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ABSTRACT

Multimodal passive damping of a mechanical structure can be implemented by a coupling to a secondary structure
exhibiting similar modal properties. When considering a piezoelectric coupling, the secondary structure is an
electrical network. A suitable topology for such a network can be obtained by a finite difference formulation
of the mechanical equations, followed by a direct electromechanical analogy. This procedure is applied to the
Kirchhoff-Love theory in order to find the electrical analogue of a clamped plate. The passive electrical network
is implemented with inductors, transformers and the inherent capacitance of the piezoelectric patches. The
electrical resonances are tuned to approach those of several mechanical modes simultaneously. This yields a
broadband reduction of the plate vibrations through the array of interconnected piezoelectric patches. The
robustness of the control strategy is evaluated by introducing perturbations in the mechanical or electrical
designs. A non-optimal tuning is considered by way of a uniform variation of the network inductance. Then, the
effect of local or boundary modifications of the electromechanical system is observed experimentally. In the end,
the use of an analogous electrical network appears as an efficient and robust solution for the multimodal control
of a plate.
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1. INTRODUCTION

Control solutions involving an array of piezoelectric resonant shunts have been proposed in order to damp
vibration of plates.1–3 The use of several piezoelectric patches of reduced dimensions limits the problem of
charge cancellation and can eventually introduce an additional stop band effect over the considered frequency
range. However, this strategy does not apply in the low frequency range, where the simultaneous control of
several plate modes requires the synthesis of multiresonant shunts. Such shunts with multiple inductors were
proposed by Wu4 and then implemented on a one-dimensional piezoelectric array.5 The multimodal approach
of Wu and other similar concepts require n inductors per patch to affect n modes, which may lead to a system
with an impractically large number of components. A broadband control can still be implemented with negative
capacitance, which simplifies the electrical layout and offers good performance.6–8 The main drawback is that a
negative capacitance needs to be synthesized with an active circuit and the control can thus suffer from stability
issues. A solution for the multimodal control of a plate with a passive electrical network was presented by Vidoli
and dell’Isola.9 The network consists of distributed inductors that interconnect the piezoelectric patches in order
to synthesize electrical modes that match the mechanical modes, both in the spatial and frequency domains.
This idea was then extended by Giorgio et al.10 to systems involving only a few piezoelectric patches. The main
limit remains the practical implementation of a suitable passive network. As we need to reproduce the modal
properties of mechanical structures with an electrical system, suitable topologies can be found by applying
an electromechanical analogy.11,12 In 1949, MacNeal13 already proposed and validated electrical analogues
for numerous mechanical structures as rods, beams and plates. Those passive networks finally reappeared in
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the analogous control of one-dimensional structures.14–17 With this approach, the number of components per
piezoelectric patch is independent of the number of modes that are targeted. For the control of thin plates,
Alessandroni et al.18 proposed an analogous network ensuring a broadband piezoelectric damping. Unfortunately,
the large number of electrical components makes difficult its practical implementation.

A simpler electrical network can be obtained by reconsidering the Kirchhoff-Love theory. The new topology
is presented in the present paper and applied to the damping of a clamped plate. It thus becomes possible to
evaluate the robustness of the control strategy with respect to a real experimental setup. The effect of parameter
variations needs to be investigated because it was shown that solutions involving resonant shunts can be very
sensitive to electrical mistunings.19,20 In practical applications, even if the robustness can be slightly improved
with an overestimated damping,21 it seems difficult to maintain a fine tuning of a single resonant shunt without
autonomous adaptation of the electrical parameters.22 Nevertheless, in the case of a distributed solution involving
an array of resonant shunts, uncertainties between components does not lead to a significant degradation of the
performance.23 This is also true with electrical analogous networks as it was shown that experiments involving
inductors with a ±10% tolerance were in good agreement with deterministic simulations.14 Then, the question
related to the effect of an uniform detuning of the electrical parameters still arises, because it could seriously
affect the damping performances.24 Another issue concerns the influence of defects appearing locally or along
the boundary of the mechanical or the electrical domains.

In this study, a discrete model of a thin plate is proposed in order to define its analogous electrical network.
This network is implemented experimentally and then coupled to a clamped plate through an array of piezoelectric
patches. The observed broadband vibration reduction validates the damping strategy and gives a reference for
the evaluation of its robustness with respect to parameter variations. In a second part, the performance loss
induced by an uniform variation of the network inductance is quantified. Then, local or boundary modifications
are introduced experimentally. The mechanical properties are altered by adding a lumped mass on the plate
or by removing some of the bolts ensuring the clamping condition. The electrical network is also modified by
doubling an inductance or short-circuiting a line of piezoelectric patches.

2. MULTIMODAL CONTROL BY ANALOGOUS COUPLING

A finite difference method is applied to the Kirchhoff-Love plate theory in order to get a discrete mechanical
model. This model is then converted in the electrical domain by applying a direct electromechanical analogy.
The analogous electrical network is implemented and coupled to a clamped plate in order to damp structural
vibrations.

2.1 Finite difference model of a plate

According to the Kirchhoff-Love theory, the governing differential equation for a thin plate of Young’s modulus
Y , density ρ, Poisson’s ratio ν and thickness h is given by

−D
(
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w represents the transverse displacement, x and y are the two space variables, t is the time variable and D
is the bending stiffness. The angles along the principal directions satisfy the Kirchhoff-Love assumption which

states that the normals to the undeformed midplane remains straight after deformation: θx =
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Consequently, the system of equations
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is equivalent to Eq. (1) when the shear forces are defined by Qx = −∂M
∂x

and Qy = −∂M
∂y

. The constant a

that appears in Eq. (2) corresponds to the side of a square plate unit cell. This continuous plate element is
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Figure 1: Experimental validation of the finite difference model: (a) Clamped plate. (b) Experimental operating
deflection shapes with respect to the velocity FRF - (—) experimental FRF, (−−) simulated FRF computed
with 15×12 unit cells.

discretized by applying the following finite difference scheme:
∂[.]

∂x
≈ [.]R − [.]L

a
and

∂[.]

∂y
≈ [.]T − [.]B

a
, where L,

R, B and T refer respectively to the left, right, bottom and top sides of the square unit cell. This central finite
difference approximation is applied to Eq. (2), which gives

−QL +QR −QB +QT = mẅI

−MI = D (θL − θR + θB − θT )
, (3)

where I refers to the position at the center of the unit cell and m = ρha2 is the mass of the unit cell. Note that
that wI and MI are related to the side variables thanks to forward or backward finite differences. For example, it

can be written that wI = wL +
a

2
θL and MI = ML−

a

2
QL. In the end, the dynamic stiffness matrix of a discrete

unit cell can be defined from the relation between the displacement vector [wB ; θB ;wL; θL;wR; θR;wT ; θT ] and
the force vector [QB ;MB ;QL;ML;QR;MR;QT ;MT ] . A classical assembly process leads to the global dynamic
stiffness matrix of a plate made of several square unit cells. It becomes then possible to compute the dynamic
behavior of a plate as long as the length of the chosen unit cells is small compared to the considered wavelength.

The finite difference model is validated experimentally by considering the clamped aluminum plate in Fig. 1(a),
which is 400 mm long, 320 mm wide and 1.9 mm thick. A shaker applies a white noise excitation on one side of
the plate and the input is measured with a force sensor. A scanning laser vibrometer gives access to the velocity
field on the other side of the plate. The velocity frequency response functions (FRFs) are then measured over a
frequency range spanning from 50 Hz to 500 Hz. Readers can refer to Lossouarn et al.25 for more details about
the experimental setup. As seen in Fig. 1(b), four resonances are observed over the considered frequency range.
Actually, the 4th resonance is a combination of the 4th and 5th modes that exhibit close natural frequencies.
The finite difference model is implemented with 15×12 unit cells in order to ensure more than 10 unit cells
per wavelength for the first five plate modes. It is observed in Fig. 1(b) that the numerical results are in good
agreement with the experimental ones. The main difference remains in the fact that the 4th and 5th modes can
be distinguished on the simulated FRF. It is still remarked that refining the mesh does not clearly improve the
correlation because it can not overcome the bias introduced by the non-ideal clamped boundary conditions in
the experiments.

2.2 Analogous electrical network

Once the proposed finite difference model is validated, it can be converted into its analogous network made
of discrete electrical components. Contrary to previous studies on plate electrical analogues,13,18 we focus on
the direct electromechanical analogy, which is compatible with the electrical representation of a piezoelectric
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ẇL

ẇR

ẇI

Rs

Figure 2: Electrical unit cell as a direct analogue of the finite difference model of a plate unit cell; Rs represents
additional damping, Rs = 0 when no damping is considered.

transducer.11 This direct analogy is based on the velocity-current and force-voltage equivalences. It then
becomes possible to represent the system of equations (3) with the electrical scheme in Fig. 2. The electrical
transformers of ratio a/2 allow the implementation of the forward and backward finite differences that satisfy the
definition of θ and Q as spatial derivatives of w and −M , respectively. According to the direct electromechanical
analogy, the inductance represents the mass of the unit cell and the capacitance is equal to the inverse of the
bending stiffness. The proposed two-dimensional unit cell in Fig. 2 can finally be seen as an extension of the
direct analogue of an Euler-Bernouilli beam.13,15–17

The electrical analogue of a plate is built by connecting together 5×4 identical unit cells. This coarse mesh
was chosen for practical reasons related to the number of electrical components. It can obviously not implement
a minimum of 10 unit cells per wavelength up to the 5th mode, which was suggested in Sec. 2.1. Consequently,
there is no reason to expect an accurate correlation between the mechanical and electrical resonance frequencies
but we can still expect distributions of the electrical current that properly reproduce plate-like mode shapes.
As we focus on the analogue of a clamped plate, the zero-displacement and zero-angle boundary conditions are
implemented by keeping the electrical ports open at the boundaries. Electrical simplifications occurs and the
network is finally assembled with 16 capacitors C = 470 nF, 17 transformers of ratio 1:4, 6 transformers of ratio
1:1 and 6 inductors L = 0.9 H. The internal resistance of the transformers is evaluated and integrated in the
electrical scheme of Fig. 2. Another element to consider is the resistance Rs that can be added in series with the
inductors L for a tuning purpose. It is then possible to properly simulate the periodic electrical network presented
in Fig. 3(a). As an example, it is shown in Fig. 3(b) that the addition of serial resistors Rs = 180 Ω gives an
electrical FRF, where the 6 electrical resonances induced by the 6 inductors are hardly observable. On the other
hand, the resonances are clearly identified when Rs = 0 Ω. They can still be qualified as smooth when compared
to the sharp resonances of a lightly damped mechanical system as the plate presented in Fig. 1. The relatively low
quality factor of the electrical resonances is mainly due to the internal resistance of the transformers. In Fig. 3(b),
it is observed that the simulation fits with the FRF obtained experimentally. Moreover, the spatial distributions
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Figure 3: Experimental validation of the analogous network: (a) Electrical network implemented with 5×4
unit cells. (b) Experimental current distributions with respect to the voltage FRF with L = 0.9 H and C =
470 nF - (—) experimental FRF with Rs = 0 Ω, (−−) simulated FRF with Rs = 0 Ω, (· · · ) simulated FRF with
Rs = 180 Ω.

of the currents around the resonances approximates the mode shapes of a clamped plate. This validates the
analogue network topology and confirms that the proposed finite difference scheme is able to reproduce the
dynamic behavior of a plate.

2.3 Multimodal coupling through piezoelectric patches

An electrical network approximating the modal properties of a plate is implemented and it can synthesize an
efficient broadband controller. Indeed, it was shown that the piezoelectric coupling of a mechanical structure to
its electrical analogue leads to a passive control that acts as a multimodal tuned mass damping.14–17 The exact
analogue of a continuous structure can obviously not be obtained with a set of discrete electrical components.
Nevertheless, a discrete network can still approximate the mechanical modes and interact with them in order
to damp the structural response.14,15,17 This is illustrated in a two-dimensional case by coupling the clamped
aluminum plate to the electrical network made of 5×4 unit cells. As shown in Fig. 4(a), an array of 20 square
PZT-5H patches of side 72.4 mm and 0.27 mm thickness cover most of the plate surface. Those piezoelectric
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Figure 4: Coupling of the plate to its analogous network: (a) Clamped plate coupled to the electrical network
through an array of 5×4 piezoelectric patches. (b) Effect of the multimodal control on the velocity FRF of the
plate - (· · · ) experimental FRF with short-circuited patches, (—) experimental FRF with the analogous network
tuned to L = 0.7 H and Rs = 180 Ω, (−−) simulated FRF with the analogous network tuned to L = 0.7 H and
Rs = 180 Ω.



patches are connected to the electrical network by assuming the role of the capacitors. The effect of the coupling
is observed in Fig. 4(b) with L = 0.7 H and Rs = 180 Ω resistors added in series with the six inductors. Those
values were obtained from a H∞ optimization, which minimizes the maximum of the velocity FRF over the 50
Hz to 500 Hz frequency range. The vibration reduction is above 20 dB for the first 5 modes of the plate. This
shows that the strategy offers an efficient control, even with a coarse discretization of the electrical network.

3. ROBUSTNESS OF THE CONTROL STRATEGY

The robustness of the damping solution is evaluated by introducing a uniform variation of the electrical compo-
nents. Then, local defects are added experimentally in order to observe the effect on control performance. For
the same purpose, an alteration of the electrical or mechanical boundary conditions is finally considered.

3.1 Uniform detuning of the electrical network

A first observation related to the robustness of the strategy can be introduced by considering the difference
between the natural frequencies of the plate and those of the electrical controller. Recall that the analogue
network is discrete, so it can not perfectly match several mechanical resonances simultaneously. The natural
frequencies are compared in Table 1 when L is set to 0.7 H. It is seen that the H∞ optimization over the 50 Hz to
500 Hz frequency range gives a positioning of the electrical natural frequencies that differs up to 18 % from the
mechanical ones. Thus, an imprecise tuning of an electrical resonance can still lead to a 20 dB reduction of its
mechanical counterpart, as observed in Fig. 4(b). This can be explained by the fact that the optimal electrical
network is highly dissipative. Indeed, it is seen in Fig. 3(b) that a resistance Rs = 180 Ω induces a relatively flat
electrical FRF. This makes the control more robust, as it becomes less sensitive to electrical tuning variations.

The performance loss due to a detuning of the electrical parameters is evaluated by introducing a variation
of the inductance L around its optimal value. A variation of the piezoelectric capacitance could also be analyzed
but it would lead to similar conclusions. Furthermore, a variation of the resistance Rs is not considered because
it is observed that its influence is relatively low, which extends results obtained for a single resonant shunt.5,19

A ±30% uniform variation of L is considered, so that the electrical unit cells have a same inductance all over the
network, but this inductance varies between 0.49 H and 0.91 H. This range is introduced in the electromechanical
model that was validated in Fig. 4(b). By extracting the highest and lowest amplitude computed at each frequency
point, we get the simulated frequency response envelope presented in Fig. 5. The optimal FRF should always
stay inside the frequency response envelope because its inductance corresponds to the center of the range of

Table 1: Comparison of mechanical and electrical natural frequencies with L = 0.7 H.

Mode 1-1 Mode 2-1 Mode 1-2 Mode 3-1 Mode 2-2

Clamped plate 138 Hz 242 Hz 315 Hz 409 Hz 411 Hz

Electrical network 163 Hz 270 Hz 309 Hz 374 Hz 424 Hz
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Figure 5: Sensitivity of the velocity FRF with respect to an inductance variation - (· · · ) experimental FRF with
short-circuited patches, (—) experimental FRF with the analogous network tuned to L = 0.7 H and Rs = 180 Ω,
( a ) simulated frequency response envelope with a ±30% variation on L.
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Figure 6: Influence of local defects - (—) optimal FRF with L = 0.7 H and Rs = 180 Ω, (· · · ) with a doubled
mass in one mechanical unit cell, (−−) with a doubled inductance in one electrical unit cell.

variation. The fact that the experimental FRF can sometimes leave the envelope in Fig. 5 is simply due to
slight deviations of the model, according to what is observed in Fig. 4(b). In any case, a ±30% variation on L
induces a loss of 7 dB on the min-max criterion related to the H∞ optimization. This loss of performance is
non-negligible but it still maintains a vibration reduction above 85% with respect to the maximum amplitude of
the uncontrolled velocity FRF.

3.2 Local defect in a mechanical or electrical unit cell

Local modifications of the electromechanical system can also affect the control performance. For example, a local
damage can appear on the mechanical structure, which would modify the mass or the stiffness of one specific
unit cell. On the other hand, the degradation of an electrical component might alter the modal properties of the
entire network. A first experiment considers a lumped mass addition of 50 gram on the clamped plate, so that the
mass of one of the twenty 8×8 cm2 mechanical unit cell is doubled. This added mass moves the plate resonances
to lower frequencies (−5% for the 1st resonance, −8% for the 2nd resonance), which detunes the control strategy.
Considering mode 1-1 and mode 2-1 in Table 1, the gap between the mechanical and electrical frequencies was
already significant before the addition of a local defect. After modification, the gap is even larger, which accounts
for the 3 dB loss that appears below 250 Hz in Fig. 6. On the other hand, we note that the local mass addition
is beneficial above 250 Hz because it better tunes the resonance distribution for the highest modes.

In the electrical domain, the equivalent of a mass addition is an inductance increase on the same unit cell.
Thus, one inductance of the network is doubled to implement the counterpart of the previous experiment. This
local defect moves the electrical resonances to lower frequencies. Consequently, the last FRF shown in Fig. 6
evolves in opposition to what was observed after the modification of the mechanical structure. Indeed, the tuning
of the electrical network is here improved for the modes 1-1 and 2-1 but the performance is decreased above 250
Hz. The performance loss is mainly due to mode 3-1, which exhibits a 5 dB increase of the velocity around 420
Hz.

3.3 Modifications of the boundary conditions

A second set of experiments focuses on modifications of the mechanical or electrical boundary conditions. An
alteration of plate boundary conditions is firstly considered by removing the bolts all along the upper bar of the
clamping frame. So, the rotations and transverse displacements are no longer blocked on the upper side of the
plate. This modifies the mechanical modes, especially their distribution over the frequency range. The stiffness
reduction shifts the resonances to lower frequencies, as with the mass addition. Consequently, it is observed in
Fig. 7 similar results to what was presented Fig. 6 when looking at the performance loss around the first two
modes. Note a 3 dB loss compared to the optimal FRF. The analysis above 250 Hz is less obvious because of the
strong modification of the mechanical modal distribution. In any case, we remark that a significant alteration
of the mechanical boundary conditions does not defeat the control strategy.

The electrical equivalent of the stiffness reduction along the upper boundary is approximated by short-
circuiting the upper line of piezoelectric patches. Similarly to what appears after an increase of the inductance,
the electrical resonances move to lower frequencies. This better tunes the control of the first two modes as seen in
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Figure 7: Influence of boundary conditions - (—) optimal FRF with L = 0.7 H and Rs = 180 Ω, (· · · ) with no
bolts on the upper bar of the frame, (−−) with the upper line of piezoelectric patches which is short-circuited.

Fig. 7. Nevertheless, the evolution of the FRF is limited compared to the previous case involving the inductance
modification. This observation is clear above 250 Hz, where the short-circuits on the upper line of piezoelectric
patches are almost ineffective. A reason is that the clamped-plate strain distribution induces a significant charge
cancellation on those outer patches, especially when the wavelength approach their typical length. In the end,
the proposed modification of a network boundary do not significantly alter the control performance.

4. CONCLUSIONS

A distributed control strategy is implemented by means of an interconnected array of piezoelectric patches. The
interconnection is made through an electrical network analogous to the structure of interest. For a thin plate,
we show that a finite difference method applied to the Kirchhoff-Love theory gives a discrete model that can be
converted into its direct electrical analogue. The passive electrical network is coupled to an example clamped plate
and tuned to minimize the velocity amplitude over a 50 Hz to 500 Hz frequency range. The resulting broadband
vibration reduction validates the control strategy and the proposed electrical network. Then, structural and
electrical modifications are introduced in order to quantify the performance loss due to an inaccurate tuning
of the electromechanical system. The results obtained with the present setup give some guidelines concerning
the robustness of a control solution based on analogous coupling. First, it is observed that a discrete network
involving less than 5 unit cells per wavelength can still lead to a broadband vibration reduction above 20 dB.
Second, a ±30% uniform variation of the network inductance induces a loss of 7 dB, which maintains most of
the control performance. Local defects are introduced by doubling the mass or the inductance of one unit cell.
Boundaries are also modified by removing the bolts or short-circuiting the patches on the upper side of the plate.
In any case, the FRF raises by less than 5 dB on the considered frequency range. It is thus shown that the
proposed control involving the discrete analogue of a plate is relatively robust when considering an alteration
of the mechanical structure or a detuning of the electrical network. This conclusion offers future prospects
concerning the implementation of such control solutions into industrial applications.
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[25] Lossouarn, B., Cunefare, K. A., Aucejo, M., and Deü, J.-F., “Multimodal damping of a plate with a passive
piezoelectric network,” Proc. IMAC-XXXIV (2016).


	Introduction
	Multimodal control by analogous coupling
	Finite difference model of a plate
	Analogous electrical network
	Multimodal coupling through piezoelectric patches

	Robustness of the control strategy
	Uniform detuning of the electrical network
	Local defect in a mechanical or electrical unit cell
	Modifications of the boundary conditions

	Conclusions

