Supplementary information

Synthesis of Li and Mn-rich layered oxides as concentration gradients for Lithium-ion batteries

Ségolène Pajot ^{a,b,c}, Pierre Feydi ^{b,c}, François Weill ^a, Michel Ménétrier ^a, Gunay Yildirim ^b, Loïc Simonin ^c and Laurence Croguennec ^a

^a ICMCB-CNRS, Univ. Bordeaux, Bordeaux INP, 87 avenue du Dr Schweitzer, ICMCB UPR 9048, F-33600 Pessac, France.

^b Univ. Grenoble Alpes, F-38000 Grenoble, CEA, LITEN, 17 rue des Martyrs, F-38054 Grenoble cedex 9, France.

^c CEA Tech Aquitaine. Bordeaux, 16 avenue Pey Berland – F-33607 Pessac, France

Figure S1: Comparison of the electrochemical performance obtained for the full concentration-gradient oxides calcined at 700°C (with 0%, 5% and 20% excesses of lithium): (a) initial charge-discharge cycles, (b) discharge capacity as function of the cycle number, (c-d) changes in the average discharge and charge potentials in the voltage range 2.5-4.8 V at the rate of C/10.

Figure S2: Comparison of the electrochemical performance obtained for the full concentration-gradient oxides calcined at 800°C (with 0%, 5% and 20% excesses of lithium): (a) initial charge-discharge cycles, (b) discharge capacity as function of the cycle number, (c-d) changes in the average discharge and charge potentials in the voltage range 2.5-4.8 V at the rate of C/10.

Figure S3: Comparison of the electrochemical performance obtained for the full concentration-gradient oxides calcined at 900°C (with 0%, 5% and 20% excesses of lithium) and for the homogeneous layered oxide $Li_{1.2}Mn_{0.6}Ni_{0.2}O_2$ (LMN): (a) initial charge-discharge cycles, (b) discharge capacity as function of the cycle number, (c-d) changes in the average discharge and charge potentials in the voltage range 2.5-4.8 V at the rate of C/10.