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Abstract

Vibrations of a mechanical structure can be reduced through a piezoelectric coupling to a passive electrical network

exhibiting similar modal properties. For the control of a plate, the design of a two-dimensional analogous electrical

network is considered. Depending on the mechanical boundary conditions, a finite difference formulation of the

Kirchhoff-Love equation of motion shows that we need to ensure specific electrical connections along the edges

of the analogous network. A numerical model involving an assembly of element matrices validates the electrical

topology. Then, the passive electrical circuit is implemented with capacitors, inductors and transformers, whose

practical design is closely described. Focusing on the analogue of a clamped plate, experiments prove the ability of

the proposed electrical network to approximate the behavior of the mechanical structure.
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Introduction

A solution for the multimodal control of a plate with
a passive piezoelectric network was first proposed by
Vidoli and Dell’Isola (2001). Contrary to multi-branch
shunts connected to individual piezoelectric transducers
(Hollkamp 1994; Wu 1998; Airoldi and Ruzzene 2011), the
proposed network consists of inductors that interconnect an
array of piezoelectric elements. This allows the synthesis
of 2D electrical modes that match the mechanical modes,
both in the spatial and frequency domains, in order to
counterbalance the mechanical vibrations. It has been
noticed that an optimal eletromechanical coupling can
be achieved by considering an electrical network that is
the analogue of the structure to control (Dell’Isola et al.
2003; Alessandroni et al. 2002). From this conclusion,
research has been conducted on multimodal damping of
beams (Porfiri et al. 2004; Andreaus et al. 2004) or plates
(Alessandroni et al. 2004, 2005) with passive analogous

networks. Although very promising, damping solutions
based on analogous piezoelectric networks have not been
implemented into any real application. This is most likely
due to the fact that no experimental setup had been
developed to validate the theoretical concepts. A line of
inductors was coupled to an array of piezoelectric patches
on a beam (Valis et al. 1994; Dell’Isola et al. 2004) but
this cannot generate a real multimodal coupling because
it does not involve the electrical analogue of a beam
(Porfiri et al. 2004). Then, Panella et al. (2005) decided

1Structural Mechanics and Coupled Systems Laboratory, Conserva-
toire national des arts et métiers, France
2School of Mechanical Enginering, Georgia Institute of Technology,
USA

Corresponding author:
Boris Lossouarn, Structural Mechanics and Coupled Systems
Laboratory, Conservatoire national des arts et métiers, 292 Rue Saint-
Martin, 75003 Paris, France.

Email: boris.lossouarn@cnam.fr

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Journal Title XX(X)

to synthetize such an electrical network with operational
amplifiers. Electrical circuits solving stability issues were
proposed (Paschero et al. 2006) but it seems that they
have not been integrated into a complete piezoelectric
array. The use of synthetic components was decided
because the passive transformers involved in the electrical
analogue are difficult to manufacture for broadband and
low frequency applications (Maurini 2005). It was yet
proven in the 40’s that such analogous electrical network
can be implemented with passive components. At that
time, no powerful digital computers were available and
the analogous electrical networks were used to simulate
various mechanical problems (MacNeal 1949). Electrical
analogues were first proposed for truss bridges (Bush
1934) or assembly of beam structures (Kron 1944; Carter
and Kron 1944). Then, Kron extended the analysis to
numerous differential equations as the compressible fluid
flow equations, the electromagnetic field equations of
Maxwell or the wave equations of Schrödinger (Kron 1945,
1948). Concerning the theory of elasticity, 3D models
were introduced (Kron 1948; Barnoski and Freberg 1966)
but real implementations of analogous networks were
usually restrained to simpler cases involving one- or two-
dimensional structural members. Simulations involving
”analog computers” were performed for beams (MacNeal
1949; Benscoter and MacNeal 1952b), plates (MacNeal
1949; Benscoter and MacNeal 1952a), stiffened shells
(MacNeal 1954) and even a whole airplane (MacNeal
1951). We note that this branch of the scientific literature
has not been fully exploited since the advent of the
modern digital computers in the 60’s. Even if it was
not their original purpose, the previous references finally
represent an important resource when considering the
implementation of multimodal damping with a passive
piezoelectric network.

In this paper, we focus on novel analogous networks
that reproduce the dynamics of Kirchhoff-Love plates.
As the resulting electrical circuits are intended for
reducing structural vibrations through a periodic array of
piezoelectric patches, readers can refer to Lossouarn et al.
(2016) for results on plate damping. In comparison, no
piezoelectric coupling is investigated in the present paper
whose main objective is to give a complete description

of the simulation and practical implementation of the
proposed analogous networks. The analysis is restricted to
rectangular plates with either clamped, simply-supported
of free boundary conditions. From the plate theory, those
classical boundary conditions are converted in the electrical
domain by applying a direct electromechanical analogy on
a finite difference formulation of the mechanical problem.
The following section thus shows a 2D electrical unit
cell involving capacitors, inductors and transformers with
specific electrical boundary conditions. Then, a complete
electrical network made of several unit cells is modeled
by assembling element matrices into a global system
representing the analogue of a dynamic stiffness matrix.
Numerical computations show that the proposed electrical
network is able to approximate the dynamics of a plate.
In the last section, the passive electrical network is
implemented for a case focusing on the analogue of
a clamped plate. The design of electrical transformers
is highlighted because parasitic elements can seriously
influence the modal properties of the whole network if they
are not chosen correctly. Finally, the analogous network is
tested through an experimental modal analysis following
the same method as if it was a mechanical structure.
Electrical plate-like mode shapes are observed and the
correlation with numerical results is evaluated.

Electrical analogue of a square plate unit
cell

A finite difference model of a Kirchhoff-Love plate
gives an analogous topology based on passive electrical
components. For the sake of completeness, we recall
some preliminary results given in Lossouarn et al. (2016).
Different plate boundary conditions are then considered,
leading to analogous connections along the edges of the
electrical network.

Finite difference model of a plate

According to the Kirchhoff-Love theory, the governing
differential equation for a thin plate of Young’s modulus
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Figure 1. Finite difference grid for a square plate unit cell.

Y , density ρ, Poisson’s ratio ν and thickness h is given by

−D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
= ρh

∂2w

∂t2
, (1)

where D = Y h3

12(1−ν2) is the bending stiffness, w =

W (x, y)g(t) is the transverse displacement, x and y are the
two space variables and t is the time variable. Focusing on
harmonic motion, g(t) is a trigonometric function satisfying
∂2g/∂t2 = −ω2g. Consequently, the system of equations

∂Qx
∂x +

∂Qy
∂y = −ρhaω2W

Qx = −∂M
∂x

Qy = −∂M
∂y

M = aD
(
∂θx
∂x +

∂θy
∂y

)
θx = ∂W

∂x

θy = ∂W
∂y

(2)

is equivalent to equation (1). The constant a corresponds to
the side of a square plate unit cell, so that equation (2) is
a two-dimensional extension of the state variable system
for an Euler-Bernouilli beam (Lossouarn et al. 2015).
The variables Qx and Qy represent shear forces and
the angles along the principal directions, θx and θy ,
satisfy the Kirchhoff-Love assumption which states that
the normals to the undeformed midplane remain straight
after deformation. Yet, the moment variable M appearing
in equation (2) does not refer to any classical variable of the
plate theory (Timoshenko 1940). It is here introduced for
the definition of an adequate finite difference model.

The continuous plate element is discretized by applying
the finite difference scheme(

∂[·]
∂x

)
L

= [·]I−[·]L
a/2(

∂[·]
∂x

)
I

= [·]R−[·]L
a(

∂[·]
∂x

)
R

= [·]R−[·]I
a/2

and

(
∂[·]
∂y

)
B

= [·]I−[·]B
a/2(

∂[·]
∂y

)
I

= [·]T−[·]B
a(

∂[·]
∂y

)
T

= [·]T−[·]I
a/2

, (3)

where ’I’ is the position at the center of the square unit
cell and ’L’, ’R’, ’B’ and ’T’ refer to the left, right, bottom
and top sides, according to the grid in Figure 1. This finite
difference approximation is applied to equation (2), which
gives

−QL − (QB −QT) +QR = jωmẆI

−ML +MI = −a
2QL

−MI +MR = −a
2QR

−MB +MI = −a
2QB

−MI +MT = −a
2QT

−MI = D
jω

(
θ̇L − θ̇R + θ̇B − θ̇T

)
a
2 θ̇L = ẆI − ẆL
a
2 θ̇R = ẆR − ẆI
a
2 θ̇B = ẆI − ẆB
a
2 θ̇T = ẆT − ẆI

, (4)

where m = ρha2 is the mass of the square plate unit cell.
This formulation highlights Ẇ = jωW and θ̇ = jωθ, the
derivatives of the transverse and angular displacements that
are going to be used as electrical current variables.

Analogous electrical unit cell

The finite difference model in equation (4) can be converted
into its analogous network made of discrete electrical
components. Contrary to previous studies on plate electrical
analogues (Alessandroni et al. 2005; MacNeal 1949),
we focus on the direct electromechanical analogy, which
is compatible with the representation of a piezoelectric
transducer with passive electrical components (Bloch 1945;
Cho et al. 2000; Paganelli et al. 2010). A system involving
electromagnetic transducers (Lallart et al. 2008) would
rather require dual circuits based on the indirect or force-
current electromechanical analogy (Firestone 1933; Bloch
1945; Beranek 1954). Here, as the plate electrical analogue
is intended for piezoelectric coupling, we consider the
direct analogy, which is based on the equivalence between
a voltage and a force F or a moment M . Then, we also
have an equivalence between an electrical current and a
transverse velocity Ẇ or an angular velocity θ̇.

It becomes possible to represent the system of
equations (4) with the electrical circuit given in Figure 2.
The electrical transformers of ratio a/2, which are
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Figure 2. Electrical unit cell as a direct analogue of the plate finite difference model (Lossouarn et al. 2016).

equivalent to mechanical levers of length a/2, allow
the implementation of the forward and backward finite
differences that satisfy the definition of θ and Q as spatial
derivatives of w and −M , respectively. Furthermore, the
inductance represents the mass m of the unit cell and
the capacitance is equal to the inverse of the bending
stiffness D, in agreement with the direct electromechanical
analogy (Bloch 1945; Beranek 1954). The proposed two-
dimensional unit cell in Figure 2 can finally be seen as a
two-dimensional extension of the beam electrical analogue
(Porfiri et al. 2004; Lossouarn et al. 2015). The electrical
circuit in Figure 2 has to be replicated n times along the
x direction and m times along the y direction in order to
create the electrical analogue of a rectangular plate made
of n×m square unit cells. Note that the capacitance C
would be replaced by the piezoelectric capacitance when
considering electromechanical coupling through an array
of piezoelectric patches for a vibration damping purpose
(Lossouarn et al. 2016).

A single electrical unit cell is implemented with one
inductor, one capacitor and five transformers. It is remarked
that the connection of adjacent unit cells reduces the
number of components. Indeed, a series of two transformers

of ratio a/2 can be replaced by a single transformer
with a ratio equal to a. Then, the average number of
transformers per unit cell tends to three when increasing
the number of unit cells. Note that the proposed topology
can be seen as a simplification of the ”Dynamic analog
for a constant thickness plate” introduced by MacNeal
in 1949 (MacNeal 1949). This analogous network was
obtained from a rectangular plate element and the result is
a unit cell made of one capacitor, four inductors and two
transformers. It can be shown that the case of the square
unit cell simplifies MacNeal’s electrical network into the
present one, which involves fewer electrical components,
i.e. one inductor, one capacitor and three transformers.
We also obtain a simpler network when compared to the
topology proposed by Alessandroni et al. (Alessandroni
et al. 2004, 2005) with one capacitor, three inductors
and six transformers per unit cell. As a consequence, the
new topology simplifies the practical implementation of
the analogous network for experimental validation and
application to piezoelectric damping.

Prepared using sagej.cls



Boris Lossouarn et al. 5

Electrical boundary conditions

When implementing an analogous electrical network with
a set of several unit cells as the one proposed in Figure 2,
the electrical states along the edges of the complete network
also have to satisfy an analogy with mechanical boundary
conditions. For instance, for clamped boundary conditions
along an edge at x = 0,

W (0, y) = 0 and θ(0, y) = 0. (5)

If this condition applies to the left of the unit cell in
Figure 2, we obtain

ẆL = 0 and θ̇L = 0, (6)

which means that both electrical port have to remain open-
circuited. As explained below, other boundary conditions
involving simply-supported edges or free edges are less
obvious because they require application of the Kirchhoff-
Love plate theory. The classical state variable formulation
of the differential equation in equation (1) can be expressed
as follows:

∂Qx
∂x +

∂Qy
∂y = −ρhaω2W

Qx = ∂Mx

∂x − ∂Mxy

∂y

Qy =
∂My

∂y − ∂Mxy

∂x

Mx = −aD
(
∂2W
∂x2 + ν ∂

2W
∂y2

)
My = −aD

(
∂2W
∂y2 + ν ∂

2W
∂x2

)
Mxy = aD(1 − ν) ∂

2W
∂x∂y

. (7)

This corresponds to the variables used by Timoshenko
(1940) in which we have introduced the length coefficient
a in order to get variables Q and M homogeneous to
forces and moments. Qx and Qy are shear forces and
their definition is actually the same as in equation (2). The
variables Mx, My and Mxy are respectively the bending
moments along x, the bending moment along y and the
twisting moment. Simply-supported boundary condition
along an edge at x = 0 corresponds to zero bending
moment along x and zero displacement as

W (0, y) = 0 and Mx(0, y) = 0. (8)

So, ∂2W
∂y2

∣∣∣
0,y

= 0 and because Mx =

−aD
(
∂2W
∂x2 + ν ∂

2W
∂y2

)
, we also get ∂2W

∂x2

∣∣∣
0,y

= 0. The

variable M involved in equation (2) and in Figure 2 is not
equal to the bending moment Mx nor My but it is a linear
combination of both of them through

M = aD

(
∂2W

∂y2
+
∂2W

∂x2

)
= − 1

1 + ν
(Mx +My) .

(9)

With simply-supported boundary conditions, as the second
derivatives of W along both x and y directions are equal to
zero, M(0, y) = 0. Consequently, if this applies to the left
of the unit cell in Figure 2,

ẆL = 0 and ML = 0, (10)

which corresponds to an open-circuited ’w’ electrical line
and a short-circuited ’θ’ line.

Free boundary condition along the same edge at x = 0

corresponds to a zero bending moment Mx and a zero
effective shear force Vx:

Mx(0, y) = 0 and Vx(0, y) = 0, (11)

where the effective shear force has been defined by
Timoshenko (1940) as

Vx = Qx −
∂Mxy

∂y

= −aD
(
∂W 3

∂x3
+ (2 − ν)

∂3W

∂x∂y2

)
.

(12)

The boundary condition Vx(0, y) = 0 thus gives

Qx(0, y) = aD(1 − ν)
∂3W

∂x∂y2

∣∣∣
0,y

= aD(1 − ν)
∂2θx
∂y2

∣∣∣
0,y
.

(13)

Furthermore, the boundary conditionMx(0, y) = 0 leads to
∂2W
∂x2

∣∣∣
0,y

= −ν ∂2W
∂y2

∣∣∣
0,y

, so

M(0, y) = aD(1 − ν)
∂2W

∂y2

∣∣∣
0,y
. (14)
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Finally, with the finite difference scheme, equations (13)
and (14) are equivalent to

QL = D(1−ν)
a (θ+L − 2θL + θ−L )

ML = D(1−ν)
a (W+

L − 2WL +W−
L )

, (15)

where the superscripts ’+’ and ’-’ refer to the neighboring
unit cells along the x axis. We note that QL, which is
the analogue of a voltage in the ’w’ electrical line, is a
linear combination of charge displacements occurring in
three distinct ’θ’ electrical lines. A similar situation occurs
with ML, voltage in the ’θ’ electrical line, which is a
linear combination of charge displacements occurring in
three distinct ’w’ lines. Consequently, even if the boundary
conditions in equation (15) can be implemented with an
active control system, it seems that it cannot be achieved
with simple electrical connections when considering the
circuit in Figure 2. This highlights a limit of the proposed
network topology, which allows an easy implementation
of clamped or simply-supported boundary conditions, but
no passive solution for free edges. Investigations related
to other boundary conditions or plate geometries could be
realized using a similar methodology but it would certainly
lead to more complex analogous networks which are not in
the scope of the present paper.

Numerical validation of the plate electrical
analogue

A discretized plate or its analogous electrical network are
modeled by assembling element matrices. Eigenmodes and
frequency response functions are computed for various
number of unit cells. This leads to a numerical validation
of the proposed electrical analogue.

Element ”mass” and ”stiffness” matrices

The electrical circuit in Figure 2 defines a single unit
cell of the proposed analogous network, which represents
the finite difference model of a square plate unit cell. In
order to model a complete electrical network or a complete
plate made of several unit cell, it is decided to focus on
an assembly of element matrices, as classically performed
through finite element procedures. By considering a force

and a displacement vector,

F e
m =

[
−QB −MB −QL −ML QR MR QT MT

]T
qe
m =

[
WB θB WL θL WR θR WT θT

]T ,

(16)
one might want to define an element dynamic stiffness
matrix De

m as
F e
m = De

mqe
m. (17)

The signs in the force vector are chosen in order to involve
external forces applied to the unit cell. As, QB, MB,
QL and ML represent mechanical actions applied by the
considered unit cell to its bottom or left neighbors, their
opposite values are introduced into the force vector. The
calculation of the dynamic stiffness matrix De

m relies on
the set of equations (4), which has to be reorganized to
make appear the force components as linear combinations
of the displacements. Yet, we remark that the displacements
are not independent variables. Indeed, equation (4) shows
that if all four angular velocities have prescribed values,
the choice of a single transverse velocity enforces the
value of the other ones. This means that the dynamic
stiffness matrix cannot be defined. Additional degrees of
freedom are required to relax the kinematic constraints
linking angular and transverse velocities. To this end,
additional components are inserted in the electrical circuit
representing the plate unit cell. The modified circuit
is represented in Figure 3, where capacitors C0/2 are
added at the ends of the ’θ’ electrical lines in order to
allow the computation of the dynamic stiffness matrix
De

m. Additional inductors Lθ/2 are also introduced in
the ’θ’ electrical lines. Those inductors are actually the
analogues of moments of inertia. Moreover, they can be
used to model parasitic elements in non-ideal transformers
when considering the analysis of the analogous electrical
network.

Electrical variables have been used in Figure 3 to
show that the analysis of an electrical network can
reproduce methods usually implemented for the analysis of
mechanical structures. Indeed, one can define an electrical
”dynamic stiffness matrix” De

e, which satisfies

F e
e = De

eq
e
e, (18)
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Figure 3. Modified unit cell for the calculation of the element dynamic stiffness matrix.

where

F e
e =

[
VwB VθB VwL VθL −VwR −VθR −VwT −VθT

]T
qe
e =

[
qwB qθB qwL qθL qwR qθR qwT qθT

]T
(19)

are the voltage vector and the electrical charge displacement
vector, the analogues of the force and displacement vectors,
F e
m and qe

m. Note that the signs in F e
e are the opposites

of the signs in F e
m because the voltages are analogous

to the opposite of the force contributions, as shown in
Figure 2. The ”dynamic stiffness matrix” De

e is obtained by
writing down all the discrete electrical equations referring
to Figure 3, eliminating the internal variables and solving
for the side voltage variables. Element ”stiffness” and
”mass” matrices are then defined through

De
e = Ke

e − ω2M e
e, (20)

which means that Ke
e corresponds to a ”static stiffness

matrix”:
Ke

e = De
e when ω = 0. (21)

So, by setting ω = 0 in the symbolic expression for De
e

we obtain the matrix Ke
e which is given in Appendix.

The capacitance C0 has only been introduced to allow the
calculation of Ke

e. It is a numerical parameter which does
not influence the results as long as it is small compared
to C. On the other hand, it needs to be high enough to
avoid numerical issues. A value of C0 around C × 10−6

was found to be adequate for the following computations.

Then, it still remains to define the element ”mass matrix”
M e

e. Equation (20) gives

M e
e =

Ke
e −De

e

ω2
. (22)
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Contrary to Ke
e, the matrix M e

e can be defined in the case
of C0 = 0 and it is found that

M e
e = ML

e + MLθ
e , (23)

where ML
e and MLθ

e are given in Appendix. The electrical
”dynamic stiffness matrix” in equation (20) is computed
with the values of the electrical parameters: L, Lθ, C
and â. The exact same mass and stiffness matrices can
be used when considering a mechanical plate element
referring to equation (17). This simply requires to replace
the inductance L by the mass m of the unit cell, the
capacitance C by the inverse of the bending stiffness D and
the transformer ratio â by the length a of the unit cell.

Modal analysis

The plate electrical analogue can be modeled by replicating
the unit cell in Figure 3 along the x and y directions.
Following an assembly process, as in the finite element
method, a global stiffness matrix K and a global mass
matrix M are built from the element matrices given in
Appendix. From these global matrices, it becomes possible
to perform a modal analysis by solving the generalized
eigenvalue problem

[
K − ω2M

]
q = 0. (24)

In the following, we compute the modes of the electrical
analogue of a mechanical plate without rotational inertia,
i.e. Lθ = 0. The other electrical constants have to satisfy

1

â2
1

LC
=

1

a2
D

m
(25)

in order to ensure identical modal properties for the
electrical network and the corresponding plate finite
difference model (Lossouarn et al. 2016).

A modal analysis is performed in order to validate the
proposed analogous electrical network. We consider the
analogue of a plate of side lx = 400 mm, width ly = 320

mm and thickness h = 1.9 mm. The Young’s modulus of
the plate is Y = 69 GPa, its Poisson’s ratio is ν = 0.33

and its density is ρ = 2700 kg/m3. In the present section,
simply-supported boundary conditions are taken into

5 10 15 20 25
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Figure 4. Modal analysis of the proposed electrical analogue
and convergence toward the continuous plate model.

account to study the convergence of the discrete electrical
network. Indeed, with those boundary conditions the natural
frequencies and the mode shapes of a thin homogeneous
plate are known analytically (Timoshenko 1940). The
theoretical natural frequencies of the first five modes of
the plate are represented by horizontal continuous lines
in Figure 4. Then, the markers correspond to the natural
frequencies computed for the analogous network with either
5×4, 10×8, 15×12, 20×16 or 25×20 unit cells. It is
observed that the natural frequencies of the discrete network
approach those of the continuous plate when increasing
the number of elements. Furthermore, the computed mode
shapes also give a suitable approximation of the theoretical
trigonometric modes of a simply supported plate, as seen
in Figure 5 with 25×20 unit cells. As could have been
expected, the highest modes require a larger number of
unit cell for a similar precision on the eigenvalues. The
following recommendation can be formulated from the
numerical results: at least 10 unit cells per wavelength are
required to obtain a suitable approximation of a continuous
plate. This corresponds to 15×12 unit cells for the present
example focusing on the first five modes of a simply-
supported plate. Figure 4 shows that 15×12 unit cells offer a
frequency error of less than 3%. Finally, this modal analysis
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Figure 5. Electrical mode shapes in terms of distribution of
the electrical current computed with 25×20 unit cells.

validates the topology of the proposed analogous electrical
network.

Frequency response functions

The model of the electrical analogue also allows the
computation of frequency response functions from

[
K − ω2M

]
q = F , (26)

where the ”force” vector F contains terms representing
harmonic excitation of the network. For a mechanical
model, if a transverse force Fsim is applied to the left of
the unit cell (i, j), i.e. the ith unit cell along the x axis and
the jth unit cell along the y axis, then

Fsim = Q
(i−1,j)
R −Q

(i,j)
L , (27)

is the term that would appear in the force vector F . By
analogy, the excitation of an electrical network corresponds
to a voltage

Vsim = −V (i−1,j)
wR

+ V (i,j)
wL

. (28)

Figure 3 indicates that this excitation is a voltage applied
between two transformers in the ’w’ electrical line. This
is shown in Figure 6 without representing the capacitors
C0/2 that does not appear in the physical circuit. For a

C

1

â/2
..

b b

bb

b

b

Lθ

1

â/2
..

b b

bb

b

C

b

V
(i,j)
wLV

(i−1,j)
wR

Vsim

Figure 6. Voltage excitation applied between the unit cells
(i− 1, j) and (i, j).

frequency analysis of an electrical network, a scalar Vsim

is thus inserted in the vector F to simulate the voltage
excitation appearing in Figure 6. This is how we proceed
to compute electrical frequency response functions in the
following comparison with experimental results.

Experiments with a passive analogous
network

The analogue of a thin plate is assembled with passive
electrical components whose design is closely described.
By analogy with modal vibration analysis of a mechanical
structure, the network is excited with a voltage and
electrical distributions of the current are measured. The
topology of the network is validated by observing
”electrical mode shapes” that are equivalent to what would
be observed with the analogous mechanical structure.

Implementation of the electrical network

In order to validate the electrical topology, the analogue
of a plate is built by connecting together 5×4 identical
unit cells. This coarse mesh was chosen for practical
reasons related to the number of electrical components.
Even for the second mode, the resulting network cannot
offer a minimum of 10 unit cells per wavelength as
suggested previously. There is thus no reason to expect
an accurate correlation between the electrical resonance
frequencies and those of a continuous plate but we can
still hope for distributions of the electrical current that
properly reproduce plate-like mode shapes. Furthermore,
experiments allow the validation of the proposed numerical
model. In the present section, we focus on the analogue
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Figure 7. Topology of the unit cell and electrical network made of 5×4 unit cells: the round frames refer to the transformers on
the sides of a unit cell and the rectangular frame refers to the 1:1 transformer and the corresponding inductor.

of a clamped plate so the zero-displacement and zero-
angle boundary conditions along the four edges of the
plate are implemented by keeping the electrical ports open
at the boundaries of the network. As a consequence, no
current flows through the inductors and transformers along
the four edges of the network, which means that those
components are not required and can be removed from
the network. For the same reason related to the choice of
the boundary conditions, the capacitors at the four corners
of the network are not necessary. A last simplification
concerns the pairs of â/2 ratio transformers, which can
be replaced by single transformers of ratio â. In the end,
the network is assembled with 16 capacitors C = 470 nF,
17 transformers of ratio 4:1, 6 transformers of ratio 1:1
and 6 inductors L = 0.9 H, whose values were selected
in view of the final application involving piezoelectric
coupling to a clamped plate (Lossouarn et al. 2016).
The positioning of the electrical components is shown in
Figure 7, where we note frames with dashed lines that
indicate the correspondence between the topology of the
unit cell and the actual electrical network.

Design of magnetic components

The passive electrical analogue of a plate involves
ideal transformers. While such components have been

RT
s

LT
m

â
··1

b b

b b

Figure 8. Equivalent circuit of the transformer of ratio â:1.

represented in the electrical unit cell in Figure 7, real
magnetic transformers are usually far from ideal because
of the parasitic effects related to their practical design.
In the present case, it has been remarked that no leakage
inductance needs to be modeled but the magnetizing
inductance LTm and the winding resistance RTs cannot be
neglected. Those additional elements are seen in Figure 8
for the â:1 transformer resulting from the connection in
series of two â/2:1 transformers. The same electrical model
is considered for the 1:1 transformer in Figure 9, where
the magnetizing inductance and winding resistance are
respectively LT

?

m and RT
?

s . Note that the winding where
we have placed the RT

?

s resistance is the one connected
to the inductor. Moreover, the damping in the inductor
can be modeled by a series resistance RLs and a parallel
resistance RLp .
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L0

b

b

b

b

1
1
..

RT ⋆

s RL
s

RL
p

LT ⋆

m

Figure 9. Equivalent circuits of the inductor and the 1:1
transformer.

The inductors are made by winding copper wire around
a RM10 magnetic circuit in T38 material that offers
a permeance ALL = 16 µH. We thus need

√
L/ALL =

237 turns to generate an inductance L = 0.9 H. The series
resistance isRLs = 2.6 Ω with a copper wire diameter equal
to 0.32 mm and the parallel resistance of the inductors
is then evaluated experimentally to RLp = 200 kΩ.
Concerning the design of the transformers, a sufficient
magnetizing inductance is required to approximate an
ideal transformer with a magnetic component. It has been
remarked that the magnetizing inductance of the secondary
winding (in the ’w’ electrical line) does not significantly
influence the electrical response if it is at least around 50
times larger than the inductance L. This means that

LTm ≥ 50â2L, (29)

where LTm = ATLN
2
1 is the magnetizing inductance of the

primary winding (in the ’θ’ electrical line), ATL is the
permeance of the magnetic core and N1 is the number of
turns of the primary winding. With a transformer ratio â =

4, equation (29) gives LTm ≥ 720 H. This high inductance
value can be satisfied with a 30×20×10 nanocrystalline
toroid in Vitroperm 500F offering a permeance ATL around
100 µH. After winding N1 = 3000 turns for the primary
and N2 = 750 turns for the secondary, a magnetizing
inductance LTm/â

2 = 57 H is measured at 100 Hz and
1 V on the secondary winding. This means that LTm =

912 H, which satisfies equation (29). Wires of diameters
0.15 mm and 0.22 mm are used for the primary and
secondary windings, leading to a total winding resistance
RTs = 353 Ω. At last, the 1:1 transformers also need to
offer a magnetizing inductance LT

?

m above 50 times the
inductance L. This condition is satisfied with two windings

of 750 turns on the same nanocrystalline toroid as for
the 4:1 transformers. A winding resistance RT

?

s = 21 Ω is
then obtained with a wire of 0.25 mm diameter. As will
be seen in the following, the winding resistance of the
transformers is not negligible, which restrains the amplitude
of the electrical resonances.

Experimental setup

As the proposed electrical network represents the analogue
of a plate, it has been decided to validate the electrical
behavior with classical instrumentation normally dedicated
to mechanical modal analysis. The setup is represented
in Figure 10 where a clamped plate (Lossouarn et al.
2016) and an electrical analogue appear together in order
to show the analogy in terms of data acquisition. If the
considered structure is the mechanical plate, we acquire
the input force and the velocity, which is scanned on
several points with a vibrometer. If the electrical network
is analyzed, the signals of interest are not force and velocity
but their direct analogues: the input voltage and the current
flowing through the inductors. The direct measurement of
the current would require the introduction of instruments in
the network, but this could modify its electrical properties.
A less intrusive solution consists in measuring the voltage
drop across the inductors, which is finally the analogue
of the acceleration. This differential voltage is measured
by using a low noise preamplifier offering a differential
function. The resulting signal and the voltage input are
sent to the workstation, where the electrical frequency
response function is computed. Spatial distributions of the
electrical variables can be obtained by scanning several
points of the electrical network. This requires the use of
two preamplifiers and a switch, which allows changing the
measurement location without any delay. While the voltage
drop is measured on one inductor, we have time to prepare
the electrical connections for the next measurement. This
is crucial because the scanning process is controlled by
the vibrometer software that generates an instantaneous
switching between measurement points.

The positioning of the voltage input exciting the
electrical network is not obvious when we want to ensure
an analogy with an external force that would be applied to

Prepared using sagej.cls



12 Journal Title XX(X)

Figure 10. Experimental setup for the modal analysis of a clamped plate or for its analogous electrical network.

C

1

â/2
..

b b

bb

b

RT
s

1

â/2
..

b b

bb

b
q̇
(2,2)
wI

C

b

V
(1,2)
θI

V
(2,2)
θI

V
(1,2)
wR

Vsim

V
(2,2)
wL

q̇
(1,2)
θR

Figure 11. Theoretical excitation between two transformers.

a plate. Actually, the solution is given in Figure 6 for an
excitation between the unit cells (i− 1,j) and (i,j). For i =

j = 2, electrical simplifications at the boundaries gives the
electrical circuit in Figure 11, where appears the winding
resistanceRTs that replaces the inductance Lθ introduced in
Figure 3. The problem is that in our network all the pairs of
â/2:1 transformers have been replaced by â:1 transformers.
It is thus not possible to directly generate a voltage Vsim

simulating a transverse force between the unit cells (1,2)
and (2,2). Yet, we remark that Figure 11 gives

C

1

â
..

b b

bb

b

RT
s

q̇
(2,2)
wI

C

b

V
(1,2)
θI

V
(2,2)
θI

Vexp
V

(2,2)
wL

q̇
(1,2)
θR

Figure 12. Simplified electrical circuit.

V
(1,2)
θI

− V
(2,2)
θI

= â
2V

(1,2)
wR + jωRTs q̇

(1,2)
θR

+ â
2V

(2,2)
wL .

(30)
Furthermore, there is a relation between the voltage
excitation Vsim and the voltage across the transformers as

Vsim = V (2,2)
wL

− V (1,2)
wR

. (31)

Equations (30) and (31) thus lead to

V (2,2)
wL

=
1

â

(
V

(1,2)
θI

− jωRTs q̇
(1,2)
θR

− V
(2,2)
θI

)
+

1

2
Vsim,

(32)
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which is combined with

q̇(2,2)wI
= âq̇

(1,2)
θR

(33)

in order to give the simplified electrical scheme in Figure 12
where

Vexp =
1

2
Vsim. (34)

All of this shows that placing a voltage excitation Vexp

between the ground and the secondary winding of the
â:1 transformer allows generating the analogue of a force
between the (1,2) and (2,2) unit cells of the experimental
network.

Electrical distributions and frequency response
functions

The spatial distributions of the electrical current are
represented in Figure 13 together with an electrical
frequency response function representing the ratio of
the voltage drop across the inductor in the (2,2) unit
cell to the excitation voltage Vexp. The six electrical
resonances induced by the six inductors are identified
between 50 Hz and 500 Hz. Yet, they can be qualified
as ”smooth” when compared to the ”sharp” resonances of
a lightly damped mechanical system. The relatively low
quality factor of the electrical resonances is mainly due to
the winding resistance of the transformers. Nevertheless,
the winding resistance does not necessarily need to
be minimized because applications involving analogous
piezoelectric control requires damping in the electrical
network (Lossouarn et al. 2015, 2016). Concerning the
spatial distributions of the currents around the resonances,
it is seen that they represent a suitable approximation of the
mode shapes of a clamped plate. This definitely validates
the analogous electrical network which is able to reproduce
the dynamics of a plate.

The experimental frequency response function is then
compared to the result of the model developed in
the previous section. The inductance values L and Lθ

appearing in the element matrices are replaced by their
complex values including damping elements. Impedance
calculations based on Figures 8 and 9 gives the equivalent

inductance values

L(ω) =
RLp L0

RLp +jωL0
+

RLs +RT
?

s
jω

Lθ(ω) =
RTs
jω

. (35)

As stated previously, a voltage drop is measured across the
inductor of the unit cell (2,2). In our model, this corresponds
to a voltage

Vdrop = −ω2L(ω)q(2,2)wI
. (36)

where q(2,2)wI is the displacement of electric charges through
the considered inductor. This charge displacement is
defined as

q(2,2)wI
= q(2,2)wL

+
â

2
q
(2,2)
θL

, (37)

where q(2,2)wL and q
(2,2)
θL

are computed from the model in
equation (26). If Vdrop has been experimentally measured
with an input Vexp = 1, a similar result should be
obtained from a simulation with Vsim = 2, as indicated by
equation (34). Figure 13 finally shows that the simulation
fits with the experimental frequency response function.
Consequently, the proposed numerical model can help with
the design of a suitable analogous network prior its actual
implementation.

Conclusions

New plate electrical analogues has been defined for the
purpose of damping structural vibration with a periodic
array of piezoelectric patches. For a square plate unit cell,
a finite difference method applied to the Kirchhoff-Love
theory gives a discrete model that is converted into its
direct electrical analogue. The analogues of clamped or
simply-supported boundary conditions only require open-
or short-circuited electrical ports along the edges of the
network. Yet, free boundary conditions are more difficult
to implement with the proposed topology. In any case,
the electrical network can be modeled from an assembly
of element matrices that are built from the constitutive
discrete equations of an electrical unit cell. When increasing
the number of unit cells, the analogous network tends to
the model of the continuous structure. It is then shown
that the proposed electrical analogue represents a suitable
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Figure 13. Experimental distributions of the electrical current with respect to the voltage frequency response functions - (—)
experiment, (−−) simulation.

approximation of a plate, when it offers more than 10 unit
cells per wavelength.

Considering the practical implementation of a passive
electrical analogue, guidelines are given for the design
of the electrical transformers which require sufficient
magnetizing inductance. After assembling the electrical
components, the analogous network is validated through
a modal analysis procedure similar to what is usually
performed for a mechanical structure. Electrical plate-like
mode shapes are observed experimentally when looking
at the distribution of the electrical current. Furthermore,
the numerical simulations of the network are in good
agreement with the experimental results, which shows the
interest of the proposed model for preliminary evaluations
of the electrical responses. In the end, it becomes possible
to design efficient analogous controllers for subsequent
passive vibration damping of plates. Since the proposed
electrical network has been successfully coupled to a
clamped plate, future work will be dedicated to the design
of an analogous network for vibration damping of a simply-
supported plate.

Appendix. Element ”mass” and ”stiffness” matrices

From the unit cell in Figure 3, the impedance of the
capacitor C induces

V ?θI
=

1

jωC
(
q̇?θL

− q̇?θR
+ q̇?θB

− q̇?θT

)
(38)

and the inductor L leads to

VwL − (VwT − VwB) − VwR = jωLq̇?wI
. (39)

Furthermore, the transformers of ratio â/2 gives

V ?θL
− V ?θI

= â
2VwL

V ?θI
− V ?θR

= â
2VwR

V ?θB
− V ?θI

= â
2VwB

V ?θI
− V ?θT

= â
2VwT

â
2 q̇
?
θL

= q̇?wI
− q̇wL

â
2 q̇
?
θR

= q̇wR − q̇?wI

â
2 q̇
?
θB

= q̇?wI
− q̇?wB

â
2 q̇
?
θT

= q̇wT − q̇?wI

. (40)

At last, the additional components Lθ/2 and C0/2 induce

VθL − V ?θL
= jωLθ2 q̇

?
θL

V ?θR
− VθR = jωLθ2 q̇

?
θR

VθB − V ?θB
= jωLθ2 q̇

?
θB

V ?θT
− VθT = jωLθ2 q̇

?
θT

VθL = 2
jωC0

(
q̇θL − q̇?θL

)
VθR = 2

jωC0

(
q̇?θR

− q̇θR

)
VθB = 2

jωC0

(
q̇θB − q̇?θB

)
VθT = 2

jωC0

(
q̇?θT

− q̇θT

)
. (41)

The internal variables denoted by the ? superscript are
eliminated from the system of equations with a symbolic
solver, which is then used to express the remaining
voltage variables as linear combinations of the electric
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Ke
e =

1

â2C0
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−â â2

2
C

C+2C0
−â â2
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C
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2
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(42)

charge displacement variables. This gives the elements of
the ”dynamic stiffness matrix” De

e in equation (18) and
from equation (21) it is found the ”stiffness” matrix in
equation (42). Finally, from equation (22) and by setting
C0 = 0, the ”mass” matrices in equation (23) are

ML
e =

L

16



1 â
2 1 â

2 1 − â
2 1 − â

2
â
2

â2

4
â
2

â2
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â
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â
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2 1 − â

2
â
2

â2
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â
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â2
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2 1 â

2 1 − â
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4 − â
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2

â2

4
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2 1 − â
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2 − â2
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â2

4 − â
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â2

4


(43)

and

MLθ
e =

Lθ
2a2



3 0 −1 0 −1 0 −1 0

0 â2

4 0 â2

4 0 − â2

4 0 − â2

4

−1 0 3 0 −1 0 −1 0

0 â2

4 0 â2

4 0 − â2

4 0 − â2

4

−1 0 −1 0 3 0 −1 0

0 − â2

4 0 − â2
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4


. (44)
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