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Proving Formally a Field-Based FSSP Solution

In the research domain of cellular automata algorithmics, the firing squad synchronization problem is a famous problem that has been solved in many ways. However, very few of these solutions have a detailed formal proof suitable for proof assistant and for human understanding. The reason is that the correctness of those solutions is more easily seen from a high level point of view and from the way the solution has been constructed than from the actual formal description of the constructed solution. The field-based approach consists in giving a formal description of a new high-level and modular description and the reduction process down to the final low-level solution. The decomposition in modules are natural from a design point of view and is a precise counterpart of the previous informal high-level description. This research report aims to present an understandable proof of correctness of the high-level field-based solution suitable for an implementation in Coq.

Introduction

This research report presents a formal proof to be implemented in Coq for a high-level solution to the multi-general one dimensional firing squad synchronization problem. The problem is to design a cellular automaton Σ, δ : Σ 3 → Σ with three special states q, g, f ∈ Σ called the quiescent, the general and the firing state respectively with the following synchronization property. Given a line of cells of arbitrary length with some cells in the general state and all the other cells in the quiescent states, the firing state is netherthless reached by all cells of the line at the exact same time. This has to be the case despite the fact that δ is required to have δ(s 1 , q, s 2 ) = q whenever s 1 , s 2 ∈ {⊥, q}, which causes an initial asynchronous starting of the cells. Here ⊥ is a special state representing the absence of some neighbors at each extremity of the line of cells (we discuss this further in the appendix p.20). For more information on this problem definition and variation, one can consult [START_REF] Schmidt | The firing squad synchronization problem with many generals for one-dimensional CA[END_REF].

We give at the section 2 p.2 an example of evolution. A cell is labeled by a number between 1 and n. The generals are the cells awaken at the date t = 0, and at every date t the local informations of a cell c and its neighbors determine the next state of c at the date t + 1. The synchronization is obtained by recursion on the layers. At the layer = 0 the borders are the cells 1 and n. At every layer the middles of the regions are computed during the evolution, and become borders for the layer + 1. Therefore, the space is split in regions, and subregions, and so on until every cell become a border. Then, they fire together.

These local informations are formalized as different propositional fields at the section 3 p.4, which define the rules of the evolution:

• Inp t (c) denotes that the cell c is awaken at the date t.

• Brd t (c) denotes that at the layer the cell c knows at the date t that it is a border of a region.

• Ins t (c) denotes that at the layer the cell c knows at the date t that it is (strictly) inside a region.

• dst t (c) denotes that at the layer the cell c knows at the date t that it is at least at a distance ≥ d from the borders.

• Sta t (c) denotes that at the layer the cell c knows at the date t that its state will not change during the following dates.

• Mid t (c) denotes that at the layer the cell c knows at the date t that it is a middle of a region.

• Out t (c) denotes that at the layer the cell c knows at the date t that it can fire.

Most of the lemmas and propositions highlight that the fields compute what they are supposed to. For example, we prove at the lemma B.5 p.22 that the border and inside field are exclusive, and at the lemma B.6 p.23 that a border has a distance d = 0.

Until every cell has enough local informations to deduce that globally every cell can fire at the the same time, the fields accumulate more and more local information over time. This is illustrated by the notion of monotonicity for the fields, which means that if the property holds for a given time t, then it holds for every t ≥ t. We prove in the appendix at the section C p.25 that for a given layer the fields are monotone.

An other core notion of the paper is the concept of Light Cone, formalized by the field LC t (b 1 , b 2 ) which denotes that the cells b 1 and b 2 are borders, and that at the date t + 1 every cell (strictly) between b 1 and b 2 is inside. In a sense, this is a spatiotemporal version of the strictly spatial notion of region presented in the references. We prove in the section 5 p.11 that the Light Cones are the global counterpart of the local middles of the regions. More precisely, we prove at the lemma 5.9 p.14 that these information are necessary, and at the corollaries 5.5 p.12 and 5.6 p.13 that these informations are sufficient, to compute the middle(s) of the region.

The Light Cones help us prove in the section 6 p.15 the proposition 6.3 p.15 stating that the middles of the regions appear at the same time with the same distance, in order to prove the synchronization.

The purpose of this research report is to prove that the synchronization is effective. In our framework, the proof is done at the theorem 7.4 p.18, stating that for every layer , for every date t and every cell c, if Out t (c) (ie the cell fires) then for every cell c we have Out t (c ) (ie every cell fire).

Finally, we discuss some issues in the conclusion p.19. We let the most technical proofs to the appendix, and at the section F p.48 we provide a code in Coq of the definitions and some lemmas.

Example

Before defining formally the fields, we introduce them in an example of execution at the table 1.

Given one or several generals, the aim is to ensure that every cell will fire at the same time.

In this example, there are seven cells. Each cell is represented by a column, and each line corresponds to a date. So, the table should be read line by line, from top to bottom.

The white cells represent the cells which are not awaken. At t = 0, only the fifth cell is awaken: this is the general. At each step, each cell awakes its neighbors if they are not already awaken.

When a cell is awaken, it begins to compute its possible distance to the borders. Because the evolution is given only by local rules, this computation must be done by a cell only by looking cells 1 2 3 4 5 6 7 time t = 0 0 t = 1 1 1 1 t = 2 1 1 2 1 0 t = 3 1 1 2 2 1 0 t = 4 0 1 2 2 2 1 0 t = 5 0 1 2 3 2 1 0 t = 6 0 1 2 3 2 1 0 t = 7 0 1 2 3 2 1 0 t = 8 0 1 2 3 2 1 0 t = 9 0 1 2 3 2 1 0 t = 10 0 1 2 3 2 1 0 Table 1: Layer = 0 to its neighbors. If a cell is a border, its distance to the borders is 0, else it is 1 + min(d , d r ), where d and d r are the distance of its left and right neighbors at the previous step. Notice that the distance in each cell is increasing over time.

The gray cells represent the cells which are able to know that they have computed the right distance to the borders. A border knows that it has a distance 0 to the borders, and a cell which has a distance 1 + d and a stable neighbor with a distance d becomes stable.

The cells form a region, delimited by the borders c = 1 and c = 7. The middle of this region is the cell c = 4. This cell knows that it is a middle when its neighbors are stable and have a lower distance to th borders. The distance of the borders and the middles are written in bold to highlight the region. After t = 7, the distance are stable and the middle has appeared, so nothing change.

Our aim is to divide the region in half, then divide the subregions in half, and so on until every cell is a border. Then, they will fire at the same time.

In order to do that, we introduce the notion of layers. The previous computations have been done for the layer = 0. In the next layer ( = 1), we assume that a cell knows that it is a border when it knows that it is a border or a middle at the previous layer ( = 0).

Moreover, a cell will compute its distance to the borders only if it knows it is a border or is inside the region. In other word, a cell is awaken if and only if it is a border or inside. More precisely, a cell becomes inside at a layer > 0 if at the previous layer it was inside and stable, and had at the previous step a neighbor with a greater distance.

Therefore, the execution at the layer = 1 is given at the table 2. Notice that because there is an even number of cells in the two regions of the layer = 1, two middles appear.

At the layer = 2, every cell become a border at t = 9. So, at t = 10, each cell knows that its neighbors and itself are borders, and fires. cells 1 2 3 4 5 6 7 time

t = 0 t = 1 t = 2 0 t = 3 1 0 t = 4 0 1 0 t = 5 0 1 1 0 t = 6 0 1 1 1 1 0 t = 7 0 1 1 0 1 1 0 t = 8 0 1 1 0 1 1 0 t = 9 0 1 1 0 1 1 0 t = 10 0 1 1 0 1 1 0 cells 1 2 3 4 5 6 7 time t = 0 t = 1 t = 2 0 t = 3 0 t = 4 0 0 t = 5 0 0 t = 6 0 0 t = 7 0 0 0 t = 8 0 0 0 t = 9 0 0 0 0 0 0 0 t = 10 f f f f f f f Table 2: Layers = 1 and = 2
The number of layers is potentially infinite, but notice that every layer ≥ 2 is the same than the layer = 2. This, and the fact that the distance fields has a maximum value depending of the total number of cells, implies that the automaton described in this paper has an infinite number of state. But it is proven in [START_REF] Maignan | Finitization of infinite field-based multigeneral fssp solution[END_REF] that these states can be finitely implemented, so we will not discuss this further in this paper.

Fields

For the Coq implementation, the fields are computed using booleans but the results will be proven using propositions as recommanded in Software Foundations (Benjamin Pierce).

The definition are simplified (quantifier elimination) for the implementation, as opposed to the paper (cite finitization).

We assume in this paper that the problem is one-dimensional, and the cells are labeled from 1 to n.

Axiom 3.1 (At least three cells).

n ≥ 3

The boolean function gen is given by the evolution, and indicates the position of the general(s) at the beginning of the execution.

Axiom 3.2 (At least one cell is a general). ∃c, 1 ≤ c ≤ n ∧ gen(c) = true
In the following definitions, we assume that " or ", " and " and "if . . . then . . . else . . . " are the standard booleans operations.

The input field indicates which cells are awaken at a particular time t. For t = 0, only the generals are awaken, and at each step an awaken cell awakes its neighboring cells:

Definition 3.3 (Input Field). inp 0 (c) def = gen(c) inp t+1 (c) def = inp t (c -1) or inp t (c) or inp t (c + 1) Inp 0 (c) def = gen(c) = true Inp t+1 (c) def = Inp t (c -1) ∨ Inp t (c) ∨ Inp t (c + 1) (1) 
Like this definition, the boolean fields will be written with lowercase, and the proposition fields in uppercase. The Coq file at the section F p.48 contains already the proof of equivalence, so they will be admitted in this report.

Lemma 3.4 (Equivalence for Inp). ∀tc, Inp t (c) ⇔ inp t (c) = true
For the sake of clarity, the = and < will not be distinguished from their boolean equivalent, as it is in Coq. The recursive definition of the proposition fields is given at the table 3, where dst is an integer field computed along the booleans fields.

Remark. Notice that if c = 1 then the cell c -1 is not in our space, neither c + 1 for c = n.

Therefore, the definition of the fields should be modified as in [START_REF] Maignan | Finitization of infinite field-based multigeneral fssp solution[END_REF] to take a proper neighborhood into account.

We discuss in the appendix p.20 what is required to be modified in the formal definition of the fields for the cells c ∈ {1, n}, but we keep here the non-modified version because it is simpler and it corresponds to our implementation in Coq p.48.

Coq cannot guess how to compute such an intricated recursion, so the recursive definitions of the booleans fields must be split into abstract parts for different given levels:

1. We use the input field to define at the table 4 the border and inside fields at the level 0.

2. Then, we assume that the border and inside fields are defined at the level , and we define at the table 5 the distance, stability and middle fields at that level.

3. Finally, we use the fields defined at the level to define at the table 6 the border and inside fields for the level + 1.

The boolean fields should be defined by the mutual recursion given at the table 7, but Coq cannot guess the decreasing argument.

So, instead, we substitute the schemata at the table 8 to obtain only one mutual recursion for the border and inside fields and thereafter define the other fields, where f (g 1 , . . . , g k ) denotes the field (t, c) → f (t, c, g 1 , . . . , g k ).

And this time, Coq is able to compute the fields. Moreover we prove in Coq at the section F p.48 the equivalence between the boolean and proposition fields, and the specification of dst:

Brd 0 t (c) def = Inp t (c) ∧ (1 = c ∨ c = n) Brd +1 t (c) def = Brd t (c) ∨ Mid t (c) (2) Ins 0 t (c) def = Inp t (c) ∧ 1 < c ∧ c < n Ins +1 0 (c) def = False Ins +1 t+1 (c) def = Ins t+1 (c) ∧ Sta t+1 (c) ∧ dst t+1 (c) < dst t (c -1) ∨ dst t+1 (c) < dst t (c + 1) (3) Sta 0 (c) def = Brd 0 (c) Sta t+1 (c) def = Brd t+1 (c) ∨ dst t+1 (c) = 1 + dst t (c -1) ∧ Sta t (c -1) ∨ dst t+1 (c) = 1 + dst t (c + 1) ∧ Sta t (c + 1) (4) Mid 0 (c) def = False Mid t+1 (c) def = dst t+1 (c) > max dst t (c -1), dst t (c + 1) ∧ Sta t (c -1) ∧ Sta t (c + 1)
∨ dst t+1 (c) = max dst t (c -1), dst t (c + 1) 

∧ Sta t (c -1) ∧ Sta t (c) ∧ Sta t (c + 1) (5) 
(c) = 0 Ins t+1 (c) ⇒ dst t+1 (c) = 1 + min dst t (c -1), dst t (c + 1) ¬ Ins t+1 (c) ⇒ dst t+1 (c) = 0 (6)
In the rest of the paper, we will use only the axioms 3.1 p.4 (there exists at least three cells) and 3.2 p.4 (there exists at least one general), and the equations (1) for the input field, (2) for the border field, (3) for the inside field, (4) for the stable field, (5) for the middle field, and (6) for the distance field.

Framework

In the appendix at the section B p.20 we detail technical lemmas about the fields. Their proofs are very detailed and written in a Coq style, in order to be implemented. In fact, some (but not all) have been at the section F p.48.

We prove at the lemma B.5 p.22 that the border and inside fields are exclusive, which means more formally that:

∀ tc, Brd t (c) ⇒ Ins t (c) ⇒ False
We prove at the lemma B.7 p.23 that the neighbors of a middle are stable, and at the lemma B.8 p.23 that a middle itself is stable too:

∀ tc, Mid t+1 (c) ⇒ Sta t (c -1) ∧ Sta t (c + 1) ∀ tc, Mid t (c) ⇒ Sta t (c)
By the stable field equation (4), a border is stable. Therefore, by using the lemmas B.6 p.23 and B.9 p.24 we have the following equivalence:

∀ tc, Brd t (c) ⇔ Sta t (c) ∧ dst t (c) = 0
Finally, the lemma B.11 p.24 states that at the layer 0, every cell ends up being awaken: ∃t, ∀c, Inp t (c) At the section C p.25 of the appendix, we prove the monotonicity of the fields, which means that if the property holds for a given time t, then it holds for every t ≥ t. As for the section B, The proof are very detailed, and some (but not all) have been implemented in Coq at the section F p.48.

The proof of the monotonicity of the input field derives directly from the input field equation (1), so we have the lemma C.1 p.25:

∀tc, Inp t (c) ⇒ (∀t , t ≥ t ⇒ Inp t (c))
The other fields are defined for each layer by mutual recursion, so the proof must be split into several parts.

Firstly, we prove the monotonicity of the border and inside fields at the layer = 0. Secondly, we prove that if the border and inside fields are monotone at the layer , then the other fields are monotone at the layer too and, moreover, that the border and inside fields are monotone at the layer + 1.

1. For the layer = 0, if Brd 0 t (c) then according to the border field equation (2), we have Inp t (c) and c = 1 or n. But, according to the lemma C.1, the input field is monotone, so we have Inp t+1 (c) and c = 1 or n. Therefore, we have Brd 0 t+1 (c). In the same way, if Ins 0 t (c) then according to the border field equation (3), we have Inp t (c) and 1 < c < n. But, according to the lemma C.1, the input field is monotone, so we have Inp t+1 (c) and 1 < c < n. Therefore, we have Ins 0 t+1 (c).

2. Let be a layer. We assume that the border and inside fields are monotone at the layer :

∀tc, Brd t (c) ⇒ Brd t+1 (c) ∀tc, Ins t (c) ⇒ Ins t+1 (c)
Then, we prove in the lemma C.2 p.25 that the distance field is increasing at the layer :

∀tc, dst t (c) ≤ dst t+1 (c)
Then, we prove at the lemma C.3 p.25 that a cell which is stable at the layer has a constant distance:

∀tc, Sta t (c) ⇒ dst t (c) = dst t+1 (c)
Then, we prove at the lemma C.4 p.26 that the stable field is monotone at the layer :

∀tc, Sta t (c) ⇒ Sta t+1 (c)
Then, we prove at the lemma C.5 p.28 that the middle field is monotone at the layer :

∀tc, Mid t (c) ⇒ Mid t+1 (c)
Then, we prove at the lemma C.6 p.29 that the border field is monotone at the layer + 1:

∀tc, Brd +1 t (c) ⇒ Brd +1 t+1 (c)
Then, we prove at the lemma C.7 p.30 that the border field is monotone at the layer + 1:

∀tc, Ins +1 t (c) ⇒ Ins +1 t+1 (c)
Therefore, we proved that the fields are monotone at every layer:

∀ tc, Brd t (c) ⇒ ∀t , t ≥ t ⇒ Brd t (c) ∀ tc, Ins t (c) ⇒ ∀t , t ≥ t ⇒ Ins t (c) ∀ tc, Sta t (c) ⇒ ∀t , t ≥ t ⇒ Sta t (c) ∀ tc, Mid t (c) ⇒ ∀t , t ≥ t ⇒ Mid t (c) ∀ tct , t ≥ t ⇒ dst t (c) ≥ dst t (c) ∀ tc, Sta t (c) ⇒ ∀t , t ≥ t ⇒ dst t (c) = dst t (c) cells 1 2 3 4 5 6 7 time t = 0 0 0 t = 1 0 1 1 0 t = 2 0 1 1 1 1 0 t = 3 0 1 1 2 1 1 0 t = 4 0 1 2 2 2 1 0 t = 5 0 1 2 3 2 1 0 Table 9: A light cone for 7 cells.

Light Cones

What are the necessary informations to produce a middle ?

The information travels from cell to cell at the speed of one cell per step, which is in a way the light speed for the automaton. So, the necessary informations required to produce a middle must come from the borders, travel from cell to cell in diagonal, and attain the middle(s) at the step it appears.

At the table 9, we give an example of a "worst" case, where the middle of the automaton has little to no information during most of the execution, because the generals are at the cells 1 and 7. The middle appears at the step t = 5, and then the evolution does not change anymore. The informations leading to the middle at t = 5 traveled from the entire region at t = 2, which we call the Light Cone of the middle.

Notice that some cells may not be awaken at t = 2, but they are all border or inside after the first step of the Light Cone. So, in this example it is true that at the layer = 0 and the date t = 2 the region between the borders 1 and 7 is a Light Cone for the middle to come. This will be denoted by LC 0 2 (1, 7) in the following definition:

Definition 5.1 (Light Cones). LC t (b 1 , b 2 ) def = b 1 + 2 ≤ b 2 ∧ Brd t (b 1 ) ∧ Brd t (b 2 ) ∧ ∀c, b 1 < c < b 2 ⇒ Ins t+1 (c) (7) 
The condition b 1 + 2 ≤ b 2 ensures not only that b 1 < b 2 , but also that there is a cell between them. This ensures that the boundaries between light cones are not light cones themselves.

Moreover, this excludes the regions of the final layer (which contains only two cells) to be called light cones, so the results of this section are only for the phase transition. And indeed, the final layer is the first during the execution when a region alone cannot determine the middle(s), because a middle requires at least three cells to appear, and not only two.

Corollary 5.2 (Light Cone at layer 0).

∃t, LC 0 t (1, n)
Proof. Firstly, by axiom 3.1, n ≥ 3. Secondly, by using the lemma B.11 there exists t such that for every cell c, Inp t (c). So:

• We have (2) that Brd 0 t (1) and Brd 0 t (n)

• We have (3) for every 1 < c < n that Ins 0 t (c). So, by using the corollary C.10, for every 1 < c < n we have that Ins 0 t+1 (c).

Therefore (7) LC 0 t (1, n).
Remark. In the following, a 2 will denote the floor function of the half : the half of a if a is even, and the half of a -1 if a is odd.

As in the section 4, the proofs of the following results are very detailed and written in a Coq style, in order to be implemented. Therefore, for sake of clarity, we will only write and comment the results in this section, and leave the non-trivial proofs to the appendix at the section D p.33.

At the table 9, notice that the cells in yellow are stable, and that the distance increases from the border with d = 0 to the middle with d = b2-b1 2 . Moreover, if the Light Cone began at the date t in the borders, then at the date t + d every cell inside the Light Cone has a distance ≥ d:

Proposition 5.3 (Running of a Light Cone). ∀ tb 1 b 2 , LC t (b 1 , b 2 ) ⇒ ∀ 0 ≤ d ≤ b 2 -b 1 2 , dst t+d (b 1 + d) = d ∧ Sta t+d (b 1 + d) ∧ dst t+d (b 2 -d) = d ∧ Sta t+d (b 2 -d) ∧ ∀ b 1 + d ≤ c ≤ b 2 -d, dst t+d (c) ≥ d
Because we proved at the corollary C.11 p.32 that the stable field is monotone, and at the corollary C.14 p.32 that a cell which is stable has a constant distance over time, we can deduce from the previous proposition the state of the entire region when the middle appears at t + b2-b1 2 : Corollary 5.4 (End of a Light Cone).

∀ tb 1 b 2 , LC t (b 1 , b 2 ) ⇒ ∀ 0 ≤ d ≤ b 2 -b 1 2 , dst t+ b 2 -b 1 2 (b 1 + d) = d ∧ Sta t+ b 2 -b 1 2 (b 1 + d) ∧ dst t+ b 2 -b 1 2 (b 2 -d) = d ∧ Sta t+ b 2 -b 1 2 (b 2 -d) Remark. Notice that for a Light Cone LC t (b 1 , b 2 ), b 2 -b 1 + 1
is the number of cells forming the Light Cone, boundaries included.

In our example at the table 9, the region has 7 -1 + 1 = 7 an odd number of cells, so one middle appeared.

Corollary 5.5 (Middle of an odd Light Cone).

∀ tb 1 b 2 , LC t (b 1 , b 2 ) ∧ b 2 -b 1 + 1 odd ⇒ Mid t+ b 2 -b 1 2 b 1 + b 2 2
But remember that in our example at the table 2, there was an even number of cells in the two regions of the layer = 1, so two middles appeared: Corollary 5.6 (Middles of an even Light Cone).

∀ tb 1 b 2 , LC t (b 1 , b 2 ) ∧ b 2 -b 1 + 1 even ⇒ Mid t+ b 2 -b 1 +1 2 b 1 + b 2 -1 2 ∧ Mid t+ b 2 -b 1 +1 2 b 1 + b 2 + 1 2
Remark. Notice that in every case, we have Mid

t+ b 2 -b 1 +1 2 b1+b2 2
and Mid

t+ b 2 -b 1 +1 2 b1+b2+1 2
, but we thought the presentation clearer by separating both cases.

The main purpose of the concept of Light Cone is to help proving results about middles at the section 6 p.15. As an example, in order to prove results like the proposition 6.3 p.15, we prove that the other cells of a Light Cone are not middles:

Lemma 5.7 (The other cells of a Light Cone are not Middles).

∀ tb 1 b 2 , LC t (b 1 , b 2 ) ⇒ ∀t ≥ t + b 2 -b 1 2 , ∀c, b 1 ≤ c < b 1 + b 2 2 ∨ b 1 + b 2 + 1 2 < c ≤ b 2 ⇒ ¬ Mid t +1 (c)
The previous lemma can be generalized by using the monotonicity of the middle field:

Corollary 5.8 (The other cells of a Light Cone are not Middles).

∀ tb 1 b 2 , LC t (b 1 , b 2 ) ⇒ ∀t c, b 1 ≤ c < b 1 + b 2 2 ∨ b 1 + b 2 + 1 2 < c ≤ b 2 ⇒ ¬ Mid t (c)
Proof. The proof is made by case on t :

• If t ≤ t + b2-b1
2 , we prove ¬ Mid t (c) by contradiction. We assume that Mid t (c). So, by using the lemma C.12 we have that Mid t+ b 2 -b 1 2 +1 (c). But, by using the previous lemma with t + b2-b1 2 , we have that

¬ Mid t+ b 2 -b 1 2 +1 (c), hence the contradiction. • If t ≥ t + b2-b1 2 + 1
By using the previous lemma with t -1 ≥ t + b2-b1 2 , we have that ¬ Mid t (c).

In the following, we call a true middle a cell which is a middle but not a border. Indeed, as opposed to the border and inside fields, these fields are not exclusive. But a cell can only be a middle and a border during the final layer, so the two fields are exclusive during the transition phase.

In a sense, the following lemma is the converse of the corollaries 5.5 and 5.6:

Lemma 5.9 (Each true Middle comes from a Light Cone).

∀ tm, ¬ Brd t (m) ∧ Mid t (m) ⇒ LC t-d (m -d, m + d) ∨ LC t-(d+1) (m -(d + 1), m + d) ∨ LC t-(d+1) (m -d, m + (d + 1))
where d = dst t (m)

We use the previous lemma to prove that if a (true) middle appears at the layer and the date t, then it determines the apparition of a Light Cone at the layer + 1 and at the same date:

Corollary 5.10 (A Middle induces a new Light Cone). ∀ tmd, Mid t (m) ∧ dst t (m) = d ∧ d ≥ 2 ⇒ ∀t , Brd t (m -d) ⇒ LC +1 t (m -d, m) ∧ Brd t (m + d) ⇒ LC +1 t (m, m + d)
This allows us to prove the following proposition stating that a Light Cone at a layer will be split in half by the middle field, hence determining the formation of two Light Cones at the layer + 1: .

Proposition 5.11 (A Light Cone is split in the Middle). ∀ tb 1 b 2 , LC t (b 1 , b 2 ) ∧ b 2 -b 1 + 1 ≥ 5 ⇒ LC +1 t+ b 2 -b 1 +1 2 b 1 , b 1 + b 2 2 ∧ LC +1 t+ b 2 -b 1 +1 2 b 1 + b 2 + 1 2 , b 2 Proof. Let , t,
Moreover, according to the corollary 5.4 p.12 for d = b2-b1 2 (and eventually the corollary C.14 p.32), we have:

dst t+ b 2 -b 1 +1 2 b 1 + b 2 2 = b 2 -b 1 2 = dst t+ b 2 -b 1 +1 2 b 1 + b 2 + 1 2 Notice that the hypothesis b 2 -b 1 + 1 ≥ 5 implies that b2-b1 2 ≥ 2. So, because LC t (b 1 , b 2 ) implies that Brd t (b 1
) and Brd t (b 2 ), we can apply the corollary 5.10 on the middle(s) to prove the result.

Finally, to help proving the proposition 6.3 p.15, we conclude this section with a lemma stating that a Light Cone at the layer + 1 with borders b 1 and b 2 determines at the layer that one was a border, and the other was a true middle: Lemma 5.12 (One Brd and one Mid at the previous layer of a Light Cone).

∀ tb 1 b 2 , LC +1 t (b 1 , b 2 ) ⇒ Brd t (b 1 ) ∧ ¬ Brd t (b 2 ) ∧ Mid t (b 2 ) ∧ dst t (b 2 ) = b 2 -b 1 ∨ ¬ Brd t (b 1 ) ∧ Mid t (b 1 ) ∧ Brd t (b 2 ) ∧ dst t (b 1 ) = b 2 -b 1 6 Middles
As in in the previous section, the proofs of the following results are very detailed and written in a Coq style, in order to be implemented. Therefore, for sake of clarity, we will only write and comment the results in this section, and leave the non-trivial proofs to the appendix at the section E p.43.

The aim of this section is to prove the proposition 6.3, which is necessary to ensure the synchronization of the cells (theorem 7.4 p.18). In order to alleviate the demonstration, we first prove two technical lemmas: Lemma 6.1 (Paired Middles appear at the same time with the same distance).

∀ t 1 t 2 m 1 m 2 , Mid t1 (m 1 ) ∧ Mid t2 (m 2 ) ∧ (m 2 = m 1 + 1 ∨ m 1 = m 2 + 1) ⇒ Mid t1 (m 2 ) ∧ dst t1 (m 1 ) = dst t1 (m 2 )
Proof. The proof is made p.43 by using the monotonicity of the fields. Lemma 6.2 (A Middle has the same distance over time).

∀ t 1 t 2 m, Mid t1 (m) ∧ Mid t2 (m) ⇒ dst t1 (m) = dst t2 (m)
Proof. Two cases t 1 ≤ t 2 and t 2 ≤ t 1 . In every case, a middle is stable, therefore the distance is the same. Proposition 6.3 (Middles appear at the same time with the same distance).

∀ t 1 m 1 , ¬ Brd t1 (m 1 ) ∧ Mid t1 (m 1 ) ⇒ ∀t 2 m 2 , Mid t2 (m 2 ) ⇒ Mid t1 (m 2 ) ∧ dst t1 (m 1 ) = dst t1 (m 2 )
Proof. The proposition is proven p.44, but we sketch the proof here to highlight how the Light Cones are used. The proof is made by induction on the layer :

• At the layer = 0, according to the lemma 5.2, there exists t LC such that LC 0 tLC (1, n). If n is odd, then according to the corollary 5.5 we have Mid 0

tLC+ n-1 2 ( n+1
2 ). If n is even, then according to the corollary 5.6 we have Mid 0

tLC+ n 2 ( n 2 ) and Mid 0 tLC+ n 2 ( n 2 +1
). Moreover, according to the lemma 5.8, the other cells cannot be middles.

In the first case and potentially in the second case, we have m 1 = m 2 , which concludes the proof.

In the second case, if m 1 = m 2 then m 2 = m 1 + 1 or m 1 = m 2 + 1, so according to the lemma 6.1 we have Mid 0 t1 (m 2 ) and dst 0 t1 (m 1 ) = dst 0 t1 (m 2 ).

• We assume the induction hypothesis for and prove it for + 1.

Let

d 1 = dst +1 t1 (m 1 ).
Because m 1 is a true middle at the layer + 1, according to the lemma 5.9, there exists t 1 , b 1 , and b 1 such that LC +1

t 1 (b 1 , b 1 ) and b 1 -b 1 = 2d 1 or 2d 1 + 1.
So, according to the lemma 5.12, at the layer , among b 1 , and b 1 one is a border and the other is a true middle with distance b 1 -b 1 . Let b 1 be the border and m 1 be the middle.

Let d 2 = dst +1 t2 (m 2 ). In the same way, we have LC +1 So, according to the induction hypothesis, we have Mid t 1 (m 2 ) and dst t 1 (m 1 ) = dst t 1 (m 2 ).

Moreover, according to the lemma 6.2 we have dst

t 1 (m 2 ) = dst t 2 (m 2 ). So (2d 1 or 2d 1 + 1) = dst t 1 (m 1 ) = dst t 1 (m 2 ) = dst t 2 (m 2 ) = (2d 2 or 2d 2 + 1).
Therefore, according to the lemma B.1, dst +1 t1 (m 1 ) = d 1 = d 2 = dst +1 t2 (m 2 ). Moreover, Mid t 1 (m 2 ) and Brd t 2 (b 2 ) so, according to the lemma 5.10, we have LC +1

t 1 (b 2 , b 2 ).
Therefore, we prove Mid +1 t1 (m 2 ) by case on the parity of b 2 -b 2 , by using the lemma 5.5 or 5.6.

To alleviate the proof of the synchronization at the following section, we include here the last lemmas about the middle field: Lemma 6.4 (Three true middles cannot be adjacent).

∀ tc, ¬ Brd t (c) ∧ Mid t (c -1) ∧ Mid t (c) ∧ Mid t (c + 1) ⇒ False
Proof. The proof is made p.47 by using the proposition 6.3. Lemma 6.5 (A true middle adjacent to a border has a distance = 1).

∀ tc, ¬ Brd t (c) ∧ Mid t (c) ∧ Brd t (c -1) ∨ Brd t (c + 1) ⇒ dst t (c) = 1
Proof. The proof is made p.48.

Unfortunately, the last three lemmas remain to be proved: Lemma 6.6 (Middles have max distance).

∀ tm, ¬ Brd t (m) ∧ Mid t (m) ⇒ ∀c, dst t (c) ≤ dst t (m)
Lemma 6.7 (Cells with the same distance than a Middle are Middles).

∀ tm, ¬ Brd t (m) ∧ Mid t (m) ⇒ ∀c, dst t (c) = dst t (m) ⇒ Mid t (c)
Lemma 6.8 (Middles appear when each cell is stable).

∀ tm, ¬ Brd t (m) ∧ Mid t (m) ⇒ ∀c, Sta t (c)

Synchronization

For every layer, a region is split into two halves by the middle field, and they become two regions at the next layer. Therefore, from a layer to the next layer, the size of the regions is divided by 2, until every cell becomes a border.

We define the output field Out t+1 (c) as true for a cell c at a layer if its neighbors and itself are borders at the previous date t, and we say that a cell c fires at the date t if there exists one layer such that Out t (c):

Definition 7.1 (Output Field). Out 0 (c) def = False Out t+1 (c) def = Brd t (c -1) ∧ Brd t (c) ∧ Brd t (c + 1) (8) 
The aim of the paper is to prove the theorem 7.4, which states that the output field is synchronized. In other words, that if a cell fires then every cell fires at the same time.

Lemma 7.2 (The Output Field fires for every layer). 

∀ tc, Out t+1 (c) ⇒ Out +1 t+1 (c) Proof. Let ,
LC +1 t+ b 2 -b 1 +1 2 b 1 , b 1 + b 2 2 ∧ LC +1 t+ b 2 -b 1 +1 2 b 1 + b 2 + 1 2 , b 2
Both new Light Cones are smaller : they have b2-b1 2 + 1 cells, borders included. According to the axiom 3.1 p.4, we have n ≥ 3, so 1 ≤ log 2 (n -1), therefore there exists ∈ N such that log 2 (n -1) < + 2. Let be the smallest, so we have :

log 2 (n -1) < + 2 ⇒ n -1 < 2 × 4 ⇒ n-1 2 + 1 < 5 
Therefore, we can repeat the process of splitting LC 0 t (1, n) times1 until we obtain Light Cones with a number of cells ≤ 4. Moreover, according to the definition (7) of a Light Cone, the number of cells is ≥ 3. So, there is 3 or 4 cells in the last Light Cones.

According to the corollary 5.5 p.12 (for 3 cells) or the corolloray 5.6 p.13 (for 4 cells), in any case at this layer every cell becomes a border or a middle.

Therefore, at the layer + 1, every cell becomes a border, then fires.

Theorem 7.4 (The fire is synchronized).

∀ tc, Out t (c) ⇒ ∀c , Out t (c )

Proof. We prove ∀t c, Out t (c) ⇒ ∀c , Out t (c ) by case on t:

• If t = 0, let and c. By (8), Out 0 (c) is False, so the implication holds.

• Else, t = t + 1 and we prove ∀ c, Out t +1 (c) ⇒ ∀c , Out t +1 (c ) by induction on :

-Out 0 t +1 (c) implies (8) Brd 0 t (c -1) and Brd 0 t (c) and Brd 0 t (c + 1), so (2) we have • Mid t (c -1) and Mid t (c) and Brd t (c + 1) In every case, there exists a cell m ∈ {c-1, c, c+1} with is a middle, not a border, and is adjacent to a border. So, by using the lemma 6.5 we have dst t (m) = 1. Let c be a cell. By using the lemma 6.6 we have that:

c -1 = 1 ∨ c -1 = n and c = 1 ∨ c = n and c + 1 = 1 ∨ c + 1 = n,
dst t (c ) ≤ dst t (m) = 1
We prove that Brd +1 t (c ) by case on dst t (c ): • In the case dst t (c ) = 0, by using the lemma 6.8 we have that Sta t (c ), so by using the lemma B.9 we have that Brd t (c ). • If dst t (c ) = 1, by using the lemma 6.7 we have that Mid t (c ). Therefore, in every case Brd +1 t (c ). We proved it for every cell c , so we have Brd +1 

Conclusion

Therefore, by using only the axioms and definitions of the fields at the section 3 p.4, we proved the theorem 7.4 p.18 stating that as expected the fire is synchronized.

Unfortunaltely, the proof is not complete. It remains to prove the properties 6.6, 6.7 and 6.8 of the middles p.16. It also remains to implement most of the proofs in Coq, but some have been at the section F p.48. At least, this technical report attests the faisability of the task.

Moreover, we used simplified definitions in this paper, which does not take into account the cells outside the space. Indeed, in our framework, if c = 1 then the cell c -1 is not in our space, neither c + 1 if c = n. We discuss this further in the appendix at the section A p.20.

Finally, this report proves the correctness of the high-level automaton by using a potentially infinite number of states, due to the potentially infinite number of layers and values for the distance field. Therefore, it remains also to formalize the construction of an explicit and finite table of states, as in [START_REF] Maignan | Finitization of infinite field-based multigeneral fssp solution[END_REF].

A Neighborhood

We remind the formal definition of the fields (see the section 3 p.4) at the table 10, and discuss here what is required to be modified in order to solve the problem that if c = 1 then the cell c -1 is not in our space, neither c + 1 for c = n.

The c -1 and c + 1 in Inp t+1 (c) are a problem, so the field must be modified for the special case c ∈ {1, n} with Inp t+1 (0) The c -1 and c + 1 in dst t+1 (c) are not a problem, because a cell c ∈ {1, n} is not awaken or is a border, so in any case we have ¬ Ins t+1 (c), so dst t+1 (c) = 0.

The c -1 and c + 1 in Sta t+1 (c) are not really a problem, because the algorithm verifies if Brd t+1 (c) first, which is true for c ∈ {1, n} if the cell is awaken, and otherwise its distance is 0 so it cannot be 1 + . . . But rigorously, it may be necessary to specify in the implementation the special case for c ∈ {1, n} that Sta t+1 (c) only if Brd t+1 (c).

The c -1 and c + 1 in Mid t+1 (c) are a problem, because borders become middles too in the last layer. But the confusion between "true" middles and middles which are also borders is not really intuitive and does not matter because Brd +1 t (c) def = Brd t (c)∨Mid t (c) and the output field is defined on the border field. So, instead of stating a special case, it may be less confusing to define Mid t+1 (c) as Ins t+1 (c) ∧ . . . following by the rest of the definition, which solves in passing the problem for c ∈ {1, n}.

B Technical Lemmas

The proof of the following lemmas are very detailed and written in a Coq style, in order to be more easily implemented.

The following lemma is not really part of our framework, but has been written in order to be used in other lemmas: Lemma B.1 (Equality up to Parity).

∀nd 1 d 2 , (n = 2d 1 ∨ n = 2d 1 + 1) ∧ (n = 2d 2 ∨ n = 2d 2 + 1) ⇒ d 1 = d 2
Proof. The proof is made by case on n:

• In this case, n is even.

Because n = 2d 1 ∨ n = 2d 1 + 1 and n is even, we have that n = 2d 1 .

Because n = 2d 2 ∨ n = 2d 2 + 1 and n is even, we have that n = 2d 2 .

So 2d

1 = 2d 2 , therefore d 1 = d 2 .
• In this case, n is odd.

Because n = 2d 1 ∨ n = 2d 1 + 1 and n is odd, we have that n = 2d 1 + 1.

Because n = 2d 2 ∨ n = 2d 2 + 1 and n is odd, we have that n = 2d 2 + 1.

So 2d

1 + 1 = 2d 2 + 1, therefore d 1 = d 2 .
The other lemmas are technical lemmas stating basic properties about the fields: 

Inp 0 (c) def = gen(c) = true Inp t+1 (c) def = Inp t (c -1) ∨ Inp t (c) ∨ Inp t (c + 1) Brd 0 t (c) def = Inp t (c) ∧ (1 = c ∨ c = n) Brd +1 t (c) def = Brd t (c) ∨ Mid t (c) Ins 0 t (c) def = Inp t (c) ∧ 1 < c ∧ c < n Ins +1 0 (c) def = False Ins +1 t+1 (c) def = Ins t+1 (c) ∧ Sta t+1 (c) ∧ dst t+1 (c) < dst t (c -1) ∨ dst t+1 (c) < dst t (c + 1) dst 0 (c) def = 0 dst t+1 (c) def = 1 + min dst t (c -1), dst t (c + 1) if Ins t+1 (c) 0 otherwise Sta 0 (c) def = Brd 0 (c) Sta t+1 (c) def = Brd t+1 (c) ∨ dst t+1 (c) = 1 + dst t (c -1) ∧ Sta t (c -1) ∨ dst t+1 (c) = 1 + dst t (c + 1) ∧ Sta t (c + 1) Mid 0 (c) def = False Mid t+1 (c) def = dst t+1 (c) > max dst t (c -1), dst t (c + 1) ∧ Sta t (c -1) ∧ Sta t (c + 1) ∨ dst t+1 (c) = max dst t (c -1), dst t (c + 1) ∧ Sta t (c -1) ∧ Sta t (c) ∧ Sta t (c + 1)

Lemma B.3 (Local Distance).

∀ tc, dst t+1 (c) ≤ 1 + min dst t (c -1), dst t (c + 1)

Proof. Let , t and c. By case :

• If Ins t+1 (c) then (6) the equality holds, so does the inequality.

• If ¬ Ins t+1 (c) then (6) dst t+1 (c) = 0, so the inequality holds.

Lemma B.4 (Middle Distance).

∀ tc, Mid t+1 (c) ⇒ dst t+1 (c) ≥ max dst t (c -1), dst t (c + 1)

Proof. Let , t and c. By using (5), Mid t+1 (c) implies two cases:

dst t+1 (c) > max dst t (c -1), dst t (c + 1) dst t+1 (c) = max dst t (c -1), dst t (c + 1)
and the result holds in every cases.

Remark. We could use the previous lemma to simplify the proof of the following.

Lemma B.5 (Brd and Ins are exclusive).

∀ tc, Brd t (c) ⇒ Ins t (c) ⇒ False

Proof. The proof is made by induction on :

• If = 0 then Brd t (c) implies (2) that 1 = c or c = n, and Ins t (c) implies (3) that 1 < c < n, hence the contradiction.

• We assume that: ∀tc, Brd t (c) ⇒ Ins t (c) ⇒ False (IH )

Let t and c, and we assume that:

Brd +1 t (c) (H Brd ) Ins +1 t (c) (H Ins )
The proof of False is made by case on t :

-If t = 0 then (3) Ins +1 t (c)
is False, and is assumed.

-If t = t + 1, H Ins implies (3) that: 

Ins t +1 (c) (H Ins 2) dst t +1 (c) < dst t (c -1) ∨ dst t +1 (c) < dst t (c -1) (H dst ) H Brd implies (2) that Brd t +1 (c) ∨ Mid t +1 (c),
∀ tc, Mid t+1 (c) ⇒ Sta t (c -1) ∧ Sta t (c + 1)
Proof. The result is obtained by hypothesis on the two cases (5) of Mid t+1 (c).

Remark. We could use the previous lemma (introduced lately during the redaction) to simplify some proofs.

Lemma B.8 (A middle is stable). ∀ tc, Mid t (c) ⇒ Sta t (c)
Proof. Let . The proof is made by case on t:

• If t = 0, let c. By (5), Mid 0 (c) is False, so the implication holds.

• Else, we prove Sta t (c) by case (5) on the hypothesis Mid t (c):

-In the first case we assume:

dst t+1 (c) > max dst t (c -1), dst t (c + 1) (Hd ) Sta t (c -1) (HSL) Sta t (c + 1) (HSR)
Hd implies that:

dst t+1 (c) ≥ 1 + max dst t (c -1), dst t (c + 1) ≥ 1 + dst t (c -1)
And the lemma B.3 implies that:

dst t+1 (c) ≤ 1 + min dst t (c -1), dst t (c + 1) ≤ 1 + dst t (c -1)
So dst t+1 (c) = 1 + dst t (c -1). But HSL, therefore (4) Sta t (c).

-In the second case, Sta t (c) is obtained by hypothesis.

Lemma B.9 (A stable cell with dst = 0 is a border).

∀ tc, Sta t (c) ∧ dst t (c) = 0 ⇒ Brd t (c)
Proof. Let . The proof is made by case on t:

• If t = 0, let c. We assume that Sta 0 (c) and dst 0 (c) = 0. Brd 0 (c) is obtained (4) with the hypothesis Sta 0 (c).

• Else, let c. We assume that Sta t+1 (c) and dst t+1 (c) = 0. The proof is made by case (4) on the hypothesis Sta t+1 (c):

-In the first case Brd t+1 (c) is obtained by hypothesis.

-In the second case we have dst t+1 (c) = 1+dst t (c-1), which contradicts dst t+1 (c) = 0.

-In the second case we have dst t+1 (c) = 1+dst t (c+1), which contradicts dst t+1 (c) = 0.

Corollary B.10 (A non-border Middle has a distance > 0).

∀ tc, ¬ Brd t (c) ∧ Mid t (c) ⇒ dst t (c) > 0
Proof. By using the contraposition of the lemma B.9 on the hypothesis ¬ Brd t (c) we have ¬ Sta t (c) or dst t (c) = 0. But by using the lemma B.8 on the hypothesis Mid t (c) we have Sta t (c). So dst t (c) > 0.

Lemma B.11 (At layer 0, the cells end up being awaken).

∃t, ∀c, Inp t (c)

Proof. By axiom 3.2, there exists at least one general, so by (1) there exists some cells awaken at t = 0. Then, the input field propagates from cell to cell, so the last cells are the most distant from the generals. If a cell is between two generals g 1 and g 2 , then it requires |g1-g2| 2 steps to be awakened.

If a cell is between a general g and a border (included), then it requires g -1 steps on the left, and n -g steps on the right. Let {g 1 , . . . ,

g k } = {1 ≤ c ≤ n | gen(c) = true}, with g 1 ≤ • • • ≤ g k .
Therefore, we should prove in the Coq code that:

t = max 1≤i<k g 1 -1, g i+1 -g i 2 , n -g k Proof.
Let . We assume that:

∀tc, Brd t (c) ⇒ Brd t+1 (c) (H Brd ) ∀tc, Ins t (c) ⇒ Ins t+1 (c) (H Ins )
We prove ∀tc, Sta t (c) ⇒ dst t (c) = dst t+1 (c) by induction on t:

• If t = 0 then (4) the hypothesis Sta 0 (c) implies Brd 0 (c), so according to H Brd we have Brd 1 (c) too. Therefore, according to the lemma B.6, we have dst 0 (c) = 0 = dst 1 (c).

• We assume the induction hypothesis:

∀c, Sta t (c) ⇒ dst t (c) = dst t+1 (c) (IH t )
Let c. We assume the hypothesis:

Sta t+1 (c) (H Sta )
We prove dst t+1 (c) = dst t+2 (c) by case (4) on H Sta :

-If Brd t+1 (c) then according to H Brd we have Brd t+2 (c) too. Therefore, according to the lemma B.6, we have dst t+1 (c) = 0 = dst t+2 (c).

-In that case, we have:

dst t+1 (c) = 1 + dst t (c -1) (H dst ) Sta t (c -1) (H Sta 2)
Firstly, by using H Sta 2 and the induction hypothesis IH t we have dst t (c -1) = dst t+1 (c -1), so by using H dst , we have :

dst t+1 (c) = 1 + dst t (c -1) = 1 + dst t+1 (c -1)
Moreover, by using the lemma B.3, we have: dst t+2 (c) ≤ 1 + min dst t+1 (c -1), dst t+1 (c + 1)

≤ 1 + dst t+1 (c -1) ≤ dst t+1 (c)
Secondly, by using H Ins and the lemma C.2:

dst t+1 (c) ≤ dst t+2 (c)
Therefore, we proved the equality.

-If dst t+1 (c) = 1 + dst t (c + 1) and Sta t (c + 1), the proof is similar to the previous case.

Lemma C.4 (Brd and Ins monotone implies Sta monotone).

∀ , ∀tc, Brd t (c) ⇒ Brd t+1 (c) ⇒ ∀tc, Ins t (c) ⇒ Ins t+1 (c) ⇒ ∀tc, Sta t (c) ⇒ Sta t+1 (c)
Proof. Let . We assume that:

∀tc, Brd t (c) ⇒ Brd t+1 (c) (H Brd ) ∀tc, Ins t (c) ⇒ Ins t+1 (c) (H Ins )
We prove ∀tc, Sta t (c) ⇒ Sta t+1 (c) by induction on t:

• If t = 0 then (4) the hypothesis Sta 0 (c) implies Brd 0 (c), so according to H Brd we have Brd 1 (c) too. Therefore, we have (4) the first case of Sta 1 (c).

• We assume the induction hypothesis:

∀c, Sta t (c) ⇒ Sta t+1 (c) (IH t )
Let c. We assume the hypothesis:

Sta t+1 (c) (H Sta )
We prove Sta t+2 (c) by case (4) on H Sta :

-If Brd t+1 (c) then according to H Brd we have Brd t+2 (c) too. Therefore, we have (4) the first case of Sta t+2 (c).

-In that case, we have:

dst t+1 (c) = 1 + dst t (c -1) (H dst ) Sta t (c -1) (H Sta 2)
By using H Brd , H Ins and the lemma C.3, H Sta 2 implies that:

dst t (c -1) = dst t+1 (c -1) (H)
Firstly, by using the lemma B.3 then H then H dst , we have: dst t+2 (c) ≤ 1 + min dst t+1 (c -1), dst t+1 (c + 1)

≤ 1 + dst t+1 (c -1) = 1 + dst t (c -1) = dst t+1 (c)
Secondly, by using H Ins and the lemma C.2, we have:

dst t+1 (c) ≤ dst t+2 (c)
Therefore dst t+1 (c) = dst t+2 (c). So, by using H dst then H:

dst t+2 (c) = dst t+1 (c) = 1 + dst t (c -1) = 1 + dst t+1 (c -1)
Moreover, by using H Sta 2 and the induction hypothesis IH t we have Sta t+1 (c -1). Therefore (4) we proved Sta t+2 (c).

-If dst t+1 (c) = 1 + dst t (c + 1) and Sta t (c + 1), the proof is similar to the previous case.

Lemma C.5 (Brd and Ins monotone implies Mid monotone).

∀ , ∀tc, Brd t (c) ⇒ Brd t+1 (c) ⇒ ∀tc, Ins t (c) ⇒ Ins t+1 (c) ⇒ ∀tc, Mid t (c) ⇒ Mid t+1 (c)
Proof. Let . We assume that:

∀tc, Brd t (c) ⇒ Brd t+1 (c) (H Brd ) ∀tc, Ins t (c) ⇒ Ins t+1 (c) (H Ins )
We prove ∀tc, Mid t (c) ⇒ Mid t+1 (c) by case on t:

• If t = 0 then (5) Mid t (c) is False, so the implication holds.

• If t = t + 1, let c, and we assume the hypothesis:

Mid t +1 (c) (H Mid )
We prove Mid t +2 (c) by case ( 5) on H Mid :

-In the first case, we have:

dst t +1 (c) > max dst t (c -1), dst t (c + 1) (H dst ) Sta t (c -1) (H Sta L) Sta t (c + 1) (H Sta R)
By using H Brd , H Ins and the lemma C.3: * H Sta L implies that dst t (c -1) = dst t +1 (c -1) * H Sta R implies that dst t (c + 1) = dst t +1 (c + 1) Therefore, we have:

max dst t (c -1), dst t (c + 1) = max dst t +1 (c -1), dst t +1 (c + 1) (H max )
So, by using H Ins and the lemma C.2, then H dst , then H max , we have:

dst t +2 (c) ≥ dst t +1 (c) > max dst t (c -1), dst t (c + 1) = max dst t +1 (c -1), dst t +1 (c + 1)
Moreover, by using H Brd , H Ins and the lemma C.4:

* H Sta L implies that Sta t +1 (c -1) * H Sta R implies that Sta t +1 (c + 1)
Therefore, we have the left part of Mid t +2 (c).

-In the second case, we have:

dst t +1 (c) = max dst t (c -1), dst t (c + 1) (H dst ) Sta t (c -1) (H Sta L) Sta t (c) (H Sta C) Sta t (c + 1) (H Sta R)
By using H Brd , H Ins and the lemma C.4:

* H Sta L implies that Sta t +1 (c -1) * H Sta C implies that Sta t +1 (c) * H Sta R implies that Sta t +1 (c + 1)
Therefore, to obtain the right part of Mid t +2 (c), it remains only to prove that dst t +2 (c) = max dst t +1 (c -1), dst t +1 (c + 1) .

By using H Brd , H Ins and the lemma C.3, Sta t +1 (c) implies that:

dst t +1 (c) = dst t +2 (c) (H dst 2)
By using H Brd , H Ins and the lemma C.3:

* H Sta L implies that dst t (c -1) = dst t +1 (c -1) * H Sta R implies that dst t (c + 1) = dst t +1 (c + 1)
Therefore, we have:

max dst t (c -1), dst t (c + 1) = max dst t +1 (c -1), dst t +1 (c + 1) (H max )
So, by using H dst 2, then H dst , then H max , we have:

dst t +2 (c) = dst t +1 (c) = max dst t (c -1), dst t (c + 1) = max dst t +1 (c -1), dst t +1 (c + 1)
Therefore, we have the right part of Mid t +2 (c).

Lemma C.6 (Brd and Ins monotone implies Brd +1 monotone).

∀ , ∀tc, Brd t (c) ⇒ Brd t+1 (c) ⇒ ∀tc, Ins t (c) ⇒ Ins t+1 (c) ⇒ ∀tc, Brd +1 t (c) ⇒ Brd +1 t+1 (c)
Proof. Let . We assume that:

∀tc, Brd t (c) ⇒ Brd t+1 (c) (H Brd ) ∀tc, Ins t (c) ⇒ Ins t+1 (c) (H Ins )
Let t and c. We prove Brd +1 t+1 (c) by case (2) on the hypothesis Brd +1 t (c):

• In the first case, we have Brd t (c), so by using H Brd we have Brd t+1 (c).

Therefore (2), we proved the left part of Brd +1 t+1 (c).

• In the second case, we have Mid t (c).

So, by using H Brd , H Ins and the lemma C.5 we have Mid t+1 (c).

Therefore (2), we proved the right part of Brd +1 t+1 (c).

Lemma C.7 (Brd and Ins monotone implies Ins +1 monotone).

∀ , ∀tc, Brd t (c) ⇒ Brd t+1 (c) ⇒ ∀tc, Ins t (c) ⇒ Ins t+1 (c) ⇒ ∀tc, Ins +1 t (c) ⇒ Ins +1 t+1 (c)
Proof. Let . We assume that:

∀tc, Brd t (c) ⇒ Brd t+1 (c) (H Brd ) ∀tc, Ins t (c) ⇒ Ins t+1 (c) (H Ins )
We prove Ins +1 t (c) ⇒ Ins +1 t+1 (c) by case on t:

• If t = 0 then (3) Ins +1 t (c
) is False, so the implication holds.

• If t = t + 1, let c. The hypothesis Ins +1 t +1 (c) implies (3): Ins t +1 (c) (H Ins 2) Sta t +1 (c) (H Sta ) dst t +1 (c) < dst t (c -1) ∨ dst t +1 (c) < dst t (c -1) (H dst )
By using H Ins , H Ins 2 implies that Ins t +2 (c).

Moreover, by using H Brd , H Ins and the lemma C.4, H Sta implies that Sta t +2 (c).

Therefore, to obtain Ins +1 t +2 (c) , it remains only to prove that dst t +2 (c)

< dst t +1 (c -1) ∨ dst t +2 (c) < dst t +1 (c -1).
Notice that by using H Brd , H Ins and the lemma C.3, H Sta implies that:

dst t +1 (c) = dst t +2 (c) (H) We prove dst t +2 (c) < dst t +1 (c -1) ∨ dst t +2 (c) < dst t +1 (c -1) by case on H dst :
-In the first case, we have dst t +1 (c) < dst t (c -1). So, by using H, then the case hypothesis, then H Ins and the lemma C.2, we have:

dst t +2 (c) = dst t +1 (c) < dst t (c -1) ≤ dst t +1 (c -1)
Therefore, we proved the left part of dst t +2 (c)

< dst t +1 (c -1) ∨ dst t +2 (c) < dst t +1 (c -1).
-The case dst t +1 (c) < dst t (c + 1) is similar, and proves the right part of dst t +2 (c) < dst t +1 (c -1) ∨ dst t +2 (c) < dst t +1 (c -1).

Proposition C.8 (Brd and Ins are monotone).

∀ , ∀tc, Brd t (c) ⇒ Brd t+1 (c) ∧ ∀tc, Ins t (c) ⇒ Ins t+1 (c)
Proof. The proof is made by induction on :

• If = 0, we prove the two parts separately:

-Let t and c. The hypothesis Brd 0 t (c) implies (2) that Inp t (c) and 1 = c ∨ c = n. So, by using the lemma C.1, we have Inp t+1 (c) and 1 = c ∨ c = n.

Therefore (2) we proved that Brd 0 t+1 (c). -Let t and c. The hypothesis Ins 0 t (c) implies (3) that Inp t (c) and 1 < c < n. So, by using the lemma C.1, we have Inp t+1 (c) and 1 < c < n.

Therefore (3) we proved that Ins 0 t+1 (c).

• We assume the induction hypothesis:

∀tc, Brd t (c) ⇒ Brd t+1 (c) (IH Brd ) ∀tc, Ins t (c) ⇒ Ins t+1 (c) (IH Ins )
By using IH Brd , IH Ins and the lemma C.6, we have:

∀tc, Brd +1 t (c) ⇒ Brd +1 t+1 (c)
By using IH Brd , IH Ins and the lemma C.7, we have:

∀tc, Ins +1 t (c) ⇒ Ins +1 t+1 (c)
Therefore, we proved the induction step.

Corollary C.9 (Brd is monotone).

∀ tc, Brd t (c) ⇒ ∀t , t ≥ t ⇒ Brd t (c)
Proof. Let , t and c. We assume the hypothesis Brd t (c). Let t . We prove Brd t (c) by case on the hypothesis t ≥ t:

• If t = t then Brd t (c) by hypothesis.

• If t = t + 1 with t ≥ t such that Brd t (c), then by using the left part of the proposition C.8 we have Brd t +1 (c). Therefore Brd t (c).

• If t = t then dst t (c) = dst t (c).

• In that case t = t + 1 with t ≥ t such that dst t (c) = dst t (c).

By using the hypotheses Sta t (c) and t ≥ t, and the lemma C.11, we have Sta t (c).

So, by using both parts of the proposition C.8 and the lemma C.3 we have dst t (c) = dst t +1 (c). Therefore:

dst t (c) = dst t +1 (c) = dst t (c) = dst t (c)

D Proofs for the Light Cones

The proofs of the following results are very detailed and written in a Coq style, in order to be implemented. Therefore, for sake of clarity, we will only write and comment the results in the section 5 p.11, and detail the proofs in this section.

Proposition (5.3 p.12: Running of a Light Cone).

∀ tb 1 b 2 , LC t (b 1 , b 2 ) ⇒ ∀ 0 ≤ d ≤ b 2 -b 1 2 , dst t+d (b 1 + d) = d ∧ Sta t+d (b 1 + d) ∧ dst t+d (b 2 -d) = d ∧ Sta t+d (b 2 -d) ∧ ∀ b 1 + d ≤ c ≤ b 2 -d, dst t+d (c) ≥ d Proof. Let , b 1 , b 2 and t. We assume that LC t (b 1 , b 2 ).
The proof is made by induction on d :

• In this case, d = 0.

Because LC t (b 1 , b 2 ), we have that Brd t (b 1 ) and Brd t (b 2 ). So, by using the lemma B.6 we have that dst t (b 1 ) = 0 and dst t (b 2 ) = 0, and by definition (4) we have that Sta t (b 1 ) and Sta t (b 2 ).

Moreover, for every b 1 ≤ c ≤ b 2 we have dst t (c) ≥ 0 because dst is an integer field.

• We assume that d + 1 ≤ b2-b1 2 . So d ≤ b2-b1 2 too, and we have the induction hypothesis: Therefore, by using the equation ( 6), we have H c . The proof is made by case on c : 

dst t+d (b 1 + d) = d ∧ Sta t+d (b 1 + d) ∧ dst t+d (b 2 -d) = d ∧ Sta t+d (b 2 -d) ∧ ∀ b 1 + d ≤ c ≤ b 2 -d, dst t+d (c) ≥ d
• In that case, c = b 1 + (d + 1). Because d + 1 ≤ b2-b1 2 , we have 2d + 2 ≤ b 2 -b 1 , so b 1 + d + 2 ≤ b 2 -d. So b 1 + d ≤ b 1 + d + 2 ≤ b 2 -d,
b 1 + d < c -1 < b 2 -d -2 < b 2 -d b 1 + d < b 1 + d + 2 < c + 1 < b 2 -d
So, by using the induction hypothesis we have dst t+d (c -1) ≥ d and dst t+d (c + 1) ≥ d.

Therefore, by using H c we have :

dst t+(d+1) (c) = 1 + min dst t+d (c -1), dst t+d (c + 1) ≥ 1 + min (d, d) = 1 + d
Corollary (5.5 p.12: Middle of an odd Light Cone).

∀ tb 1 b 2 , LC t (b 1 , b 2 ) ∧ b 2 -b 1 + 1 odd ⇒ Mid t+ b 2 -b 1 2 b 1 + b 2 2 Proof. Because LC t (b 1 , b 2 ) we have b 1 + 2 ≤ b 2 , so b2-b1 2 ≥ 1. Because b 2 -b 1 + 1 is odd, we have : b 1 + b 2 + 1 2 = b 1 + b 2 2 b 1 + b 2 -b 1 2 -1 = b 1 + b 2 2 -1 b 1 - b 2 -b 1 2 -1 = b 1 + b 2 2 + 1
Because LC t (b 1 , b 2 ), by using the proposition 5.3 for d = b2-b1

2 -1 we have:

dst t+ b 2 -b 1 2 -1 ( b 1 + b 2 2 -1) = b 2 -b 1 2 -1 ∧ Sta t+ b 2 -b 1 2 -1 ( b 1 + b 2 2 -1) dst t+ b 2 -b 1 2 -1 ( b 1 + b 2 2 + 1) = b 2 -b 1 2 -1 ∧ Sta t+ b 2 -b 1 2 -1 ( b 1 + b 2 2 + 1)
Because LC t (b 1 , b 2 ), by using the proposition 5.3 for d = b2-b1 2 we have:

dst t+ b 2 -b 1 2 ( b 1 + b 2 2 ) = b 2 -b 1 2 So, by denoting m = b1+b2 2
we have : Corollary (5.6 p.13: Middles of an even Light Cone).

dst t+ b 2 -b 1 2 (m) > max dst t+ b 2 -b 1 2 -1 (m -1), dst t+ b 2 -b 1 2 -1 (m + 1) with Sta t+ b 2 -b 1 2 -1 (m -1)
∀ tb 1 b 2 , LC t (b 1 , b 2 ) ∧ b 2 -b 1 + 1 even ⇒ Mid t+ b 2 -b 1 +1 2 b 1 + b 2 -1 2 ∧ Mid t+ b 2 -b 1 +1 2 b 1 + b 2 + 1 2 Proof. Because LC t (b 1 , b 2 ) we have b 1 + 2 ≤ b 2 , so because b 2 -b 1 is odd we have b2-b1-1 2 ≥ 1. Because b 2 -b 1 + 1 is even, we have : b 1 + b 2 + 1 2 = b 1 + b 2 -1 2 + 1 b 1 + b 2 -b 1 -1 2 -1 = b 1 + b 2 -1 2 -1 b 1 - b 2 -b 1 -1 2 -1 = b 1 + b 2 + 1 2 + 1
Because LC t (b 1 , b 2 ), by using the proposition 5.3 for d = b2-b1-1 2 -1 we have:

dst t+ b 2 -b 1 -1 2 -1 ( b 1 + b 2 -1 2 -1) = b 2 -b 1 -1 2 -1 with Sta t+ b 2 -b 1 -1 2 -1 ( b 1 + b 2 -1 2 -1) dst t+ b 2 -b 1 -1 2 -1 ( b 1 + b 2 + 1 2 + 1) = b 2 -b 1 -1 2 -1 with Sta t+ b 2 -b 1 -1 2 -1 ( b 1 + b 2 + 1 2 + 1)
So, by monotonicity (lemmas C.11 and C.14), we have :

dst t+ b 2 -b 1 -1 2 ( b 1 + b 2 -1 2 -1) = b 2 -b 1 -1 2 -1 with Sta t+ b 2 -b 1 -1 2 ( b 1 + b 2 -1 2 -1) dst t+ b 2 -b 1 -1 2 ( b 1 + b 2 + 1 2 + 1) = b 2 -b 1 -1 2 -1 with Sta t+ b 2 -b 1 -1 2 ( b 1 + b 2 + 1 2 + 1)
Because LC t (b 1 , b 2 ), by using the proposition 5.3 for d = b2-b1-1 2 we have:

dst t+ b 2 -b 1 -1 2 ( b 1 + b 2 -1 2 ) = b 2 -b 1 -1 2 with Sta t+ b 2 -b 1 -1 2 ( b 1 + b 2 -1 2 ) dst t+ b 2 -b 1 -1 2 ( b 1 + b 2 + 1 2 ) = b 2 -b 1 -1 2 with Sta t+ b 2 -b 1 -1 2 ( b 1 + b 2 + 1 2 )
Notice that b2-b1-1 2 + 1 = b2-b1+1

2

. So, by monotonicity (lemma C.14), we have :

dst t+ b 2 -b 1 +1 2 ( b 1 + b 2 -1 2 ) = b 2 -b 1 -1 2 dst t+ b 2 -b 1 +1 2 ( b 1 + b 2 + 1 2 ) = b 2 -b 1 -1 2 So, by denoting m 1 = b1+b2-1 2 and m 2 = b1+b2+1 2
we have :

dst t+ b 2 -b 1 +1 2 (m 1 ) = max dst t+ b 2 -b 1 -1 2 (m 1 -1), dst t+ b 2 -b 1 -1 2 (m 1 + 1) with Sta t+ b 2 -b 1 -1 2 (m 1 -1), Sta t+ b 2 -b 1 -1 2 (m 1 ) and Sta t+ b 2 -b 1 -1 2 (m 1 + 1).
Therefore by definition (5) Mid

t+ b 2 -b 1 +1 2 (m 1 ). dst t+ b 2 -b 1 +1 2 (m 2 ) = max dst t+ b 2 -b 1 -1 2 (m 2 -1), dst t+ b 2 -b 1 -1 2 (m 2 + 1) with Sta t+ b 2 -b 1 -1 2 (m 2 -1), Sta t+ b 2 -b 1 -1 2 (m 2 ) and Sta t+ b 2 -b 1 -1 2 (m 2 + 1).
Therefore by definition (5) Mid

t+ b 2 -b 1 +1 2 (m 2 ).
• If b 1 ≤ c < b1+b2 2 , we have c = b 1 + d, so b 1 + (d + 1) = c + 1. Therefore, by using H L , we have that:

dst t+ b 2 -b 1 2 (c + 1) = d + 1 ∧ Sta t+ b 2 -b 1 2 (c + 1) So, because t ≥ t + b2-b1
2 , by using the lemma C.14 we have that:

dst t (c + 1) = d + 1 Therefore: d + 1 ≤ max dst t (c -1), dst t (c + 1) • If b1+b2+1 2 < c ≤ b 2 , we have c = b 2 -d, so b 2 -(d + 1) = c -1.
Therefore, by using H R , we have that:

dst t+ b 2 -b 1 2 (c -1) = d + 1 ∧ Sta t+ b 2 -b 1 2 (c -1)
So, because t ≥ t + b2-b1 2 , by using the lemma C.14 we have that:

dst t (c -1) = d + 1 Therefore: d + 1 ≤ max dst t (c -1), dst t (c + 1)
We prove ¬ Mid t +1 (c) by contradiction. If Mid t +1 (c) then, by using the lemma B.4, we have that: dst t +1 (c) ≥ max dst t (c -1), dst t (c + 1) So, by using H d , we have that: max dst t (c -1), dst t (c + 1) ≤ d But d + 1 ≤ max dst t (c -1), dst t (c + 1) , hence the contradiction.

Remark. In the previous lemma there is some parity problems to fix, which should be proven in the appendix or found in the Coq library.

Lemma (5.9 p.14: Each true Middle comes from a Light Cone).

∀ tm, ¬ Brd t (m) ∧ Mid t (m) ⇒ LC t-d (m -d, m + d) ∨ LC t-(d+1) (m -(d + 1), m + d) ∨ LC t-(d+1) (m -d, m + (d + 1))
where d = dst t (m)

Proof. Let m be the "true" middle, which means that it is not a border. Notice that according to the lemma B.10 p.24, we have d ≥ 1. Firstly, we cannot have more than two true middles next to each other. Indeed, by (5) they must have the same distance d, but if there are three true middles in a row, the middle at the center will have a distance d + 1, according to (6), hence the contradiction.

So, m may be alone, or have a middle with the same distance on its right or on its left, hence the three cases of the lemma.

Let m the left middle and let m r be the right middle. They are neighbors if there are two middles, or we have m = m r if there is only one middle.

Because m and m r are middles, according to the lemma B.8 p.23, they are stable.

In order to ease the notation, let t be the date when m and m r become stable for the first time. Therefore, by (5), if they are equal they become the middle at t, and otherwise they become the middles at t + 1, hence the difference of time in the lemma.

Let be the layer. We prove by induction on 0 ≤ i ≤ d that:

Sta t-i (m -i) ∧ dst t-i (m -i) = d -i = dst t-i (m r + i) ∧ Sta t-i (m r + i) ∧ ∀ m -i ≤ c ≤ m r + i, dst t-i (c) ≥ d -i (H i )
• H 0 because m and m r are stable at t and they have the same distance d.

• We assume H i with i < d, and now we prove H i+1 .

According to (4), we have Sta

t-i (m -i) because 1. Brd t-i (m -i)
In that case, according to the lemma B.6 p.23, we have dst t-i (m -i) = 0. So, by H i we have d = i, which contradicts i < d.

or dst

t-i (m -i) = 1 + dst t-(i+1) (m -i + 1) with Sta t-(i+1) (m -i + 1)
In that case, because Sta t-(i+1) (m -i + 1), according to the lemma C.14 p.32 we have dst t-(i+1) (m -i + 1) = dst t-i (m -i + 1).

But by 

H i we have dst t-i (m -i) = d -i and dst t-i (m -i + 1) ≥ d -i. So, d -i = dst t-i (m -i) = 1 + dst t-(i+1) (m -i + 1) ≥ 1 + d -i, which is absurd. 3. or dst t-i (m -i) = 1 + dst t-(i+1) (m -(i + 1)) with Sta t-(i+1) (m -(i + 1)),
(m -(i+1)) = dst t-i (m -i)-1 = d -(i + 1) by H i .
We prove Sta t-(i+1) (m r + (i + 1)) and dst t-(i+1) (m r + (i + 1)) = d -(i + 1) in the same way, by using Sta t-i (m r + i) in H i .

It remains only to prove that for every

m -(i+1) ≤ c ≤ m r +(i+1), we have dst t-(i+1) (c) ≥ d -(i + 1
). We prove it by contradiction.

Let c be a cell such that m -

(i + 1) ≤ c ≤ m r + (i + 1) and dst t-(i+1) (c) < d -(i + 1).
There exists a cell c which is a neighbor of c and m

-i ≤ c ≤ m r + i. Indeed, if m -i -1 ≤ c ≤ m -i + 1 let c be c + 1, and if m -i + 1 ≤ c ≤ m r + i + 1 let c be c -1.
According to the lemma B.3 p.22, we have:

dst t-i+1 (c ) ≤ 1 + dst t-(i+1) (c) < 1 + d -(i + 1) = d -i Lemma D.1 (Right Staircase Lemma). ∀ tcd, dst t+2 (c) ≥ d + 1 ⇒ Sta t+1 (c + 1) ∧ dst t+1 (c + 1) = d + 1 ⇒ Sta t (c + 2) ∧ dst t (c + 2) = d
Proof. Let , t, c and d.

We assume dst t+2 (c) ≥ d + 1, Sta t+1 (c + 1) and dst t+1 (c + 1) = d + 1. Because Sta t+1 (c + 1), by (4) we have three possible cases:

• Brd t+1 (c + 1)
So, according to the lemma B.6 p.23, we have dst t+1 (c + 1) = 0, which contradicts the hypothesis dst t+1 (c + 1) = d + 1.

• dst t+1 (c + 1) = 1 + dst t (c) with Sta t (c) Because Sta t (c), according to the lemma C.14 p.32 we have dst t (c) = dst t+2 (c) ≥ d + 1.

Therefore d + 1 = dst t+1 (c + 1) = 1 + dst t (c) ≥ d + 2, hence the contradiction.

• dst t+1 (c + 1) = 1 + dst t (c + 2) with Sta t (c + 2) which is the only remaining case.

Therefore, Sta t (c + 2), and dst t (c + 2) = dst t+1 (c + 1) -1 = d.

The result in the other way (from bottom-right to top-left) is admitted, because the proof is similar.

Lemma (5.12 p.14: One Brd and one Mid at the previous layer of a Light Cone). Because dst t1 (m 1 ) = d = dst t1-1 (m 2 ), the middle m 1 verifies the second case of the equation (5). In particular, we have that Sta t1-1 (m 1 ). So, by monotonicity (lemma C.14) we have dst t1-1 (m 1 ) = dst t1 (m 1 ) = d.

∀ tb 1 b 2 , LC +1 t (b 1 , b 2 ) ⇒ Brd t (b 1 ) ∧ ¬ Brd t (b 2 ) ∧ Mid t (b 2 ) ∧ dst t (b 2 ) = b 2 -b 1 ∨ ¬ Brd t (b 1 ) ∧ Mid t (b 1 ) ∧ Brd t (b 2 ) ∧ dst t (b 1 ) = b 2 -b 1 Proof. Because LC +1 t (b 1 , b 2 ), we have (7) that b 1 + 2 ≤ b 2 . Because LC +1 t (b 1 , b 2 ),
We have two cases on d :

• If dst t1-1 (m 2 ) = d = 0, because Sta t1-1 (m 2 ), by (4) we have Brd t1-1 (m 2 )... 2 • If dst t1-1 (m 2 ) = d > 0 3 , because Sta t1-1 (m 2 )
, by (4) we have two cases:

-dst t1-1 (m 2 ) = 1 + dst t1-2 (m 1 ) ∧ Sta t1-2 (m 1 )
In that case, because Sta t1-2 (m 1 ), by monotonicity (lemma C.14 p.32) we have that dst t1-2 (m 1 ) = dst t1 (m 1 ) = d. The result can be proven for t 2 too according to the monotonicity.

Therefore d = dst t1-1 (m 2 ) = 1 + dst t1-2 (m 1 ) = 1 + d, hence the contradiction. -dst t1-1 (m 2 ) = 1 + dst t1-2 (c 2 ) ∧ Sta t1-2 (c 2 ).
Proposition (6.3 p.15: Middles appear at the same time with the same distance).

∀ t 1 m 1 , ¬ Brd t1 (m 1 ) ∧ Mid t1 (m 1 )

⇒ ∀t 2 m 2 , Mid t2 (m 2 ) ⇒ Mid t1 (m 2 ) ∧ dst t1 (m 1 ) = dst t1 (m 2 )

Proof. The proof is made by induction on :

• In this case = 0.

Let t 1 and m 1 such that ¬ Brd 0 t1 (m 1 ) and Mid 0 t1 (m 1 ). Let t 2 and m 2 such that Mid 0 t2 (m 2 ). Because = 0, according to the lemma 5.2 there exists t LC such that LC 0 tLC (1, n). We prove Mid t1 (m 2 ) and dst t1 (m 1 ) = dst t1 (m 2 ) by case on the parity of n:

-If n = n -1 + 1 is odd, then according to the corollary 5.5 we have Mid 0

tLC+ n-1 2 ( n+1
2 ). By contradiction, if m 1 = n+1 2 , then according to the lemma 5.8 we have that ¬ Mid 0 t1 (m 1 ), which contradicts the hypothesis Mid 0 t1 (m 1 ). So m 1 = n+1 2 . By contradiction, if m 2 = n+1 2 , then according to the lemma 5.8 we have that ¬ Mid 0 t2 (m 2 ), which contradicts the hypothesis Mid 0 t2 (m 2 ). So m 2 = n+1 2 . Therefore, m 1 = m 2 , then by hypothesis Mid 0 t1 (m 2 ), and we have dst 0 t1 (m 1 ) = dst 0 t1 (m 2 ). -If n = n -1 + 1 is even, then according to the corollary 5.6 we have that Mid 0 tLC+ n 2 ( n 2 ) and Mid 0 tLC+ n 2 ( n 2 + 1). By contradiction, if m 1 = n 2 and m 1 = n 2 + 1, then according to the lemma 5.8 we have that ¬ Mid 0 t1 (m 1 ), which contradicts the hypothesis Mid 0 t1 (m 1 ). So m 1 = n 2 or m 1 = n 2 + 1. By contradiction, if m 2 = n 2 and m 2 = n 2 + 1, then according to the lemma 5.8 we have that ¬ Mid 0 t2 (m 2 ), which contradicts the hypothesis Mid 0 t2 (m 2 ). So m 2 = n 2 or m 2 = n 2 + 1. The proof is made by case: * If m 1 = m 2 , then by hypothesis Mid 0 t1 (m 2 ), and we have dst 0 t1 (m 1 ) = dst 0 t1 (m 2 ). * If m 1 = m 2 , then m 2 = m 1 + 1 or m 1 = m 2 + 1. So, because Mid 0 t1 (m 1 ) and Mid 0 t2 (m 2 ), according to the lemma 6.1 we have Mid 0 t1 (m 2 ) and dst 0 t1 (m 1 ) = dst 0 t1 (m 2 ).

• We assume the induction hypothesis: Because LC +1 t 1 (b 1 , b 1 ), according to the lemma 5.12, we have that:

either Brd t 1 (b 1 ) ∧ ¬ Brd t 1 (b 1 ) ∧ Mid t 1 (b 1 ) ∧ dst t 1 (b 1 ) = b 1 -b 1 or ¬ Brd t 1 (b 1 ) ∧ Mid t 1 (b 1 ) ∧ Brd t 1 (b 1 ) ∧ dst t 1 (b 1 ) = b 1 -b 1
We denote the border by b 1 and the middle by m 1 . In particular, we have that dst t 1 (m 1 ) = b 1 -b 1 = 2d 1 or 2d 1 + 1.

Let t 2 and m 2 such that Mid +1 t2 (m 2 ), and let d 2 = dst +1 t2 (m 2 ). According to the same arguments, we have that LC +1 Because ¬ Brd t 1 (m 1 ) and Mid t 1 (m 1 ) and Mid t 2 (m 2 ), according to the induction hypothesis IH , we have that Mid t 1 (m 2 ) and dst t 1 (m 1 ) = dst t 1 (m 2 ).

Because Mid t 1 (m 2 ) and Mid t 2 (m 2 ), according to the lemma 6.2 we have that dst t 1 (m 2 ) = dst t 2 (m 2 ). Therefore dst t 1 (m 1 ) = dst t 1 (m 2 ) = dst t 2 (m 2 ). So, because dst t 1 (m 1 ) = 2d 1 or 2d 1 + 1 and dst t 2 (m 2 ) = 2d 2 or 2d 2 + 1, according to the lemma B. Therefore, according to the lemma 5.10, we have LC +1 

( b2+b 2 
2 ). In that case (according to the previous results of the lemma 5.9), we have (see the following remark) t 1 = t 1 -d 1 and b 2 = m 2 -d 2 and b 2 = m 2 + d 2 , so : ) and Mid +1

t 1 + b 2 -b 2 2 = t 1 + d 2 = t 1 + d 1 = t 1 b 2 + b 2 2 = (m 2 -d 2 ) + (m 2 + d 2 ) 2 = 2m 2 2 = m 2 Therefore Mid +1 t1 (m 2 ). -If b 2 -b 2 is
t 1 + b 2 -b 2 +1 2 ( b2+b 2 +1 2
).

In that case (according to the previous results of the lemma 5.9), we have (see the following remark) t 1 = t 1 -(d 1 + 1), so:

t 1 + b 2 -b 2 + 1 2 = t 1 + d 2 + 1 = t 1 + d 1 + 1 = t 1
Morevover, there are two cases for b 2 and b 2 :

  b 1 and b 2 such that LC t (b 1 , b 2 ) and b 2 -b 1 + 1 ≥ 5. According to the corollary 5.5 p.12 (if b 2 -b 1 +1 is odd) or the corolloray 5.6 p.13 (if b 2 -b 1 +1 is even), we have Mid t+ b 2 -b 1 +1 2 b1+b2 2 and Mid t+ b 2 -b 1 +1 2 b1+b2+1 2

t 2 (

 2 b 2 , b 2 ), and at the previous layer the border b 2 and the middle m 2 such that dst t 2 (m 2 ) = b 2 -b 2 = 2d 2 or 2d 2 + 1.

  1), therefore Out +1 t +1 (c ).

def=

  Inp t (0) ∨ Inp t (1) and Inp t+1 (n) def = Inp t (n -1) ∨ Inp t (n).The c -1 and c + 1 in Ins +1 t+1 (c) are not a problem, because the algorithm verifies if Ins t+1 (c) first, which is false for c ∈ {1, n}.

Firstly, we prove

  that for every b 1 + (d + 1) ≤ c ≤ b 2 -(d + 1), we have : dst t+(d+1) (c) = 1 + min dst t+d (c -1), dst t+d (c + 1) (H c ) Indeed, if b 1 + (d + 1) ≤ c ≤ b 2 -(d + 1) then by transitivity we have b 1 < c < b 2 . So, because LC t (b 1 , b 2 ) we have Ins t+1 (c). So, by monotonicity (lemma C.10) we have Ins t+(d+1) (c).

•

  and by using the induction hypothesis we have dst t+d (b1 + d + 2) ≥ d.Moreover, by using the induction hypothesis, we have dst t+d (b1 + d) = d, so dst t+d (b 1 + d + 2) ≥ dst t+d (b 1 + d).By using H c with c = b 1 + d + 1, we have :dst t+(d+1) (b 1 + d + 1) = 1 + min dst t+d (b 1 + d), dst t+d (b 1 + d + 2) = 1 + dst t+d (b 1 + d) = 1 + d Moreover, because dst t+(d+1) (b 1 + d + 1) = 1 + dst t+d (b 1 + d)and by induction hypothesis Sta t+d (b 1 + d), we have by definition (4) that Sta t+(d+1) (b 1 + d + 1). • The case c = b 2 -(d + 1) is similar, by using the induction hypothesis dst t+d (b 2 -d) = d and Sta t+d (b 2 -d). If b 1 + (d + 1) < c < b 2 -(d + 1), then we have :

and Sta t+ b 2 -b 1 2 - 1

 21 (m + 1). Therefore by definition (5) Mid t+ b 2 -b 1 2 (m).

  we have (7) that b 1 + 2 ≤ b 2 and for every cell b 1 < c < b 2 that Ins +1 t+1 (c), so by (3) we have Ins t+1 (c). Because LC +1 t (b 1 , b 2 ), we have Brd +1 t (b 1 ) and Brd +1 t (b 2 ). So, by (2) and the lemma B.2 p.21, at the layer there is four possible cases : 1. Brd t (b 1 ) and Brd t (b 2 ) In that case, because b 1 + 2 ≤ b 2 and for every cell b 1 < c < b 2 we have Ins t+1 (c), we have LC t (b 1 , b 2 ).So, according to the corollary 5.5 p.12 or 5.6 p.13, we have Mid t+ b 2 -b 1 to the lemma B.5 p.22, we have a contradiction.In every case, we have d 2 ≥ d 1 , and because we proved d 1 ≥ d 2 , we have d 1 = d 2 . So, in the following d 1 and d 2 will be denoted by d.

  So dst t1-2 (c 2 ) = d-1, and by monotonicity (lemma C.14) we have dst t1-1 (c 2 ) = d-1. Moreover, because Sta t1-2 (c 2 ), by monotonicity (lemma C.11) we have Sta t1-1 (c 2 ). Finally, because dst t1-1 (m 2 ) = d 2 and Sta t1-1 (m 2 ), by monotonicity (lemma C.14) we have dst t1 (m 2 ) = d = dst t1 (m 1 ). Therefore, we have : * dst t1-1 (m 1 ) = d and dst t1-1 (c 2 ) = d -1, so : dst t1 (m 2 ) = d = max (d, d -1) = max dst t1-1 (m 1 ), dst t1-1 (c 2 ) * Sta t1-1 (m 1 ) and Sta t1-1 (m 2 ) and Sta t1-1 (c 2 ) So, by the definition (5), we have Mid t1 (m 2 ).

∀t 1 m 1 ,

 1 ¬ Brd t1 (m 1 ) ∧ Mid t1 (m 1 ) (IH ) ⇒ ∀t 2 m 2 , Mid t2 (m 2 ) ⇒ Mid t1 (m 2 ) ∧ dst t1 (m 1 ) = dst t1 (m 2 )Let t 1 and m 1 such that ¬ Brd +1 t1 (m 1 ) and Mid +1 t1 (m 1 ), and let d 1 = dst +1 t1 (m 1 ). According to the lemma 5.9, there existst 1 = t 1 -d 1 or t 1 -(d 1 + 1), b 1 = m 1 -d 1 or m 1 -(d 1 + 1), and b 1 = m 1 + d 1 or m 1 + (d 1 + 1) such that LC +1 t 1 (b 1 , b 1 ). Notice that the case b 1 = m 1 -(d 1 + 1) and b 1 = m 1 + (d 1 + 1) is excluded, so b 1 -b 1 = 2d 1 or 2d 1 + 1, but not 2d 1 + 2.

t 2 (

 2 b 2 , b 2 ), and at the previous layer we denote the border by b 2 and the middle by m 2 , with dst t 2 (m 2 ) = b 2 -b 2 = 2d 2 or 2d 2 + 1.

  1 we have that d 1 = d 2 . Therefore dst +1 t1 (m 1 ) = d 1 = d 2 = dst +1 t2 (m 2 ). It remains to prove that Mid +1 t1 (m 2 ). Because ¬ Brd +1t1 (m 1 ) and Mid +1 t1 (m 1 ), according to the lemma B.10 we have thatd 2 = d 1 = dst +1 t1 (m 1 ) ≥ 1. So dst t 1 (m 2 ) = dst t 2 (m 2 ) = 2d 2 or 2d 2 + 1 ≥ 2. Moreover, because dst t 1 (m 2 ) = dst t 2 (m 2 ) = b 2 -b 2 ,where b 2 and b 2 are b 2 and m 2 or the reverse, we have b2 = m 2 -dst t 1 (m 2 ) or b 2 = m 2 + dst t 1 (m 2 ).Moreover, Mid t 1 (m 2 ) and Brd t 2 (b 2 ).

t 1 (-

 1 b 2 , b 2 ). We prove Mid +1 t1 (m 2 ) by case on the parity of b 2 -b 2 : If b 2 -b 2 is even, because b 2 -b 2 = 2d 2 or 2d 2 +1, we have b 2 -b 2 = 2d 2 so b 2 -b2 2 = d 2 . Because b 2 -b 2 is even, b 2 -b 2 + 1 is odd. So,according to the lemma 5.5, we have that Mid +1 t 1 + b 2 -b 2 2

  odd, because b 2 -b 2 = 2d 2 or 2d 2 + 1, we have b 2 -b 2 = 2d 2 + 1 so b 2 -b2+1 2 = d 2 + 1. Because b 2 -b 2 is odd, b 2 -b 2 + 1is even. So, according to the lemma 5.6, we have that Mid +1

Table 3

 3 

	: Formal Definition of the Fields
	brd0(t, c)	def = inp t (c) and (1 = c or c = n)
	ins0(t, c)	def = inp t (c) and 1 < c and c < n

Table 4 :

 4 Border and Inside Fields at the Layer 0

	Lemma 3.5 (Equivalence between Boolean and Proposition Fields).
	∀ tc, Brd t (c) ⇔ brd t (c) = true
	∀ tc, Ins t (c) ⇔ ins t (c) = true
	∀ tc, Sta t (c) ⇔ sta t (c) = true
	∀ tc, Mid t (c) ⇔ mid t (c) = true

  t and c. The hypothesis Out t+1 (c) implies (8) that Brd t (c -1) and Brd t (c) and Brd t (c + 1). According to the lemma 5.2 p.11, there exists t such that LC 0 t (1, n). We remind that for a Light Cone LC t (b 1 , b 2 ), b 2 -b 1 + 1 is the number of cells forming the Light Cone, borders included.According to the proposition 5.11 p.14, if b 2 -b 1 + 1 ≥ 5, then the Light Cone is split in half at the next layer:

	So (2), we have Brd +1 t Therefore (8) we proved Out +1 (c -1) and Brd +1 t t+1 (c).	(c) and Brd +1 t	(c + 1).
	Proposition 7.3 (Every cell will fire).		

∃ t, ∀c, Out t (c) Proof.

  which leads to a contradiction (three variables with distinct values, but only two available values).-We assume the induction hypothesis:∀c, Out t +1 (c) ⇒ ∀c , Out t +1 (c ) For each cell c ∈ {c-1, c,c+1}, by using the lemma B.2 we have Brd t (c )∨¬ Brd t (c ). But because Brd +1 t (c ) implies (2) that Brd t (c ) ∨ Mid t (c ), we have two cases: Brd t (c ) or ¬ Brd t (c ) ∧ Mid t (c ). We prove ∀c , Out +1 t +1 (c ) for the eight possible cases: * If Brd t (c -1) and Brd t (c) and Brd t (c + 1) then (8) Out t +1 (c).So, by using IH we have for every c that Out t +1 (c ). Therefore, by using the lemma 7.2, we have Out +1 t +1 (c ). * If Mid t (c -1) and Mid t (c) and Mid t (c + 1), we obtain a contradiction by using the lemma 6.4.

				(IH )
	Let c. The hypothesis Out +1 t +1 (c) implies (8) that Brd +1 t	(c -1) and Brd +1 t	(c) and
	Brd +1 t	(c + 1).	

* The other cases are : • Brd t (c -1) and Brd t (c) and Mid t (c + 1) • Brd t (c -1) and Mid t (c) and Brd t (c + 1) • Brd t (c -1) and Mid t (c) and Mid t (c + 1) • Mid t (c -1) and Brd t (c) and Brd t (c + 1) • Mid t (c -1) and Brd t (c) and Mid t (c + 1)

Table 10 :

 10 Formal Definition of the Fields Lemma B.2 (The Border Field is True or False). By using the border field equations (2), or the characterization of bool/Prop fields (see the Coq file p.48).

∀ tc, Brd t (c) ∨ ¬ Brd t (c)

Proof.

  so the proof is made by case: * If Brd t +1 (c), because H Ins 2, we have False by using IH . * If Mid t +1 (c), then by lemma B.4:

	dst t +1 (c) ≥ max dst t (c -1), dst t (c + 1)
	therefore dst t +1 (c) ≥ dst t (c -1) and dst t +1 (c) ≥ dst t (c + 1), which contradicts
	H dst .
	Lemma B.6 (Distance of a Border).
	∀ tc, Brd t (c) ⇒ dst t (c) = 0
	Proof. Assuming that Brd t (c), by using the lemma B.5, we have that ¬ Ins t (c). Therefore (6)
	dst t (c) = 0.

Lemma B.7 (Middles have stable neighbours).

↑ May be less, because b

-b 1 2 is rounded down ?

↑ The proof is not finished, but this case may not be necessary, because it cannot happen in the case = 0 by axiom n > 2 and the definition (2) of Brd, and this lemma is only used in that case.

↑ In that case, because the distance is 0 at t = 0, we have t 1 -1 > 0, so we can write t 1 -2.

C Monotonicity

In this section we prove monotonicity properties for the fields, which means that if the property holds for a given t, then it holds for every t ≥ t.

Lemma C.1 (Inp is monotone). ∀tc, Inp t (c) ⇒ (∀t , t ≥ t ⇒ Inp t (c))

Proof. Let t and c. We assume the hypothesis Inp t (c).

Let t . We prove Inp t (c) by case on the hypothesis t ≥ t:

• If t = t then Inp t (c) by hypothesis.

• If t = t + 1 with t ≥ t such that Inp t (c), then by using the equation (1) we have Inp t +1 (c).

Therefore Inp t (c).

Lemma C.2 (Ins monotone implies dst is increasing).

∀ , ∀tc, Ins t (c) ⇒ Ins t+1 (c) ⇒ ∀tc, dst t (c) ≤ dst t+1 (c)

Proof. Let , and we assume:

The proof is made by induction on t:

• If t = 0, then (6) dst t (c) = 0, therefore dst t (c) ≤ dst t+1 (c).

• We assume that: ∀c, dst t (c) ≤ dst t+1 (c) (IH t ) Let c. We proove by case that dst t+1 (c) ≤ dst t+2 (c):

-If Ins t+2 (c) then (6) dst t+2 (c) = 1 + min dst t+1 (c -1), dst t+1 (c + 1) .

But by using IH t we have that dst t (c-1) ≤ dst t+1 (c-1) and dst t (c+1) ≤ dst t+1 (c+1), so: 1 + min dst t (c -1), dst t (c + 1) ≤ dst t+2 (c) Therefore, by using the lemma B.3, we have dst t+1 (c) ≤ dst t+2 (c).

-If ¬ Ins t+2 (c) then (6) dst t+2 (c) = 0. Moreover, by using the contraposition of H ins we have ¬ Ins t+1 (c), so dst t+1 (c) = 0 too. Therefore, in any cases, dst t+1 (c) ≤ dst t+2 (c).

Lemma C.3 (Brd and Ins monotone implies a stable dst is constant). ∀ tc, Ins t (c) ⇒ ∀t , t ≥ t ⇒ Ins t (c)

Proof. The proof is similar to the previous one, and uses the right part of the proposition C.8.

Corollary C.11 (Sta is monotone).

∀ tc, Sta t (c) ⇒ ∀t , t ≥ t ⇒ Sta t (c)

Proof. Let , t and c. We assume the hypothesis Sta t (c). Let t . We prove Sta t (c) by case on the hypothesis t ≥ t:

• If t = t then Sta t (c) by hypothesis.

• If t = t + 1 with t ≥ t such that Sta t (c), then by using both parts of the proposition C.8 and the lemma C.4 we have Sta t +1 (c).

Therefore Sta t (c).

Corollary C.12 (Mid is monotone).

∀ tc, Mid t (c) ⇒ ∀t , t ≥ t ⇒ Mid t (c)

Proof. The proof is similar to the previous one, and uses both parts of the proposition C.8 and the lemma C.5.

Corollary C.13 (dst is increasing).

∀ tct , t ≥ t ⇒ dst t (c) ≥ dst t (c)

Proof. Let , t, c and t . We prove dst t (c) ≥ dst t (c) by case on the hypothesis t ≥ t:

• If t = t then dst t (c) = dst t (c), therefore dst t (c) ≥ dst t (c).

• In that case t = t + 1 with t ≥ t such that dst t (c) ≥ dst t (c).

Therefore, by using the right part of the proposition C.8 and the lemma C.2, then the hypothesis, we have:

Proof. Let , t and c. We assume the hypothesis Sta t (c). Let t . We prove Brd t (c) by case on the hypothesis t ≥ t:

Lemma (5.7 p.13: The other cells of a Light Cone are not Middles).

Proof. Let , t, b 1 and b 2 . We assume the hypothesis LC

2 and let c be a cell. Firstly, we prove that

2 . The proof is made by case on c:

By using the hypothesis LC t (b 1 , b 2 ) and the corollary 5.4 on c = b 1 + d or c = b 2 -d, we have that:

Therefore, because t + 1 ≥ t ≥ t + b2-b1 2 , by using the lemma C.14 we have that:

2 . So, by using the hypothesis LC t (b 1 , b 2 ) and the corollary 5.4 with d + 1, we have that:

We prove that d + 1 ≤ max dst t (c -1), dst t (c + 1) by case on c:

which contradicts H i .

Therefore, we proved H i for every 0 ≤ i ≤ d. We remind that d ≥ 1, so we can apply H i for i = d -1 and i = d: Corollary (5.10 p.14: A Middle induces a new Light Cone). In every case, by using the lemma 5.4 we have for every i ≤ d that dst t (m -

So, by using the monotonicity, for every m -d < c < m, we have dst t+1 (c) + 1 = dst t (c + 1). Moreover, by using the monotonicity, Sta t+1 (c). Moreover, by using H LC and the definition (7) and the monotonicity, we have Ins t+1 (c). Therefore, by definition (3), we have Ins +1 t+1 (c). Moreover, by using H LC and the definition (7) and the monotonicity, we have Brd t+1 (m -d). So, by definition (2) Brd +1 t+1 (m -d). Moreover, by using H LC and (the lemma 5.5 or the lemma 5.6) and the monotonicity, we have Mid t+1 (m). So, by definition (2) Brd +1 t+1 (m). Moreover, by hypothesis d ≥ 2, so (m -d) + 2 ≤ m. Therefore, by definition (7) we have LC +1 t (m -d, m).

The following lemma will ease the proof of the lemma 5.12 p.14 (and maybe others ?):

Let d 1 = dst t (b 1 ). We assume for the moment that ¬ Brd t (b 1 ) ∧ Mid t (b 1 ) so, according to the lemma B.10 p.24, we have d 1 ≥ 1. We prove by induction on 0 ≤ i ≤ d 1 that: 

Therefore (5) Mid t+1 (b 1 + 1). So (2) Brd +1 t+1 (b 1 + 1), which contradicts Ins +1 t+1 (b 1 + 1), according to the lemma B.5 p.22.

According to the lemma D.1 p.41, we have Sta

So, according to the lemma B.9 p.24 we have Brd t-d1 (b 1 + d 1 ). So, by monotony (lemma C.9 p.31) we have Brd

, according to the lemma B.10 p.24.

Therefore we have b

W can go back to our remaining cases:

2. In the second case, where both b 1 and b 2 are true middles, we have:

Hence the contradiction.

3. In the third case, because Brd t (b 1 ) according to the lemma B.6 p.23 we have

4. In the fourth case, because Brd t (b 2 ) according to the lemma B.6 p.23 we have

E Proofs for the Middles

The proofs of the following results are very detailed and written in a Coq style, in order to be implemented. Therefore, for sake of clarity, we will only write and comment the results in the section 6 p.15, and detail the proofs in this section.

Lemma (6.1 p.15: Paired Middles appear at the same time with the same distance).

Proof. We assume that m 2 = m 1 + 1 (the case m 1 = m 2 + 1 is symmetrical). For sake of simplicity, we note c 1 = m 1 -1 and c 2 = m 2 + 1. We assume that t 1 ≤ t 2 and we prove the result both for t 1 and t 2 . Notice that because of the middles, we have t 1 , t 2 ≥ 1.

We note d 1 = dst t1 (m 1 ) and d 2 = dst t2 (m 2 ), and we prove that d 1 = d 2 : According to the lemma B.4 on Mid t1 (m 1 ) we have that :

According to the lemma B.7 on Mid t1 (m 1 ), we have Sta t1-1 (m 2 ). So, by monotonicity (lemma

According to the lemma B.4 on Mid t2 (m 2 ) we have that :

We have two cases on t 1 ≤ t 2 :

• In the case t 1 = t 2 , according to the lemma B.7 on Mid t2 (m 2 ), we have Sta t2-1 (m 1 ). So, by monotonicity (lemma C.14), dst t2-1 (m 1 ) = d 1 .

• In the case t 1 < t 2 , according to the lemma B.8 on Mid t1 (m 1 ) we have Sta t1 (m 1 ). So, by monotonicity (lemma C.14

In that case:

Therefore, because Mid +1

), we have that Mid +1 t1 (m 2 ).

Remark. The remaining problems in the proposition come from the fact that the cases for the form of the Light Cones "may" not be the same (in particular even or odd length) for the two middles. Maybe we should prove that this is the case anyway because at a layer the Light Cones have the same length ?

Lemma (6.4 p.16: Three true middles cannot be adjacent).

Proof. We obtain a contradiction by case on t:

• Else t = t + 1. By hypothesis ¬ Brd t +1 (c), so we can use the proposition 6.3 to prove that:

This distance will be denoted by d.

By using the lemma B.7 on Mid t +1 (c), we have that Sta t (c -1) and Sta t (c + 1). So, by using the lemma C.14 on both we have:

Because ¬ Brd t +1 (c) and Mid t +1 (c), by using the lemma B.10 we have dst t +1 (c) > 0. So (6):

Lemma (6.5 p.16: A true middle adjacent to a border has a distance = 1).

Proof. We prove the result by case on t:

• If t = 0 then (5) Mid 0 (c) is False, so we get a contradiction.

• Else t = t + 1. Because ¬ Brd t +1 (c) and Mid t +1 (c), by using the lemma B.10 we have dst t +1 (c) > 0. So (6):

So by using the lemma B.6 we have dst t +1 (c -1) = 0 ∨ dst t +1 (c + 1) = 0 , and by using the lemma C.13 we have dst t (c -1) = 0 ∨ dst t (c + 1) = 0 .

Therefore, min dst t (c -1), dst t (c + 1) = 0, and dst t +1 (c) = 1.

F Implementation in Coq

We began to write our presentation in Coq, but most of the work remains to be done. At least, this technical report attests the faisability of the task. For the moment, we wrote in the following Coq code:

• the definitions (from p.5 to p.8), both in boolean and propositional form, of the fields Inp, Brd, Ins, Sta, Mid, and dst

• the proof of the lemmas 3.4 p.5 and 3.5 p.5, stating the equivalence between the boolean and the propositional forms

• the proof of the lemma B.3 p.22 (Local Distance)

• the proof of the lemma C.2 p.25 (Ins monotone implies dst is increasing)

• the proof of the lemma B.5 p.22 (Brd and Ins are exclusive)

• the proof of the lemma B.6 p.23 (Distance of a Border)

• the proof of the lemma C.3 p.25 (Brd and Ins monotone implies a stable dst is constant) Proof. intros l HB HI. induction t.

intros c H. inversion H. apply HB. assumption.

- -apply (lt_not_le (dst l (S t0) c) (dst l t0 (c -1))). apply H8. apply Hd1.

-apply (lt_not_le (dst l (S t0) c) (dst l t0 (c + 1))). apply H8. apply Hd2. + destruct H8 as [Hdeq HSl].

assert (max (dst l t0 (c -1)) (dst l t0 (c + 1)) <= dst l (S t0) c) as Hd. rewrite → Hdeq. reflexivity. apply max_le__and_le in Hd. destruct Hd as [Hd1 Hd2]. destruct HdS.

-apply (lt_not_le (dst l (S t0) c) (dst l t0 (c -1))). apply H8. apply Hd1.

-apply (lt_not_le (dst l (S t0) c) (dst l t0 (c + 1))). apply H8. apply Hd2. Qed.

Lemma brd_dst0 :

forall l t c, Brd l t c → dst l t c = 0.

Proof. intros l t c HB. assert (ins l t c = false) as H. 
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