

Multiscale analysis of the impact of the polymer morphology on the gas barrier properties of semi-crystalline polylactide

Sandra Domenek, Nicolas Delpouve, Samira Fernandes Nassar, Alain Guinault, Cyrille Sollogoub

▶ To cite this version:

Sandra Domenek, Nicolas Delpouve, Samira Fernandes Nassar, Alain Guinault, Cyrille Sollogoub. Multiscale analysis of the impact of the polymer morphology on the gas barrier properties of semicrystalline polylactide. 46. Colloque National du Groupe Français des Polymères, GFP2017, Nov 2017, Paris, France. 2017. hal-01739305

HAL Id: hal-01739305 https://hal.science/hal-01739305v1

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MULTI-SCALE ANALYSIS OF THE IMPACT OF THE POLYMER MORPHOLOGY ON GAS BARRIER PROPERTIES OF SEMI-CRYSTALLINE POLYLACTIDE

Sandra DOMENEK^{1*}, Nicolas DELPOUVE², Samira FERNANDES NASSAR¹, Alain GUINAULT³, Cyrille SOLLOGOUB³

- 1 : AgroParisTech, UMR 1145 Ingénierie Procédés Aliments, 1 avenue des Olympiades, F-91300 Massy, France
- 2 : AMME LECAP International Laboratory, LECAP, EA4528, Institute for Material Research, Université de Rouen, 76801 Saint Etienne du Rouvray, France
- 3 : CNAM, P2AM-PIMM, 75013 Paris, France

Introduction

The optimization of the gas barrier properties of polylactide (PLA) is a pending issue for a number of applications. The crystallization of PLA is still the most relevant method from an industrial point of view. The objective of this work was the investigation of the impact of the crystalline morphology at the scales of the lamella and the spherulite, and the impact of the amorphous phase dynamics of PLA on its oxygen barrier properties. Therefore, sample films with controlled morphology were produced by a thermal annealing treatment. The sample size was designed to allow the multi-scale characterization of morphology and oxygen permeability on the same material. The results showed that the crystalline morphology and the mobile amorphous phase dynamics had negligible impact on the oxygen diffusion coefficient. It was however substantially increased by the presence of a rigid amorphous fraction (RAF) in the amorphous phase, which provides an accelerated pathway for diffusion. As a conclusion, for reaching optimal barrier properties, semicrystalline PLA should be pre-nucleated and quickly crystallized from the glass in α -form in the aim to reach a high crystallinity degree and decoupling of amorphous and crystalline phase.

Objective

Investigation of the effects of the molecular mobility and dynamic heterogeneity in the amorphous phase of PLA on barrier properties

Material and Methods

Sample preparation

Analysis of crystallinity and molecular mobility

Temperature Modulated Differential Scanning Calorimetry (TM-DSC)

DSC Q100 (TA Instruments)

•modulated mode for measurement of crystallinity and glass transition (heating rate 2° C/min, amplitude 0.318° C, period 60 s)

Analysis of crystalline morphology

>WAXS and SAXS analysis was performed on the SWING beamline of Soleil (St. Aubin, France).

Analysis of gas permeability

> Systec 8001 O₂ permeability analyser 23 C°, 0% RH

N

E

V

N

N

5

ari

()

0		,			
	Tg (°C)	χ(%)	MAF(%)	RAF(%)	
amorphous	58,0	-	100	-	
G85_60_17	57.2	27	17	75	
G85_1200_39	56.1	39	40	21	
G130_20_34	56.1	34	60	6	
G130_1200_37	53.5	37	50	13	
M85_60_24	56.9	24	73	3	
M85_1200_47	54.8	47 38		15	
M130_60_37	56.3	37 58		5	
M130_1200_41	53.2	41	46	13	
<u>RAF develop</u> <u>Size o</u>	<u>s at low crys</u> f Cooperativ	<u>tallization te</u> e Rearrangii	<u>mperature o</u> ng Regions	<u>r long times</u>	
Gaussian Fit		3,5 3,0 () 3,0 - 2,5 - 2,5	 G85_120 G85_1200 G85_1200 M85_1200 G130_20 G130_1200 	b	
	_,,		→ M130_60 ※ M130_1200		

Melted 85°C Melted 130°C Glass 85°C Glass 130°C Extruded sample

0 U 0

0

0

0

0

6ème

6

 \bigcirc

$\xi^{3}_{T_{\alpha}} = V_{\alpha} = \Delta \left(\frac{1}{C_{p}}\right) \frac{k_{B} T_{\alpha}^{2}}{\rho \left(\delta T\right)^{2}} \qquad \Delta (1/C_{p}) = (1/C_{p})_{verre} - (1/C_{p})_{liquide} = (1/C'_{v}) - (1/C'_{l}) \qquad (\text{Ref. 2})$			T (crystallisation) = 85 °C	T (crystallisation) = 130 °C
Decrease of CRR due to confinement caused by increasing crystallinity and RAF	lass	Amorphous phase dynamics	High coupling between amorphous and crystalline phase (CRAF)	Low coupling between amorphous and crystalline phase (RAF)
References and Acknowledgement 1. B. Wunderlich, Progr. Polym. Sci. 2003, 28, 408. 2. E. Donth, J. Non Crivet Solide 1982, 53, 325	Ċ	Barrier properties	Low – 2.2 [SI]	High – 0.,6 [SI]
 S. Fernandes-Nassar, Guinault, A., Delpouve, N., Divry, V., Ducruet, V., Sollogoub, C., & Domenek, S. Polymer 2017, 108, 163-172 	Melt	Amorphous phase dynamics	Medium coupling between amorphous and crystalline phase	
The authors acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES for the doctorate grant n° 9712-13-5 of Samira Fernandes Nassar.		Barrier properties	Medium	– 1.3 [SI] [SI] 10 ⁻¹⁸ .m ³ .m.m ⁻² .s ⁻¹ .Pa

20

RAF (%)

CONTACT

Sandra DOMENEK

UMR 1145 GENIAL Ingénierie Procédés Aliments AgroParisTech – INRA, Centre de Massy sandra.domenek@agroparistech.fr

Temperature (°C

