empty columns are at least n -2 and the number of uncolored vertices is at least 2(n -2). If we fill the columns with two knights we have at least 5 or 6 uncolored vertices depending on the parity of n what decreases the number of non-empty columns and the number of uncolored vertices. We have a solution with exactly 5 or 6 uncolored vertices depending on parity of n. We calculate the optimal number of white knights with the following equation.

w opt = 3n -b -uncolored = 3n -3 n -2 2 -6 = 3 n -2 2
in the even case.

Which is the same number of uncolored vertices as in our solution. The odd case is similar. To verify that φ knight (3, n) is the greatest value that is necessary a conclusion like that of the Theorem 2.1 shown in the section 3.1.

For the proof of Theorem 2.1 we use plenty of lemmas, which some of them are easy to verify and its proofs will be omitted.

Auxiliary Lemmas

Definition 2.1. A full column (row) is a column (row) with a black knight on each of its vertices. Proof: The proof of this lemma is similar to that shown in [START_REF] Berend | Anticoloring of a family of grid graphs[END_REF] for kings chessboard but with an argument as in the Lemmas 2.4 and 2.5. Proof: In this case there are two possibilities like in the Figure 6. Let k the last non empty column on chessboard and b k the number of black knights in that column.

• Case 1: Columns k + 1 and k + 2 has at least b k uncolored vertices.

• Case 2: Columns k + 1 and k + 2 has at least m -b k uncolored vertices. Proof: Due to the Lemma 2.10 and the size of b it is possible to build a solution with at least one full column. By the Lemma 2.11 and the parity of chessboard, that solution has at least 2m or 2m -1 uncolored vertices.

k k + 1 k + 2 k k + 1 k + 2

Minimum uncolored set

We propose a solution with a thigh lower bound in the number of uncolored vertices like in Table 1 3 The value of φ knight (m, n)

Now we are enabled to write a formula for the optimal number of white knights under the condition that the number of black knights is the same as in the Theorem 2.1.

w opt = mn -(b = φ knight (m, n)) - 2m Cases 1,2,3 2m -1 Case 4 (8)

Conclusion of proof of the Theorem 2.1

In this section we only show case 1. The proof is similar for other cases. We can calculate the optimal number of white knights since our solution is a thigh lower bound in the number of uncolored vertices.

w opt = mn -m n -2 2 -2m = m n -2 2 
By definition of balanced BWC we need min(b, w opt ) = b since b = w opt . We also need the greatest value of all minimum values. We increase the value of b by k units. If φ knight (m, n) is not optimal, the value of min(b, w opt ) will be increased. Let w k opt the optimal number of whites with b + k black knights with k ≥ 1. 
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 1 Figure 1: A graphical example of conjectureecture 2.1.
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 2 Figure 2: A counterexample for 5 × 5 chessboard.
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 5 Figure 5: Application of Lemma 2.8.

Lemma 2 .

 2 10. Given a coloring C with b = φ knight (m, n) black knights. It exists a coloring C with at least one full column such that N (C ) ≤ N (C). Proof: By the application of Lemmas 2.4, 2.5, 2.6, 2.7 and 2.8 a solution is built with a block with N (C) ≥ 2b c 1 + 2b r 1 where b c 1 and b r 1 are the column and the row with more black knights. Now N (C) ≥ 2(b c 1 + b r 1 ) ≥ 2m. If we fill at least one column the number of uncolored vertices remains equal or decreases until exactly 2m, therefore the new coloring has N (C ) ≥ 2m uncolored vertices and N (C ) ≤ N (C).

Lemma 2 .

 2 11. Given a coloring C with at least one full column then N (C) ≥ 2m -1 or N (C) ≥ 2m.

Figure 6 :

 6 Figure 6: Knigth configuration with a full column, Case 1 (Left), Case 2 (Rigth)

Figure 7 :

 7 Figure 7: A graphical example of our solution, Case 1,2 (Left), Case 3 (Middle), Case 4 (Right).

  + k, w k opt ) = w k opt and max(b, w k opt ) = b 4 Conclusions and future work The balanced BWC problem with knights and queens remained unsolved until this work. We shown a proof of a generalization of the conjectureecture proposed by Berend et al. for knight case, also we shown that the second part of the conjecture is not fulfilled and we have provided a better solution in this case. The next step is a proof of not balanced case and what happens in the case of toroidal chessboards. In the case of queens the problem remains open.

Table 1 :

 1 and Figure 7. The proposed solution.

	Case	m	n	uncolored vertices
	1	even even	2m
	2	odd even	2m
	3	even odd	2m
	4	odd odd	2m -1

Definition 2.2. An empty column (row) is a column (row) with all of its vertices uncolored.

Definition 2.3. An empty vertex is a position on chessboard that should not have a knight. Definition 2.4. A vertex u is covered by a black knight v if u is uncolored and can be reached by v in one movement. Lemma 2.2. A full column (row) k completely covers the columns k + 1 and k + 2 for any k ∈ {1 . . . n -2} i. e. columns k + 1 and k + 2 can not be white. Proof: The proof of this lemma uses the fact that each vertex in columns k + 1 and k + 2 is covered twice by the knights of column k except for the topmost and bottommost vertices of column k + 2, which are covered only one time. Now if we remove two blacks from column k we can uncover up to 4 vertices in columns k + 1 and k + 2.

Let N (C) be the number of vertices that must be uncolored in a coloring C. Definition 2.6. A block is a set of columns (rows) with no intermediate empty columns (rows). Definition 2.7. An empty block is a set of contiguous empty columns (rows).

Lemma 2.4. Given a C with b black knigths, there is a coloring C , which is obtained by permutation of its rows (or columns) such that only all full rows and almost full rows (or columns) are in a single block and N (C ) ≤ N (C).

Proof: Without loss of generality. Suppose we have a coloring C with all full and almost full columns in two blocks. The columns in the first block are labeled as i 1 , i 2 , . . . i p and columns in second block as j 1 , j 2 . . . j q , with i 1 < i 2 . . . i p < j 1 < j 2 . . . j q . The left side of first block has at least 2m -4 covered vertices. The right side of the same block has at least 2m -4 covered vertices. The right side of the first block and the left side of the second block may share covered vertices. If the second block is placed next to the first one some potential white vertices between first and second blocks may become uncolored. In the worst case we loss only 4 potential white vertices but release columns j q+1 and j q+2 , then N (C ) ≤ N (C). Proof: There are two cases in this proof: Proof: We only proof the case of n is even. We suppose that the coloring does not have full or almost full columns because in this case it is trivial because of the Lemmas 2.4 and 2.5. On the other hand we choose the column with more black knights, this column must have more than 

If we put the biggest column on the leftmost of block like in the Figure 4, the number of uncolored vertices in new coloring is Proof: Without loss of generality we can place the column with more black knights in the first column of chessboard, by Lemma 2.7 we can place all non-empty columns in descending order and we have at least