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Proving Formally a Field-Based FSSP Solution

Yoann Marquer, Luidnel Maignan, Jean-Baptiste Yunes

Abstract

In the research domain of cellular automata algorithmics, the firing squad synchroniza-
tion problem is a famous problem that has been solved in many ways. However, very few
of these solutions have a detailed formal proof suitable for proof assistant and for human
understanding. The reason is that the correctness of those solutions is more easily seen from
a high level point of view and from the way the solution has been constructed than from the
actual formal description of the constructed solution. The field-based approach consists in
giving a formal description of a new high-level and modular description and the reduction
process down to the final low-level solution. The decomposition in modules are natural
from a design point of view and is a precise counterpart of the previous informal high-level
description. This research report aims to present an understandable proof of correctness of
the high-level field-based solution suitable for an implementation in CoQ.

1 Introduction

This research report presents a formal proof to be implemented in CoQ for a high-level solution
to the multi-general one dimensional firing squad synchronization problem. The problem is
to design a cellular automaton (X, § : ¥2 — ¥) with three special states q,g,f € ¥ called
the quiescent, the general and the firing state respectively with the following synchronization
property. Given a line of cells of arbitrary length with some cells in the general state and all
the other cells in the quiescent states, the firing state is netherthless reached by all cells of the
line at the exact same time. This has to be the case despite the fact that § is required to have
d(s1,9,82) = q whenever s1,s2 € {L,q}, which causes an initial asynchronous starting of the
cells. Here 1 is a special state representing the absence of some neighbors at each extremity
of the line of cells (we discuss this further in the appendix p.20). For more information on this
problem definition and variation, one can consult [SW04].

We give at the section 2 p.2 an example of evolution. A cell is labeled by a number between
1 and n. The generals are the cells awaken at the date ¢t = 0, and at every date ¢ the local
informations of a cell ¢ and its neighbors determine the next state of ¢ at the date ¢ + 1. The
synchronization is obtained by recursion on the layers. At the layer £ = 0 the borders are the
cells 1 and n. At every layer ¢ the middles of the regions are computed during the evolution,
and become borders for the layer £ + 1. Therefore, the space is split in regions, and subregions,
and so on until every cell become a border. Then, they fire together.

These local informations are formalized as different propositional fields at the section 3 p.4,
which define the rules of the evolution:

e Inp,(c) denotes that the cell ¢ is awaken at the date t.

e Brd!(c) denotes that at the layer ¢ the cell ¢ knows at the date ¢ that it is a border of a
region.



e Ins!(c) denotes that at the layer £ the cell ¢ knows at the date ¢ that it is (strictly) inside
a region.

. dstf(c) denotes that at the layer £ the cell ¢ knows at the date ¢t that it is at least at a
distance > d from the borders.

e Stal(c) denotes that at the layer £ the cell ¢ knows at the date t that its state will not
change during the following dates.

e Mid!(c) denotes that at the layer ¢ the cell ¢ knows at the date ¢ that it is a middle of a
region.

e Out!(c) denotes that at the layer £ the cell ¢ knows at the date ¢ that it can fire.

Most of the lemmas and propositions highlight that the fields compute what they are supposed
to. For example, we prove at the lemma B.5 p.22 that the border and inside field are exclusive,
and at the lemma B.6 p.23 that a border has a distance d = 0.

Until every cell has enough local informations to deduce that globally every cell can fire at
the the same time, the fields accumulate more and more local information over time. This is
illustrated by the notion of monotonicity for the fields, which means that if the property holds
for a given time t, then it holds for every ¢’ > t. We prove in the appendix at the section C p.25
that for a given layer ¢ the fields are monotone.

An other core notion of the paper is the concept of Light Cone, formalized by the field
LCf(bl, by) which denotes that the cells by and by are borders, and that at the date ¢t + 1 every
cell (strictly) between b; and bs is inside. In a sense, this is a spatiotemporal version of the
strictly spatial notion of region presented in the references. We prove in the section 5 p.11 that
the Light Cones are the global counterpart of the local middles of the regions. More precisely,
we prove at the lemma 5.9 p.14 that these information are necessary, and at the corollaries 5.5
p-12 and 5.6 p.13 that these informations are sufficient, to compute the middle(s) of the region.

The Light Cones help us prove in the section 6 p.15 the proposition 6.3 p.15 stating that the
middles of the regions appear at the same time with the same distance, in order to prove the
synchronization.

The purpose of this research report is to prove that the synchronization is effective. In our
framework, the proof is done at the theorem 7.4 p.18, stating that for every layer ¢, for every
date t and every cell ¢, if Out’(c) (ie the cell fires) then for every cell ¢ we have Out!(c') (ie
every cell fire).

Finally, we discuss some issues in the conclusion p.19. We let the most technical proofs to
the appendix, and at the section F p.48 we provide a code in C0OQ of the definitions and some
lemmas.

2 Example

Before defining formally the fields, we introduce them in an example of execution at the table 1.

Given one or several generals, the aim is to ensure that every cell will fire at the same time.

In this example, there are seven cells. Each cell is represented by a column, and each line
corresponds to a date. So, the table should be read line by line, from top to bottom.

The white cells represent the cells which are not awaken. At ¢t = 0, only the fifth cell is
awaken: this is the general. At each step, each cell awakes its neighbors if they are not already
awaken.

When a cell is awaken, it begins to compute its possible distance to the borders. Because
the evolution is given only by local rules, this computation must be done by a cell only by looking



cells 112(314(5|6|7
time

t=20 0
t=1 1111
t=2 111(2(1/0
t=3 111121211 ]0
t=4 JO0|1(2]|2[2|1|0
t=5 ||0|1]2]3/2|1]0
t=6 0123|210
t=7 0|1(2|3|2|1/|0
t=8 0123 |2|1/|0
t=9 0123|210
t=10)0|1(2|3|2|1/|0

Table 1: Layer £ =0

to its neighbors. If a cell is a border, its distance to the borders is 0, else it is 1 + min(dy, d,.),
where d; and d, are the distance of its left and right neighbors at the previous step. Notice that
the distance in each cell is increasing over time.

The gray cells represent the cells which are able to know that they have computed the right
distance to the borders. A border knows that it has a distance 0 to the borders, and a cell which
has a distance 1 + d and a stable neighbor with a distance d becomes stable.

The cells form a region, delimited by the borders ¢ = 1 and ¢ = 7. The middle of this region
is the cell ¢ = 4. This cell knows that it is a middle when its neighbors are stable and have a
lower distance to th borders. The distance of the borders and the middles are written in bold
to highlight the region. After ¢ = 7, the distance are stable and the middle has appeared, so
nothing change.

Our aim is to divide the region in half, then divide the subregions in half, and so on until
every cell is a border. Then, they will fire at the same time.

In order to do that, we introduce the notion of layers. The previous computations have been
done for the layer £ = 0. In the next layer (£ = 1), we assume that a cell knows that it is a
border when it knows that it is a border or a middle at the previous layer (¢ = 0).

Moreover, a cell will compute its distance to the borders only if it knows it is a border or is
inside the region. In other word, a cell is awaken if and only if it is a border or inside. More
precisely, a cell becomes inside at a layer £ > 0 if at the previous layer it was inside and stable,
and had at the previous step a neighbor with a greater distance.

Therefore, the execution at the layer ¢ = 1 is given at the table 2.

Notice that because there is an even number of cells in the two regions of the layer ¢ = 1,
two middles appear.

At the layer £ = 2, every cell become a border at ¢t = 9. So, at ¢ = 10, each cell knows that
its neighbors and itself are borders, and fires.



cells 11234567 cells 112345 |6|7
time time

t= t=20

t=1 t=1

t=2 0 t=2 0
t= 110 t=3 0
t=4 || 0 110 t=4 |0 0
t=5 [[0]1 110 t=5 |0 0
t= 011 17110 t=6 [0 0
t= o/1(1(0/1]1/0 t=7 |0 0 0
t= O/ 1{1j0|1|1/|0 t=8 |0 0 0
t= O/1{1/0{1/1/|0 t=9 (0|0 0 00
t=10)40{1|1|0|1|1/|0 t=10|f|f|f|f|f|f|f

Table 2: Layers £ =1 and £ = 2

The number of layers is potentially infinite, but notice that every layer £ > 2 is the same
than the layer ¢ = 2. This, and the fact that the distance fields has a maximum value depending
of the total number of cells, implies that the automaton described in this paper has an infinite
number of state. But it is proven in [MY16] that these states can be finitely implemented, so we
will not discuss this further in this paper.

3 Fields

For the CoQ implementation, the fields are computed using booleans but the results will be
proven using propositions as recommanded in Software Foundations (Benjamin Pierce).

The definition are simplified (quantifier elimination) for the implementation, as opposed to
the paper (cite finitization).

We assume in this paper that the problem is one-dimensional, and the cells are labeled from
1 to n.

Axiom 3.1 (At least three cells).
n>3

The boolean function gen is given by the evolution, and indicates the position of the gen-
eral(s) at the beginning of the execution.

Axiom 3.2 (At least one cell is a general).

Jde,1 < ¢ <nAgen(c) = true

b2

In the following definitions, we assume that “ or 7, “ and ” and “if ...then ...else ...” are
the standard booleans operations.



The input field indicates which cells are awaken at a particular time ¢. For ¢ = 0, only the
generals are awaken, and at each step an awaken cell awakes its neighboring cells:

Definition 3.3 (Input Field).

. def
inpy(c) = gen(c)

inp, 1 (c) def inp,(¢ — 1) or inp,(c) or inp,(c+ 1)

Inpy(c) e gen(c) = true

def
Inpt+1(C) = Inp,(c—1) VInp,(c) VInp,(c+ 1) (1)

Like this definition, the boolean fields will be written with lowercase, and the proposition
fields in uppercase. The CoqQ file at the section F p.48 contains already the proof of equivalence,
so they will be admitted in this report.

Lemma 3.4 (Equivalence for Inp).
Ve, Inp,(c) < inp,(c) = true

For the sake of clarity, the = and < will not be distinguished from their boolean equivalent,
as it is in CoQ. The recursive definition of the proposition fields is given at the table 3, where
dst is an integer field computed along the booleans fields.

Remark. Notice that if ¢ =1 then the cell ¢ — 1 is not in our space, neither ¢ + 1 for ¢ = n.
Therefore, the definition of the fields should be modified as in [MY16] to take a proper
neighborhood into account.
We discuss in the appendix p.20 what is required to be modified in the formal definition of
the fields for the cells ¢ € {1,n}, but we keep here the non-modified version because it is simpler
and it corresponds to our implementation in CoQ p.48.

CoQ cannot guess how to compute such an intricated recursion, so the recursive definitions
of the booleans fields must be split into abstract parts for different given levels:

1. We use the input field to define at the table 4 the border and inside fields at the level 0.

2. Then, we assume that the border and inside fields are defined at the level ¢, and we define
at the table 5 the distance, stability and middle fields at that level.

3. Finally, we use the fields defined at the level £ to define at the table 6 the border and inside
fields for the level £+ 1.

The boolean fields should be defined by the mutual recursion given at the table 7, but CoQ
cannot guess the decreasing argument.

So, instead, we substitute the schemata at the table 8 to obtain only one mutual recursion
for the border and inside fields and thereafter define the other fields, where f(g1,...,gx) denotes
the field (t,¢) — f(t,c,91,.-.,9K)-

And this time, C0OQ is able to compute the fields. Moreover we prove in COQ at the section
F p.48 the equivalence between the boolean and proposition fields, and the specification of dst:



Brd?(c)
Brd™(c)

Ins) (c)
Ins{™ (c)

Ins{ 1 (¢)

Sta(c)

Staﬁ_1 (c)

Midf(c)

Midf+1 (c)

Inp,(c) A
Brd(c) v Mid!(c)

(I=cvVe=n)

Inp,(c) N1 <cAhc<mn
False

Insf+1(c) A Staf+1(c)
A (dStf+1(C) <dstf(c—1)v dstfﬂ(c) < dstf(c+ 1))

Brdj(c)

Brdf+1(c)
v (dstf+1(c) =1+ dst!(c— 1) AStal(c— 1))

v (dstfH(C) =1 +dsti(c+1) A Stal(c+ 1))

False
(dstf+1(c) > max (dstf(c —1),dst!(c+ 1))
A Stal(c —1) A Stal(c+ 1))
¢ _ ¢ ¢
v <dstt+1(c) = max (dstt (¢ —1),dsti(c+ 1))

A Stal(c — 1) A Stal(c) A Stal(c + 1))

Table 3: Formal Definition of the Fields

brd0(t, ¢) def inp;(c) and (1 =c¢ or ¢ =mn)

ins0(¢, ¢) et inp,(c) and 1 <c and ¢ <n

Table 4: Border and Inside Fields at the Layer 0

Lemma 3.5 (Equivalence between Boolean and Proposition Fields).

Vite, Brdi(c) < brd!(c) = true
Vite, Inst(c) < inst(c) = true
Vlte, Stal(c) & stal(c) = true
Vete, Mid (c) < mid!(c) = true

6



dstL(0, ¢, insL) L

dstL(t + 1, ¢,insL) et i insL(t + 1,¢)
then 1+ min (dstL(t, ¢ —1),dstL(t, ¢ + 1))

else 0

staL(0, ¢, brdL, dstL) % brdL(0, c)

staL(t + 1, ¢, brdL, dstL) = brdL(t + 1,c¢)
or (dstL(t +1,¢) =1+dstL(t,c — 1) and staL(t,c — 1))

or <dstL(t +1,¢) =1+dstL(t,c+ 1) and staL(t,c+ 1))

midL(0, ¢, dstL, stal.) = false
midL(¢ + 1, ¢, dstL, stal.) ef <dstL(t +1,¢) > max (dstL(t, c¢—1),dstL(t, c + 1))

and staL(t,c — 1) and staL(¢,c+ 1)>
or (dstL(t +1,¢) = max (dstL(t, c—1),dstL(t, ¢+ 1))

and staL(t,c— 1) and stal(t,c) and staL(t,c+ 1))
Table 5: Distance, Stability and Middle Fields at the Layer ¢
brdS(t, ¢, brdL, midL) def brdL(¢,¢) or midL(¢,c)
insS(0, ¢, insL, dstL, stal.) 4 false

insS(¢ + 1, ¢, insL, dstL, stalL) def insL(t + 1,¢) and staL(t+1,¢)
and (dstL(t +1,¢) <dstL(t,c—1)

or dstL(t+ 1,¢) < dstL(t,c — 1))

Table 6: Border and Inside Fields at level £ + 1



brd?(c) = brdo(t, c)
brde(C) = brdS(t, c, brde,mide)

ins?(c) = ins0(¢, c)

inst ™ (c) o insS(t, ¢, ins’, dst’, sta’)
dstf(¢) = dstL(t, ¢, ins?)
stal(c) = staL(t, ¢, brd®, dst’)
mid!(¢) = midL(t, ¢, dst’, sta’)
Table 7: Mutual Recursion for the Boolean Fields (first try)

brd® = brd0

brdft! 2 prds <brd€ . midL (dstL (insf ) stal, (brde, dstL (ins’ ))))

ins” = ins0
ins?! 4 inss (inse7 dstL (inse ) ,staLL (brdf7 dstL (insg )))
dst® = dstL(ins®)
sta! = staL(brd’, dst?)
mid® = midL(dst, sta’)
Table 8: Mutual Recursion for the Boolean Fields (second try)

Lemma 3.6 (Distance Field).
dstf(c) =0
Ins; () = dstfﬂ(c) =14 min (dstf(c —1),dst!(c+ 1))

—1Inst 4 (c) = dstfﬂ(c) =0



In the rest of the paper, we will use only the axioms 3.1 p.4 (there exists at least three cells)
and 3.2 p.4 (there exists at least one general), and the equations (1) for the input field, (2) for
the border field, (3) for the inside field, (4) for the stable field, (5) for the middle field, and (6)
for the distance field.

4 Framework

In the appendix at the section B p.20 we detail technical lemmas about the fields. Their proofs
are very detailed and written in a CoQ style, in order to be implemented. In fact, some (but not
all) have been at the section F p.48.
We prove at the lemma B.5 p.22 that the border and inside fields are exclusive, which means
more formally that:
Vete, Brd!(c) = Inst(c) = False

We prove at the lemma B.7 p.23 that the neighbors of a middle are stable, and at the lemma
B.8 p.23 that a middle itself is stable too:

Vete, Midy, ; (c) = Stal(c — 1) A Stal(c+ 1)

Velte, Mid! (c) = Stal(c)

By the stable field equation (4), a border is stable. Therefore, by using the lemmas B.6 p.23
and B.9 p.24 we have the following equivalence:

Vete, Brd!(c) < Stal(c) A dstf(c) =0
Finally, the lemma B.11 p.24 states that at the layer 0, every cell ends up being awaken:
3t, Ve, Inp,(c)

At the section C p.25 of the appendix, we prove the monotonicity of the fields, which means
that if the property holds for a given time ¢, then it holds for every ¢’ > t. As for the section
B, The proof are very detailed, and some (but not all) have been implemented in CoqQ at the
section F p.48.

The proof of the monotonicity of the input field derives directly from the input field equation
(1), so we have the lemma C.1 p.25:

Vte,Inp,(c) = (V' t' > t = Inp, (c))

The other fields are defined for each layer by mutual recursion, so the proof must be split
into several parts.

Firstly, we prove the monotonicity of the border and inside fields at the layer ¢ = 0.

Secondly, we prove that if the border and inside fields are monotone at the layer ¢, then the
other fields are monotone at the layer ¢ too and, moreover, that the border and inside fields are
monotone at the layer £ + 1.

1. For the layer ¢ = 0, if Brd?(c) then according to the border field equation (2), we have
Inp,(c) and ¢ = 1 or n. But, according to the lemma C.1, the input field is monotone, so
we have Inp,, (c) and ¢ = 1 or n. Therefore, we have Brdy, ; (c).

In the same way, if Ins)(c) then according to the border field equation (3), we have Inp,(c)
and 1 < ¢ < n. But, according to the lemma C.1, the input field is monotone, so we have
Inp,,(c) and 1 < ¢ < n. Therefore, we have Ins; ; (c).



2. Let ¢ be a layer. We assume that the border and inside fields are monotone at the layer ¢:
Vte, Brd:(c) = Brde(c)
Vtc, Inst(c) = Ins;_ 4 (c)
Then, we prove in the lemma C.2 p.25 that the distance field is increasing at the layer ¢:
Vie, dstl(c) < dstf_H(c)
Then, we prove at the lemma C.3 p.25 that a cell which is stable at the layer ¢ has a
constant distance:
Vte, Stal(c) = dsti(c) = dstfﬂ(c)
Then, we prove at the lemma C.4 p.26 that the stable field is monotone at the layer ¢:
Vitc, Stag(c) = Stay, ;(c)
Then, we prove at the lemma C.5 p.28 that the middle field is monotone at the layer ¢:
Ve, Midj () = Midy, ;(c)
Then, we prove at the lemma C.6 p.29 that the border field is monotone at the layer £+ 1:
Vte, Brdi (¢) = Brdfﬂ(c)
Then, we prove at the lemma C.7 p.30 that the border field is monotone at the layer ¢+ 1:
Vie, Insi(e) = Insfﬁ (¢)
Therefore, we proved that the fields are monotone at every layer:
Vete, Brd(c) = (Vt’, ' >t= Brdf,(c))
Vete, Inst(c) = (Vt’, t' >t = Insh, (c))
Vite, Stal(c) = (Vt’, t' >t = Stal(c)
Vete, Mid!(c) = (\ﬁ', ¥ >t= Midf,(c))

Vitet' ,t' >t = dsth (¢) > dstl(c)

Vite, Stal(c) = (Vt’, >t = dsth(c) = dstf(c))

10



cells || 1123|4567
time

t=010 0
t=11]0]|1 110
t=210 1|1 17110
t=3(01/1/2(1{1]|0
t=4101|2 211]0
t=51(0|1|2 211]0

Table 9: A light cone for 7 cells.

5 Light Cones

What are the necessary informations to produce a middle 7

The information travels from cell to cell at the speed of one cell per step, which is in a way
the light speed for the automaton. So, the necessary informations required to produce a middle
must come from the borders, travel from cell to cell in diagonal, and attain the middle(s) at the
step it appears.

At the table 9, we give an example of a “worst” case, where the middle of the automaton has
little to no information during most of the execution, because the generals are at the cells 1 and
7. The middle appears at the step t = 5, and then the evolution does not change anymore. The
informations leading to the middle at ¢ = 5 traveled from the entire region at ¢ = 2, which we
call the Light Cone of the middle.

Notice that some cells may not be awaken at ¢ = 2, but they are all border or inside after the
first step of the Light Cone.

So, in this example it is true that at the layer £ = 0 and the date ¢ = 2 the region between
the borders 1 and 7 is a Light Cone for the middle to come. This will be denoted by LCS(1,7)
in the following definition:

Definition 5.1 (Light Cones).

LCE(by,b) < by 4+ 2 < by A Brdf(by) A Brd(by)

A (VC, by <ec<by= Insf_H(c)) (7)

The condition by + 2 < by ensures not only that b; < bs, but also that there is a cell between
them. This ensures that the boundaries between light cones are not light cones themselves.

Moreover, this excludes the regions of the final layer (which contains only two cells) to be

called light cones, so the results of this section are only for the phase transition. And indeed, the

final layer is the first during the execution when a region alone cannot determine the middle(s),
because a middle requires at least three cells to appear, and not only two.

Corollary 5.2 (Light Cone at layer 0).

3t,LCY(1,n)

11



Proof. Firstly, by axiom 3.1, n > 3.
Secondly, by using the lemma B.11 there exists ¢ such that for every cell ¢, Inp,(c). So:

e We have (2) that BrdY(1) and Brd}(n)

e We have (3) for every 1 < ¢ < n that Ins?(c). So, by using the corollary C.10, for every
1 < ¢ < n we have that Insj, ; (c).

Therefore (7) LCY(1,n). O

Remark. In the following, § will denote the floor function of the half : the half of a if a is even,
and the half of @ — 1 if a is odd.

As in the section 4, the proofs of the following results are very detailed and written in a COQ
style, in order to be implemented. Therefore, for sake of clarity, we will only write and comment
the results in this section, and leave the non-trivial proofs to the appendix at the section D p.33.

At the table 9, notice that the cells in yellow are stable, and that the distance increases from
the border with d = 0 to the middle with d = @. Moreover, if the Light Cone began at the
date t in the borders, then at the date t + d every cell inside the Light Cone has a distance > d:

Proposition 5.3 (Running of a Light Cone).

by — b
Vithiba, LCf(by,bo) = ¥ 0 < d < 21,

dst}. (b1 +d) = d A Stay, 4(by + d)
Adsty4(by — d) = d A Stal, 4(by — d)
A (v by+d < c<by—d,dstl, () > d)

Because we proved at the corollary C.11 p.32 that the stable field is monotone, and at the
corollary C.14 p.32 that a cell which is stable has a constant distance over time, we can deduce
from the previous proposition the state of the entire region when the middle appears at ¢+ @:

Corollary 5.4 (End of a Light Cone).

Vlthiby, LCE(by,by) =V 0 < d < ?

dsty vy (b1 +d) = d A Staj, vy (b1 + d)
/\dStf+ b2;b1 (b2 — d) = d AN Staf+b2;b1 (b2 — d)

Remark. Notice that for a Light Cone LCf(bl, ba), by — by + 1 is the number of cells forming the
Light Cone, boundaries included.

In our example at the table 9, the region has 7 — 1+ 1 = 7 an odd number of cells, so one
middle appeared.

Corollary 5.5 (Middle of an odd Light Cone).
Vltbyby, LCE (by, by) A by — by + 1 odd

b1 + by
2

0
= Mldt+b2;b1 (

12



But remember that in our example at the table 2, there was an even number of cells in the
two regions of the layer £ = 1, so two middles appeared:

Corollary 5.6 (Middles of an even Light Cone).

Vltby by, LCY (by, by) A by — by + 1even

. by +by—1 . by +bs+1
= Mldf+b2fz2,1+1 <2> A ].\/Ildf+ b2—12>1+1 (2)

Remark. Notice that in every case, we have Midf+ by by +1 (bl—ng) and Midf+ bo—byt1 (%)7
2 2

but we thought the presentation clearer by separating both cases.

The main purpose of the concept of Light Cone is to help proving results about middles at
the section 6 p.15. As an example, in order to prove results like the proposition 6.3 p.15, we
prove that the other cells of a Light Cone are not middles:

Lemma 5.7 (The other cells of a Light Cone are not Middles).

by — by

Vltbyby, LCY (by, by) = V' >t + Ve,

by+by  by+by+1
5 T a2 ©

(bl <c< c< b2) = = Mid}, . (c)

The previous lemma can be generalized by using the monotonicity of the middle field:

Corollary 5.8 (The other cells of a Light Cone are not Middles).

Vltby by, LCE(by, by) = V',

by+by by +by+1
<m§c< 1+, bitoetl

5 5 c< bg) = = Mid!, ()

Proof. The proof is made by case on t':
o If t/ <t+ 22521 we prove - Mid?, (¢) by contradiction.
We assume that Mid% (c). So, by using the lemma C.12 we have that Midf+ by—by +1(c).
2
¢

But, by using the previous lemma with ¢ + @, we have that — Midt+b27b1 +1(C)’ hence
2
the contradiction.
o Ift/ >t+ 0250 41
By using the previous lemma with ¢’ — 1 > ¢ + 2252 we have that - Mid?, (c).
O

In the following, we call a true middle a cell which is a middle but not a border. Indeed, as
opposed to the border and inside fields, these fields are not exclusive. But a cell can only be a
middle and a border during the final layer, so the two fields are exclusive during the transition
phase.

In a sense, the following lemma is the converse of the corollaries 5.5 and 5.6:
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Lemma 5.9 (Each true Middle comes from a Light Cone).
Vetm, = Brd:(m) A Mid(m)
= LC!_,(m —d,m +d)
VLG (g11y(m = (d +1),m + d)
VLC_ (g41)(m —d,m+ (d+ 1))
where d = dst!(m)

We use the previous lemma to prove that if a (true) middle appears at the layer ¢ and the
date t, then it determines the apparition of a Light Cone at the layer £+ 1 and at the same date:

Corollary 5.10 (A Middle induces a new Light Cone).
Vetmd, Mid:(m) A dsté(m) =d Ad > 2
= Vt/, (Brdf,(m —d) = LCH (m — d, m))

A (Brdf/ (m + d) = LC (m, m + d))

This allows us to prove the following proposition stating that a Light Cone at a layer ¢ will
be split in half by the middle field, hence determining the formation of two Light Cones at the
layer £+ 1:

Proposition 5.11 (A Light Cone is split in the Middle).
Vltby by, LCL(by, by) Aby — by +1>5

by +b b1 +ba+1
= chi—},szlﬁ»l <b17 ! 2) /\chi_};27h+1 ( ! 2 ,b2>
2 2

2 2

Proof. Let £, t, by and by such that LCf(bl, by) and by — by +1 > 5.
According to the corollary 5.5 p.12 (if bo —b; +1 is odd) or the corolloray 5.6 p.13 (if bo—b; +1
is even), we have MidfJr by—by 41 (@) and Midf+ S (bl"!‘l2772+1)
2 v 2

Moreover, according to the corollary 5.4 p.12 for d = @ (and eventually the corollary C.14

p-32), we have:
b1 + by by — by b1 +ba+1
dstf+b27gl+1 ( 1 : ) = 5 = dstf+5271271+1 —3

Notice that the hypothesis by — by + 1 > 5 implies that @ > 2.
So, because LCf(bl, by) implies that Brdf(bl) and Brdf(bg), we can apply the corollary 5.10
on the middle(s) to prove the result. O

Finally, to help proving the proposition 6.3 p.15, we conclude this section with a lemma
stating that a Light Cone at the layer £+ 1 with borders b; and by determines at the layer ¢ that
one was a border, and the other was a true middle:

Lemma 5.12 (One Brd and one Mid at the previous layer of a Light Cone).
Vetby by, LCET (b, bo)

= (Brdf (b)) A = Brd! (bs) A Mid! (bs) A dst’(bs) = by — bl)

v (ﬁ Brd (b)) A Mid(b;) A Brd!(bs) A dstt(b1) = by — bl)
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6 Middles

As in in the previous section, the proofs of the following results are very detailed and written
in a COQ style, in order to be implemented. Therefore, for sake of clarity, we will only write
and comment the results in this section, and leave the non-trivial proofs to the appendix at the
section E p.43.

The aim of this section is to prove the proposition 6.3, which is necessary to ensure the
synchronization of the cells (theorem 7.4 p.18). In order to alleviate the demonstration, we
first prove two technical lemmas:

Lemma 6.1 (Paired Middles appear at the same time with the same distance).
VOt tamimeo, Midf1 (mq) A Midf2 (ma) A(ma=m1+1Vmg =mg+1)
= Midf1 (ma) A dstf1 (my) = dstf1 (ma2)
Proof. The proof is made p.43 by using the monotonicity of the fields. O
Lemma 6.2 (A Middle has the same distance over time).
Vetitam, Midy, (m) A Midy, (m) = dsty, (m) = dst;, (m)

Proof. Two cases t; <ty and t5 < t1. In every case, a middle is stable, therefore the distance is
the same. O

Proposition 6.3 (Middles appear at the same time with the same distance).

Vltimy, — Brdfl (ml) AN 1\/[1(1f1 (ml)

= (wgmg, Mid!, (ms) = Mid’, (ms) A dst!, (my) = dst!, (m2))

Proof. The proposition is proven p.44, but we sketch the proof here to highlight how the Light
Cones are used. The proof is made by induction on the layer ¢:

e At the layer £ = 0, according to the lemma 5.2, there exists t,c such that LC? (1,7).

tLc

n—{l)

If n is odd, then according to the corollary 5.5 we have Mid?Lc+"’—*l(

2
If n is even, then according to the corollary 5.6 we have Midgm+% () and Mid?LC+% (5+1).
Moreover, according to the lemma 5.8, the other cells cannot be middles.

In the first case and potentially in the second case, we have m; = ms, which concludes the
proof.

In the second case, if m; # mo then ms = mq 4+ 1 or m; = ms + 1, so according to the
lemma 6.1 we have Midg1 (ms) and dstg1 (my) = dst?1 (ma).

e We assume the induction hypothesis for ¢ and prove it for ¢ + 1.
Let dy = dstfjl(ml). Because m; is a true middle at the layer ¢ + 1, according to the

lemma 5.9, there exists ¢}, by, and b} such that LCf,j'l(bl, by) and by — by = 2d; or 2d; + 1.

So, according to the lemma 5.12, at the layer ¢, among by, and b} one is a border and the
other is a true middle with distance b} — b;. Let b% be the border and m{ be the middle.
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Let dy = dstfjl(mg). In the same way, we have LCfZ‘ (b, b4), and at the previous layer
the border b% and the middle m% such that dstg (m&) = bly — by = 2dy or 2dy + 1.

So, according to the induction hypothesis, we have Midf/1 (m%) and dstf/1 (mf) = dstf/1 (m%).

Moreover, according to the lemma 6.2 we have dstfll (mb) = dstf/2 (mb).

So (2dy or 2d; + 1) = dstfll (mf) = dstfll (mb) = dstf/2 (mf) = (2d3 or 2dy + 1).
Therefore, according to the lemma B.1, dstffl(ml) =dy =ds = dstfjl(mg).

Moreover, Midfll (mb) and B1rd[/2 (b5) so, according to the lemma 5.10, we have LCf,jl (ba, bh).

Therefore, we prove Midffl(mg) by case on the parity of b5 — bo, by using the lemma 5.5
or 5.6.

O

To alleviate the proof of the synchronization at the following section, we include here the last
lemmas about the middle field:

Lemma 6.4 (Three true middles cannot be adjacent).
Vete, = Brdt(c) A Mid!(c — 1) A Mid!(c) A Mid{(c + 1) = False
Proof. The proof is made p.47 by using the proposition 6.3. O

Lemma 6.5 (A true middle adjacent to a border has a distance = 1).
Vete, - Brd! (c) A Mid(c) A (Brdf (c— 1)V Brd(c + 1)) = dst(c) = 1

Proof. The proof is made p.48. O
Unfortunately, the last three lemmas remain to be proved:

Lemma 6.6 (Middles have max distance).
Vetm, = Brdf(m) A Mid!(m) = (Vc, dsté(c) < dstf(m))
Lemma 6.7 (Cells with the same distance than a Middle are Middles).
Vetm, ~Brd! (m) A Mid!(m) = (vc, dst!(c) = dst!(m) = Mid" (c))
Lemma 6.8 (Middles appear when each cell is stable).

Vetm, - Brd:(m) A Mid:(m) = Ve, Stal(c)
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7 Synchronization

For every layer, a region is split into two halves by the middle field, and they become two regions
at the next layer. Therefore, from a layer to the next layer, the size of the regions is divided by
2, until every cell becomes a border.

We define the output field Outf 11(c) as true for a cell ¢ at a layer £ if its neighbors and itself
are borders at the previous date ¢, and we say that a cell ¢ fires at the date ¢ if there exists one
layer ¢ such that Out(c):

Definition 7.1 (Output Field).

Outf(c) 4 Palse

Out?, ,(¢) % Brd!(c— 1) A Brd(c) A Brd!(c + 1) (8)

The aim of the paper is to prove the theorem 7.4, which states that the output field is
synchronized. In other words, that if a cell fires then every cell fires at the same time.

Lemma 7.2 (The Output Field fires for every layer).
Vete, Outy 4 (c) = Outy iy (c)

Proof. Let £, t and c.

The hypothesis Out, ;(c) implies (8) that Brd!(c — 1) and Brd!(c) and Brd!(c + 1).

So (2), we have Brd™ (¢ — 1) and Brd‘™(c) and Brd‘ ™' (¢ +1).

Therefore (8) we proved Outﬁ_% (¢). O
Proposition 7.3 (Every cell will fire).

3¢t, Ve, Outt(c)

Proof. According to the lemma 5.2 p.11, there exists ¢ such that LCY(1,n).

We remind that for a Light Cone LCf(bl, bs), bo — by + 1 is the number of cells forming the
Light Cone, borders included.

According to the proposition 5.11 p.14, if b — by + 1 > 5, then the Light Cone is split in half

at the next layer:
b1 + by b +b2+1
chi%zz—glﬂ (bh 9 ) /\chi}u—gl-%—l (27b2)

Both new Light Cones are smaller : they have % + 1 cells, borders included.
According to the axiom 3.1 p.4, we have n > 3, so 1 < logy(n — 1), therefore there exists
¢ € N such that logy(n — 1) < £+ 2. Let ¢ be the smallest, so we have :

logo(n—1)<f+2 = n—-1 <2x4
= lil< 5

Therefore, we can repeat the process of splitting LC?(I, n) ¢ times' until we obtain Light
Cones with a number of cells < 4. Moreover, according to the definition (7) of a Light Cone, the
number of cells is > 3. So, there is 3 or 4 cells in the last Light Cones.

According to the corollary 5.5 p.12 (for 3 cells) or the corolloray 5.6 p.13 (for 4 cells), in any
case at this layer ¢ every cell becomes a border or a middle.

Therefore, at the layer £ + 1, every cell becomes a border, then fires. O

14+ May be less, because b2;b1 is rounded down ?
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Theorem 7.4 (The fire is synchronized).
Vite, Out!(c) = V', Outt(c)
Proof. We prove Vtlc, Outf(c) = ¥¢', Outt(¢') by case on t:
e If t =0, let £ and ¢. By (8), Outj(c) is False, so the implication holds.
e Else, t = ¢’ + 1 and we prove Y/c, Out, ., (c) = V¢/,Out},,(c') by induction on ¢:

— Outp,(c) implies (8) Brd’ (¢ — 1) and Brd?(c) and Brd%(c + 1), so (2) we have
c—1=1Vec—1l=nandc=1Vec=nand c+1=1Vc+1=n, which leads to a
contradiction (three variables with distinct values, but only two available values).

— We assume the induction hypothesis:
Ve, Outlr 4 (c) = Ve, Outlr 4 (') (IH,)

Let c. The hypothesis Outfffl (¢) implies (8) that Brd’,"* (¢ — 1) and Brd%™ (c) and
Brd:™ (¢ + 1).

For each cell ¢ € {¢—1, ¢, c+1}, by using the lemma B.2 we have Brd’, (¢/)v—Brd (¢).
But because Brd,™(¢/) implies (2) that Brd! (¢/) vV Mid% (¢), we have two cases:
Brd!, (¢/) or = Brd!, (¢/) A Mid%, (¢/).

We prove Vc/, Outf,":ll( ") for the eight possible cases:

s If Brd’ (c — 1) and Brd’ (¢) and Brd (¢ + 1) then (8) Outl, 4 (c).
So, by using IH,; we have for every ¢’ that OUtt/H( ).
Therefore, by using the lemma 7.2, we have Outf,trll( ).

s If Mid%, (¢ — 1) and Mid/, (¢) and Mid/, (¢ + 1), we obtain a contradiction by using
the lemma 6.4.

* The other cases are :

. Brdg (c—1) and Brd’, (c) and Mld (c+1)
. Brdt, (¢ —1) and Mid’ (¢) and Brd’, (¢ + 1)
: Brdt (¢c—1) and Mldt (c) and Mldt (c+1)

d% (¢ — 1) and Brd’, (¢) and Brd! (c+ 1)
: Mldt/ ¢—1) and Br t,(c) and Mid!, (¢ + 1)
- Mid!, (¢ — 1) and Mid/, (¢) and Brd (c+1)

In every case, there exists a cell m € {¢—1, ¢, c+1} with is a middle, not a border,
and is adjacent to a border. So, by using the lemma 6.5 we have dstf/(m) =1.
Let ¢’ be a cell. By using the lemma 6.6 we have that:

dstt, (¢') < dstl (m) = 1

We prove that Brd’,"(¢) by case on dst!, (¢'):
- In the case dst’ (¢/) = 0, by using the lemma 6.8 we have that Sta’, (¢'), so by
using the lemma B.9 we have that Brd’ (¢/).
- If dst, (¢/) = 1, by using the lemma 6.7 we have that Mid/, (¢).
Therefore, in every case Brdf,'|r L.
We proved it for e