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ARTICLE OPEN

How do environment-dependent switching rates between
susceptible and persister cells affect the dynamics of biofilms
faced with antibiotics?
Gabriel Carvalho 1, Damien Balestrino2, Christiane Forestier2 and Jean-Denis Mathias1

Persisters form sub-populations of stress-tolerant cells that play a major role in the capacity of biofilms to survive and recover from
disturbances such as antibiotic treatments. The mechanisms of persistence are diverse and influenced by environmental conditions,
and persister populations are more heterogeneous than formerly suspected. We used computational modeling to assess the impact
of three switching strategies between susceptible and persister cells on the capacity of bacterial biofilms to grow, survive and
recover from antibiotic treatments. The strategies tested were: (1) constant switches, (2) substrate-dependent switches and (3)
antibiotic-dependent switches. We implemented these strategies in an individual-based biofilm model and simulated antibiotic
shocks on virtual biofilms. Because of limited available data on switching rates in the literature, nine parameter sets were assessed
for each strategy. Substrate and antibiotic-dependent switches allowed high switching rates without affecting the growth of the
biofilms. Compared to substrate-dependent switches, constant and antibiotic-dependent switches were associated with higher
proportions of persisters in the top of the biofilms, close to the substrate source, which probably confers a competitive advantage
within multi-species biofilms. The constant and substrate-dependent strategies need a compromise between limiting the wake-up
and death of persisters during treatments and leaving the persister state fast enough to recover quickly after antibiotic-removal.
Overall, the simulations gave new insights into the relationships between the dynamics of persister populations in biofilms and
their dynamics of growth, survival and recovery when faced with disturbances.
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INTRODUCTION
Living as biofilms enables bacterial populations to withstand harsh
disturbances such as antibiotic treatments and this lifestyle is the
root of many chronic infections and bacterial survival in natural
environments.1–3 Biofilm survival capacity is often conditioned by
the formation of internal sub-populations of persisters, i.e.,
phenotypic variants tolerant to various stresses such as anti-
biotics.4–6 Unlike resistance, tolerance is temporary and reversi-
ble.7 A commonly accepted model of bacterial persistence is that a
few cells can switch to the persister state in an isogenic bacterial
population and, inversely, persisters can switch back to the
susceptible state.8 Although persisters tolerate stresses, their
growth rate is impaired in comparison to that of actively growing
susceptible cells. Several mechanisms are involved in the
induction of the persister state including toxin/antitoxin modules
and stress-responses such as the stringent and the SOS
responses.9–12 Persisters can be produced randomly or in response
to environmental conditions such as nutrient deprivation, heat,
extreme pH, quorum-sensing molecules and the presence of
antibiotics.5,9,13 Persister populations are broadly heterogeneous
and bacterial persistence relies on several genes.14–17 In addition,
persisters are stress-specific: persisters surviving one kind of stress
may not survive another kind.18,19 As a result, experimental studies
on persisters are largely affected by the environmental conditions,
strains and stresses used. The intrinsic heterogeneity of biofilms
makes these environmental conditions difficult to predict and

control at a cellular level within the community. Computational
models are useful to simulate this heterogeneity and predict the
population dynamics of susceptible and persister cells in biofilms.
A few mathematical biofilm models have been developed with

various switching rates between persisters and susceptible
cells.20–24 Most models assess one switching strategy with one
set of parameters, and simulations are seldom correlated with
experimental data. Switching rates are often assumed to be low
but experimental evidence is scarce.8,18,25 Given the heterogeneity
of persister populations and persister formation mechanisms it is
therefore difficult to compare simulated and experimental
biofilms. Instead of differential equations, Chihara et al.26 imple-
mented different persister formation strategies in an individual-
based model (IBM) of biofilm. This kind of model has been used
for more than a decade to simulate biofilm formation, structure
and heterogeneity.27–30 In IBMs of biofilms, each cell is an
independent virtual entity that evolves in a continuous space and
interacts with other cells and its microenvironment, such as the
local substrate and antibiotic molecules. Using an IBM, Chihara
et al.26 succeeded in identifying spatial patterns of persister
formation in simulated biofilms. However, they did not implement
switches from the persister state to the susceptible state nor
considered antibiotic treatments. Their model therefore needs to
be modified to achieve simulation of biofilm recovery after
antibiotic shocks.
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The objective of this work was to study the effect of the
switching dynamics between susceptible and persister cells on the
capacity of biofilms to grow, survive and recover from antibiotic
shocks. Because of the diversity of persister producing mechan-
isms, we tested three switching strategies: (1) constant switches,
(2) substrate-dependent switches and (3) antibiotic-dependent
switches. There is a paucity of evidence about the maximum rates
of these switches and so we postulated that they could be low or
high and tested nine parameter sets for each strategy. In the first
strategy tested, each cell had a constant probability to become
persister or susceptible, regardless of its microenvironment. In the
second strategy, persister production was triggered by the lack of
substrate and reversion to the susceptible state was triggered by
its presence. In the third strategy, persister production was
triggered by the presence of antibiotic and the reversion to the
susceptible state was triggered by its absence. These strategies
were implemented in a two-dimensional (2D) individual-based
biofilm model. Persisters were non-growing dormant cells much
less affected by antibiotics than actively growing susceptible cells.
Population dynamics and structures of treated biofilms were
obtained from simulations. Strategies were compared at three
time points, pre-treatment, post-treatment and post-recovery, to
assess the capacity of the biofilms to grow, survive and recover
(Fig. 1). A local sensitivity analysis was also carried out to assess
the influence of the model parameters on the different switching
strategies.

RESULTS
Unlike constant switches, substrate and antibiotic-dependent
switches do not impair the fitness of bacterial populations
For each strategy, nine combinations of the maximum switching
rates were tested, from susceptible to persister, amax, and from
persister to susceptible, bmax. With constant switches, high amax

values significantly impaired the fitness of the bacterial popula-
tions. The biofilms obtained after 5 h of formation were much
smaller than without switches (Fig. 2). With this strategy, the
switching rates were always maximum regardless of environ-
mental conditions, and susceptible cells became non-growing
persisters instead of dividing. As a result, the maximum switching

rate amax had to be low to not impair the fitness of the bacterial
population. With substrate-dependent switches, persister forma-
tion was maximum in substrate-deprived zones. Susceptible
bacteria intended to become persisters had slow growth rates
and did not participate in the overall growth of the biofilms.
Consequently, high amax values led to high quantities of persisters
within the biofilms without affecting overall growth (Fig. 2). In
contrast, substrate deprivation was needed to facilitate the
formation of persisters. Hence, there were almost no persisters
within young biofilms, when there is still plenty of substrate and
no substrate concentration gradients (<3 h, see Supplementary
Information). With antibiotic-dependent switches, persister forma-
tion was induced by the antibiotic itself. There was no effect
therefore on the fitness of the bacterial population since there was
no phenotypic switch in the absence of antibiotic. The capacity to
sense environmental conditions, i.e. to sense substrate or

Fig. 1 Simulation process. Biofilms grown for 5 h were then treated for 2 or 8 h and allowed to recover during another 5 h after antibiotic
removal. Cells can switch between susceptible and persister phenotypes or be killed by the antibiotic. During treatments, susceptible cells die
quickly and only persisters survive (k » kp). After antibiotic treatments, persisters that switch back to actively growing susceptible cells allow
the biofilm to recover. To assess the effect of the switching strategies on the growth, survival and recovery of the biofilm, we focused on three
time points: pre-treatment, post-treatment and post-recovery

Fig. 2 Live cells (susceptible cells s+ persisters p) after 5 h of biofilm
formation for the three switching strategies: constant (Const.),
substrate-dependent (Sub.-dep.) and antibiotic-dependent (Ant.-
dep.). amax is the maximum switching rate from the susceptible state
to the non-growing persister state. bmax is the maximum switching
rate from the persister state to the susceptible state
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antibiotic concentrations, allowed bacterial biofilms to have high
maximum rates of persister formation (amax) without affecting
their overall growth rate.

Only antibiotic-dependent switches prevent the wake-up and
death of persisters during treatments
We simulated biofilm formation for 5 h, and then applied
antibiotic treatment for 2 and 8 h. Without persisters, the biofilms
were eradicated within 2 h after the addition of antibiotic. The
constant and substrate-dependent strategies were both greatly
affected by the treatment duration, particularly when bmax was
high. With constant switches, persisters switched their phenotype
regardless of their environment and woke up despite the
presence of antibiotics. With substrate-dependent switches,
susceptible cells died quickly during treatment and substrate
consumption fell. As a result, the substrate concentration in the
biofilms increased and triggered the wake-up of persisters. With
these two strategies, when bmax= 1, the biofilms recovered from
the 2 h treatments but all persisters woke up and died during the
8 h treatments. bmax had to be small for these two strategies to
limit the wake-up and death of persisters during treatments. With
antibiotic-dependent switches, the antibiotic inhibited the wake-
up of persisters. High bmax values could be used without affecting
the survivability of the biofilm cells undergoing antibiotic
treatment. Thus, the biofilms were not much affected by the
duration of the treatments. The death of persisters was mainly
caused by direct killing by the antibiotic (parameter kp).
We considered the number of cells able to survive an antibiotic

treatment (Fig. 3). For the substrate-dependent strategy, the
highest quantities of survivors were obtained with high amax and

small bmax values, which maximized the production of persisters
and limited their wake-up during treatment. With the constant
strategy, the intermediate amax= 0.1 led to the highest quantities
of survivors since this strategy need a compromise between not
impairing growth and producing persisters. Constant switches
with high amax values led to small biofilms with a high proportion
of persisters. With antibiotic-dependent switches, susceptible cells
must become persisters otherwise they die during treatment.
Thus, the quantity of survivors depended on how fast susceptible
cells became persisters. The highest quantity of survivors was
obtained with the highest amax values and, as stated previously,
were not much affected by bmax.

Recovery efficiency depends on the number of persister switches
after antibiotic removal
After the antibiotic treatments (2 or 8 h long), the virtual biofilms
were allowed to regenerate for 5 h. To achieve fast recovery, a
great number of persisters had to switch back to the actively
growing susceptible state immediately after treatment. This event
depends on the number of persisters and on their switching rate
post-treatment (Supplementary Figure S2). As stated previously,
for constant and substrate-dependent switches, low wake-up rates
favor survival. However, it also limits recovery. Thus, a compromise
was needed between persister switches after and during
treatment to achieve a high recovery. That is, low bmax values
favor survival during treatments (Fig. 3) whereas high bmax values
favor recovery after treatments. Consequently, the intermediate
bmax value (0.1) led to the best recovery for these two strategies
(Fig. 4). With antibiotic-dependent switches, persister switches
were inhibited during treatment and induced by the removal of
the antibiotic. Therefore, high bmax values did not lead to any
enhanced mortality during treatment and allowed a quick

Fig. 3 Number of cells surviving after 2 h and 8 h-long antibiotic
treatments for the three switching strategies: constant (Const.),
substrate-dependent (Sub.-dep.) and antibiotic-dependent (Ant.-
dep.). Cells reverting to the susceptible state during treatments died
quickly. The populations post-treatment were composed solely of
persisters: (s+ p)post-treatment ≈ ppost-treatment. amax is the maximum
switching rate from the susceptible state to the non-growing
persister state. bmax is the maximum switching rate from the
persister state to the susceptible state

Fig. 4 Quantity of live cells (susceptible cells+ persisters) recovered
5 h after the treatment for the three switching strategies: constant
(Const.), substrate-dependent (Sub.-dep.) and antibiotic-dependent
(Ant.-dep.). amax is the maximum switching rate from the susceptible
state to the non-growing persister state. bmax is the maximum
switching rate from the persister state to the susceptible state
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recovery after treatment. On the other hand, a slow wake-up rate
(i.e., low bmax values) allowed the pool of persisters formed during
treatment to be maintained for a long time after the stress. Details
regarding the population dynamics with the different strategies
and parameter sets are available in the supplementary informa-
tion of this article (Supplementary figures S3 to S8).
Altogether, the results showed that an increase in the duration

of the treatments limited the recovery of the biofilms for constant
and substrate-dependent strategies. In all cases, limiting
growth by lowering substrate concentrations could be used to
limit the recovery speed of the biofilms. However, for the
substrate-dependent strategy, substrate depletion induced pers-
ister formation. With this strategy, the presence of substrate
increased the efficacy of antibiotic treatments. This increase
was not greatly effective with low bmax values. For the antibiotic-
dependent strategy, the wake-up of persisters was triggered
by the absence of antibiotic. As previously suggested by
Cogan et al. (2013),22 periodic treatments may be effective
by inducing persister switches into the susceptible state
in the intervals between treatments. That being said, it is
difficult to identify an optimal treatment strategy since its
efficacy would largely depend on the switching strategy and its
parameter set.

Post-recovery structural patterns of biofilms depend on the spatial
distribution of persisters
As seen in the previous paragraph, recovery efficiency depended
on the number of persisters able to switch back to the growing
susceptible state after treatment. However, the structures of the
resulting biofilms were different, even with similar recovery rates,

and depended on the spatial position of the persisters. Figure 5
shows biofilms with identical recovery time (5 h) but with different
structures. When a few persisters woke up after treatment, only a
few colonies were formed and the majority of the biofilms was
composed of dead cells after the 5 h recovery period (Fig. 5a, d). If
many persisters woke up post-treatment, the 5 h of recovery were
sufficient to obtain thick biofilms (Fig. 5c, f). With a homogeneous
distribution of persisters, colonies formed post-treatment pushed
against the dead cells around them and colonies encountering
each other left characteristic strips of dead cells between them
(Fig. 5b, c). If persisters were mainly distributed in the bottom of
the biofilms, colonies formed post-treatment pushed against dead
cells above them and created a shell of dead cells above the
biofilms (Fig. 5e, f).
New-formed colonies near to the top of the biofilms were closer

to the substrate source and were thus at an advantage compared
to the colonies at the bottom. Although the spatial distribution of
persisters did not affect the recovery efficiency of the biofilms in
our simulations, it could be a competitive advantage in multi-
species biofilms to form colonies in strategical spatial positions
such as the top of the biofilms. With the substrate-dependent
strategy, persisters were formed in substrate-depleted zones
at the bottom of the biofilms. With the constant and
antibiotic-dependent strategies, persisters were homogeneously
distributed, thereby increasing the probability to form colonies
near the biofilm surface. All the post-recovery biofilms for the
different strategies and parameter sets are presented in the
supplementary information of this article (Supplementary figures
S9 to S14).

Fig. 5 Structural patterns of the recovered biofilms 5 h after the treatment. The efficiency of the recovery depends on the number of
persisters that have been able to switch to actively growing cells at the end of the treatment. This event depends on the number of persisters
able to survive the treatment and on their switching rate b. A high rate of persister switches post-treatment leads to a fast recovery and thick
biofilms after the 5 h of recovery. With the substrate-dependent strategy, persisters are mainly formed in substrate-deprived zones at the
bottom of the biofilms. When persisters wake up at the bottom of the biofilms, the resulting colonies push against dead cells above them and
form a shell of dead cells above the biofilms (d, e, f). With the constant and antibiotic-dependent strategies, persisters are homogeneously
distributed in the biofilms. When persisters wake up randomly in the biofilms, the colonies push against dead cells around them and two
colonies that encounter each other form characteristic strips of dead cells (a, b, c)
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Increasing the maximal growth rate disproportionally affects
substrate-concentration gradients in biofilms and hence survival
with substrate-dependent switches
A local sensitivity analysis showed that the maximal growth rate,
µmax, was the parameter that affected the most the outputs of the
simulations (Supplementary figure S15). Increasing the maximal
growth rate by 20% increased the total cells pre-treatment by 60%
with all switching strategies. However, it increased the fraction of
survivors up to 320% for the substrate-dependent strategy (with
the parameter set amax= 1 and bmax= 0.1), while µmax did not
much affect the fraction of survivors with the constant and
antibiotic-dependent strategies. This enhanced survivability was
directly related to the formation of higher proportions of
persisters pre-treatment. µmax affected the growth rate of
susceptible cells and their substrate consumption. With an
increased µmax, cells grew and consumed substrate faster, leading
to thicker biofilms but without any increase in the number of
actively growing cells, owing to the limitation of substrate
availability. As a result, the proportion of starving cells in the
biofilms increased with µmax. Since persister formation was
maximum in substrate-depleted zones with substrate-dependent
switches, higher proportions of persisters were obtained pre-
treatment and hence better biofilm survival.

DISCUSSION
Bacterial persistence is ubiquitous in many bacterial species able
to form biofilm such as Escherichia coli,16 Staphylococcus aureus,18

Pseudomonas aeruginosa,31 and Klebsiella pneumoniae.25 Given the
ephemeral nature of persisters, their heterogeneity and the
diversity of their formation mechanisms, it is difficult to relate
the dynamics of persister populations within biofilms to their
capacity to grow, survive and recover from biocide shocks such as
antibiotic treatments. The simulations unveiled a variety of
possible population dynamics according to the switching strategy
between susceptible and persister cells and the parameter set
used.
The diversity of persister dynamics observed made it difficult to

generalize a treatment strategy to eradicate biofilms. The
presence of persisters allowed the survival and recovery of
biofilms with most of the parameter sets used. Devising a
treatment strategy depends on the switching strategy, but also
on the maximum switching rates. For example, with substrate-
dependent switches, substrate can be added with the antibiotic to
enhance the efficacy of treatments but it would have a limited
effect if the maximum switching rate from persister to susceptible
is low and would on the contrary favor biofilm growth,
concentration gradients and persister formation. Thus, treatment
strategies must be adapted to the persistence mechanisms and
dynamics. The use of molecules able to target persisters directly
seems inevitable and this strategy has already been proven to
improve treatment efficacy.32–34 Several methods can combat
persister cells, either by inhibiting their formation, waking them
up or by killing them directly.35–37 However, the appropriateness
of these methods depends on the mechanisms of persister
formation and persister type.
Environment-dependent switches, compared to constant

switches, were more effective in achieving biofilm recovery
(Supplementary figures S3 to S8). Antibiotic-dependent switches
enable the synchronization of the wake-up of persisters when the
antibiotic concentration becomes low. This strategy led to the best
recovery of the biofilms in our simulations. However, persisters are
tolerant to various stresses in addition to antibiotics such as low
pH and heat.17 To form persisters only in response to a particular
antibiotic could impair the capacity of a bacterial population to
overcome other types of stresses.

The resistance and resilience of the composition and function of
microbial communities subject to disturbance are recurrent
themes in microbial ecology, in which persister population
dynamics could play an important role.38 Interspecies differences
in persister population dynamics could explain shifts in natural
biofilm community composition after disturbances. The popula-
tion dynamics observed in our simulations were diverse, depend-
ing on the switching strategy and parameter set used
(Supplementary figures S3 to S8). Efficient recovery and strategic
spatial positions such as the top of the biofilm, close to the
nutrient source, could give a competitive advantage after removal
of stress. During simulations of competition between two or three
strategies, the bacterial populations using the antibiotic-
dependent strategy outcompeted the others during the recovery
phase (Supplementary figure S16). Colonies recovered on the top
of biofilms may also detach easily and by subsequently colonizing
other surfaces gain a fitness advantage.39 However, multi-species
biofilms may also share protection mechanisms that add to the
complexity of their response to disturbances.40,41

Phenotypic heterogeneity allows bacterial populations to adopt
a bet-hedging strategy to increase their fitness in fluctuating
environments.42 Via phenotypic switches, sub-populations can
arise with phenotypes adapted to new environmental conditions.
Bacterial persistence may be a particular instance of this
phenomenon, in which the phenotypic variants are tolerant to
antibiotics. The rates of phenotypic switches can evolve within a
few generations of cells and could be complementary to
permanent phenotypic changes.43 Individual-based models are
well-designed to represent cell individuality and are useful to
simulate the phenotypic and spatial heterogeneity of cell
populations. Because of the difficulty in observing individual cells,
these models are emerging as a valuable complement to current
experiments.

METHODS
Overview of the individual-based biofilm model
The model constructed derives from previously developed individual-
based biofilm models.29,44 Cells grow, divide and push against one another
to generate a biofilm. Dissolved substrate and antibiotic diffuse and react
with the cells in a diffusion-reaction fashion. They diffuse from a bulk liquid
above the biofilm, where concentrations are maintained constant, across a
boundary layer toward the biofilm (Figure S1). In the model, bacteria can
be susceptible, persister or dead. Unlike in a few previous models,29,45

detachment, cell maintenance, shrinking of the biofilm and EPS production
are not taken into account.26 The simulated time is assumed to be low
enough to limit the effect of these factors. The computational model is
implemented in NetLogo. Although the computation time is long when
there are many cells, the graphical interface of NetLogo makes the model
easy to manage and to modify.

Simulation process
At the start of a simulation, 10 susceptible bacteria are set up randomly on
the surface (y= 0). The initial concentration of substrate in all the
computational domain is equal to the concentration in the bulk, CS,bulk. The
diffusion-reaction dynamics and cell dynamics operate at different time
scales and we assume that diffusion-reaction is at steady state when cells
are updated.45,46 The default value of the time step of cell update (Δtcell) is
one minute. Results presented are the means of four simulations with
different random seeds.

Cell growth
Cell growth follows a Monod kinetic model. There is only one growth-
limiting substrate that each susceptible cell i consumes to increase its mass
mi. We assume that persister cells do not grow or consume substrate. mi

varies according to equation 1.47,48 CS is the substrate concentration, µmax

is the maximal specific growth rate and KS is the half-saturation constant
for substrate S. Cells are cylinders of length Δl and diameter di that
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depends on cell mass and density ρ (equation 2).

dmi

dt
¼ mi:μmax :

CS

CS þ KS
(1)

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 ´mi

ρ ´Δl ´π

s

(2)

Cell division is triggered by a threshold mass mmax.
29,49 To avoid division

synchronization, daughter cells randomly receive 40 to 60 percent of the
mass of their mother cell from a uniform distribution.50 The sum of the
mass of the two daughter cells is equal to that of their mother. Their
centers are randomly set opposite each other on the edge of the mother
cell, without overlapping.

Shoving algorithm
Cellular growth and division may create overlaps between cells. These
overlaps are relaxed by a shoving algorithm.27,29,45 If a bacterium overlaps
one or more neighbors, it moves by a vector directed from the center of
the overlapping neighbor to its own center. The shoving vector of a cell i
(uS,i) is calculated by equation 3 with ai the radius of the cell, ah the radius
of the neighbor h, dh the distance between the center of the two
overlapping cells and uh a unitary vector directed from the center of
neighbor h to the center of cell i. The shoving algorithm is run until less
than five percent of the cells are still moving or if it reaches a maximum
number of iterations. To avoid heavy computation time, this maximum is
set at one thousand iterations per cell update.

uS;i ¼
X

N

h¼1

aþ ah � dh
2

:uh (3)

Antibiotic treatment
At the start of the antibiotic treatments, the antibiotic concentration in the
bulk is set to CA,bulk and the antibiotic diffuses toward the biofilm. At the
end of the antibiotic treatments, the antibiotic is set to zero in the bulk and
leaves the biofilm by diffusion. High concentrations of antibiotics are used
so that they quickly diffuse into the biofilms and kill susceptible cells. If the
antibiotic concentration CA is greater than the minimum inhibitory
concentration (MIC), the killing rate k of the susceptible population is
determined by equation 4. The killing rate of the persister population kp is
determined by equation 5. kmax is the maximum killing rate of susceptible
cells and kmaxp is the maximum killing rate of persisters. KA is a constant so
that k(CA=MIC)= µmax. Hence, when CA ≥MIC, the growth rate of the
population cannot exceeds its killing rate, which would contradict the
definition of the MIC.

kðCAÞ ¼ kmax :
CA

CA þ KA
(4)

kpðCAÞ ¼ kmaxp:
CA

CA þ KA
(5)

Persisters have a better survivability than susceptible cells because kmax »
kmaxp. To convert these killing rates into individual probabilities of dying, at
each time step Δtcell, a random number between 0 and 1 is produced. If
the number is below Δtcell×k(CA) or Δtcell×kp(CA), the cell dies. The cells
have different probabilities of dying depending on their phenotype and
local antibiotic concentration. Dead cells become inactive and remain in
the computational domain for the remainder of the simulation.51 They
continue to participate in the shoving algorithm but their diameter is
reduced by 20% compared to growing cells and persisters to take into
account their shrinking. There is little feedback from previous models on
the fate of dead cells in treated biofilms.51,52 We chose to have the treated
biofilms keep their structure intact despite being dead.53 Lardon et al.
(2011) hypothesized that dead cells progressively convert their mass into
substrate and this approach was used in a few planktonic batch
models,29,54,55 In our model, dead cells are lysed at a rate LDS. If their
size goes under a minimal threshold, they are removed, the effect of this
process on mass conservation being small.

Diffusion-reaction of solutes
The solutes, namely the substrate and the antibiotic, diffuse in the
environment. The general mass balance for a component n of

concentration Cn is set up by a partial differential equation (equation 6).

dCn

dt
¼ Dn:∇:Cn þ rn (6)

∇ ¼ i
! d

dx þ j
! d

dy is the vector gradient operator. x and y are spatial
coordinates. Dn is the diffusion coefficient of component n. rn is the
consumption (negative) or production (positive) of component n. This
equation is resolved by discretizing the computational space.29,44,56

Diffusion-reaction occurs on a grid with voxels of length Δl (see
Supplementary Information). We assumed the diffusion inside the biofilm
is constant although limited. The diffusion coefficient inside the biofilm is
Db

n. We set Db
n= 0.8×Dn.

29 A few antibiotics such as ciprofloxacin have
been reported to diffuse quickly in biofilms and we assumed that limited
penetration does not protect the biofilms.57 In addition, we used high
antibiotic doses in our simulations. Lateral boundaries of the computa-
tional domain are periodic. Cells and solutes cannot penetrate the surface
under the biofilm. Concentrations are kept constant in the bulk. The
consumption of substrate on a grid cell is the sum of the uptake of each
bacterium in it.47 It is defined by equation 7. Xx,y is the biomass of growing
cells on the grid cell located at (x;y) and YXS is the biomass yield. Xdx,y is the
mass of dead cells on the grid cell located at (x;y) and LDS is the lysis rate of
dead biomass. We assumed that antibiotic consumption is zero (rA= 0).

rS ¼ �Xx;y ´μmax :
CS

CS þ KS
´

1
YXS

þ Xd
x;y ´ LDS (7)

Phenotypic switches between susceptible and persister cells
We derived three switching strategies from the switching models of
Carvalho et al.25 The switching models are defined by the equations 8 to
13 where amax, bmax, K and K’ are constants. For the default parameters, we
chose K= KS and K’=MIC. a(CS) is maximum when CS « K and close to zero
when CS » K, inversely for b(CS). a(CA) is maximum when CA » K’ and close to
zero when CA « K’, inversely for b(CA). The switching rates a and b are
converted to individual switching probabilities for simulations.
Strategy constant switches:

a ¼ amax (8)

b ¼ bmax (9)

Strategy substrate-dependent switches:

aðCSÞ ¼ amax ´ 1� CS

CS þ K

� �

(10)

bðCSÞ ¼ bmax ´
CS

CS þ K

� �

(11)

Strategy antibiotic-dependent switches:

aðCAÞ ¼ amax ´
CA

CA þ K0
� �

(12)

bðCAÞ ¼ bmax ´ 1� CA

CA þ K0
� �

(13)

Local sensibility analysis
The default parameters used for the simulations are presented in
supplementary table S1. To analyze the sensibility of the model to the
different parameters, we separately decreased or increased each
parameter by twenty percent and compared total live cells pre-treatment,
post-treatment and post-recovery with the default results (Supplementary
figure S15). For each strategy, the switching rate parameters used were
those that gave the most live cells after recovery with the default
parameters: amax= 0.1 and bmax= 0.1 for constant switches, amax= 1 and
bmax= 0.1 for substrate-dependent switches, amax= 1 and bmax= 1 for
antibiotic-dependent switches.

Code availability
The source code of the computational model used is available on the
NetLogo website (https://ccl.northwestern.edu/netlogo/) under the name
‘Bacterial persistence in biofilms’ or by requesting the authors.
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Data availability
All data relevant to the article is included in the article and its
supplementary information.
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