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Simple photonic fiber-based workbenches have been able 
to emulate well-known nonlinear wave dynamics 
occurring in deep- or shallow- water conditions. Here, by 
investigating the nonlinear reshaping of a flattop pulse 
upon propagation in an anomalous dispersive optical 
fiber, we observe that typical signatures of focusing dam 
break flows and Peregrine-like breather events, can 
locally coexist into spontaneous pattern formations. 
Experimental measurements are in good agreement with 
our numerical predictions. 

OCIS codes: (190.4370) Nonlinear optics, fibers; (060.5530) Pulse 

propagation and temporal solitons;  

Optical fibers have shown their incredible ability to act as a perfect 
testbed platform to explore the richness of the dynamics of 
nonlinear physics. Indeed, their weak level of losses as well as the 
excellent knowledge of both linear and nonlinear physical 
characteristics are key ingredients to carry out experimental 
demonstration of new coherent solutions with an outstanding 
agreement with the theoretical solutions of the nonlinear 
Schrödinger equation (NLSE). As soon as the early 80s, solitons 
were demonstrated in single-mode optical fibers [1]. In the 21st 
century, new kinds of solitons relying on a continuous wave 
background have stimulated a large experimental interest, 
especially in the context of the rogue-like structures emerging in the 
anomalous dispersive regime of propagation. Taking advantage of 
the advanced control provided by the components of the 
telecommunication industry and new ultrafast characterization 
methods, Peregrine wave [2,3], higher-order or superregular 
breathers [4,5,6] have been experimentally generated. Recent other 
works have stressed the crucial importance and universality of such 
structures, especially the Peregrine wave [7,8,9] which can also be 
detected in deep water and other nonlinear medium governed by 
the NLSE [10,11]. Normally dispersive fibers have also stimulated 
experimental research, mainly driven by the interest in the study of 
dispersive shock waves (DSW) [12] : optical equivalent of undular 
bores [13], reproduction of dam-breaking problems [14], or the 
Riemann simple waves [15], have provided recent examples of the 
insights that can be obtained in the defocusing regime of 
propagation. 

Nevertheless, nonlinear dynamics observed in the anomalous or 
(weak) normal dispersion regimes of propagation are most of the 

time regarded as two completely different cases. The first one is 
dominated by bright soliton-like structures and modulation-
instability in perfect analogy to deep-water conditions [16]. The 
second one is ruled by DSWs that satisfy the so-called nonlinear 
shallow water equations [17]. However, recent theoretical works 
have stressed that some similar characteristics with the DSW may 
appear in the regime of focusing nonlinearity with weak dispersion, 
thus leading to the emergence of dispersive dam break flows in the 
NLSE box problem [18,19]. In this new scenario, the emergence of a 
nonlinear wave train regularizes an initial sharp transition between 
the uniform plane wave and the zero-intensity background. 
Theoretical solutions essentially describe a modulated soliton train. 
This phenomenon provides a new semi-classical interpretation of 
that has been previously described in the spatial domain as a 
nonlinear Fresnel diffraction [20]. This box problem (i.e., an initial 
square profile) then gives rise to two such counter-propagating 
modulation dynamics, whose interaction may turn into a cluster of 
breathers [19]. In the present contribution, we confirm theoretical 
predictions of Refs. [18,19] by providing a detailed experimental 
observation of the regularization of sharp transitions from a super-
Gaussian pulse in the presence of focusing nonlinearity. We 
evidence transient breathing dynamics of dispersive dam break 
flows in the form of Peregrine-like breather structures. We also 
characterize the interaction event of the two counter-propagating 
dispersive dam break flows.  

 

We investigate the nonlinear propagation of a flattop pulse in an 
anomalous dispersive fiber. The evolution of the slowly varying 
envelope 𝐴(𝑧, 𝑡) of the complex electric field is ruled by the focusing 

NLSE: 𝑖 𝜕𝐴 𝜕𝑧 −
1

2
𝛽2 𝜕2𝐴 𝜕𝑡2 + 𝛾|𝐴|2𝐴 = 0⁄⁄ , where 𝛽2  is the 

second order dispersion and 𝛾 is the Kerr nonlinearity, 𝑡 and 𝑧 
being the temporal coordinate and the propagation distance 
respectively. In order to illustrate the typical evolution of the box 
problem in the regime of focusing nonlinearity with small 
dispersion, we base our numerical simulations on the fiber 
parameters used in the experiments discussed below: 𝛽2 =
−21 ps2∙km-1, 𝛾 = 1.3 W-1∙km-1. We analyze the propagation of 
an input pulse corresponding to a 12th-order super-Gaussian 
with a full width at half maximum: 𝑇𝑏𝑜𝑥~ 600 ps and an input 
power P0 of 2 W. Such a choice of parameters ensures that the 
nonlinearity initially dominates the dispersive contribution as 
assumed in Refs. [18,19] to apply the Whitham modulation 
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theory. This condition corresponds to 𝑁 = √𝐿𝐷 𝐿𝑁𝐿⁄ ≫ 1, 
where  𝐿𝑁𝐿 = (𝛾𝑃0)−1, and 𝐿𝐷 = 𝑇𝑏𝑜𝑥

2 |𝛽2|⁄  [23]. Longitudinal 
evolution of the temporal profile of the pulse is depicted in Fig. 
1a.  

Upon a first stage of propagation dominated by self-phase 
modulation (𝑧 < 3 km), the pulse develops a strong frequency 
chirp in its sharp edges. Then, the anomalous dispersion leads to 
the formation of a highly oscillating pattern induced by the 
beating between the highly chirped edges and the flattop region 
of the pulse. In the focusing regime, this sinusoidal beating then 
evolves into the instantaneous formation of modulated wave 
trains after 3.75 km regularizing the initial discontinuities in 
both edges of the pulse (see inset in Fig. 1a) [18,19]. Such 
dispersive dam break flows expand inside the pulse with a 

constant velocity 𝑣 = ±√𝐿𝑁𝐿 (8|𝛽2|)⁄  during propagation and 
with decaying amplitudes of the oscillations. Here we also 
clearly note that each oscillation of the generated modulated 
wave presents successive growth-decay cycles, which is a key 
feature of breather solutions to the focusing NLSE. Inspired from 
the recent confirmation of the universal emergence of the 
Peregrine soliton (PS) in the focusing dynamics near a gradient 
catastrophe [7], we checked their temporal profile at the point 
of each maximum compression by using the Peregrine profile: 

𝐴𝑃𝐵(𝑡) = 𝐴0 [1 − 4 (1 + 4(𝑡 − 𝑡𝐶 )2(|𝛽2|/ (𝛾𝐴0
2)))⁄ ]. Two 

examples for 𝑧 = 3.75 and 10 km are reported in Fig. 1b for which 
we observe a very good agreement between these lateral intensity 
oscillations and the Peregrine solution. The properties of the 
central peak and adjacent zero-intensity points are well-
reproduced by adjusting the parameters 𝐴0 and tc using the 
values of the peak power Pm and temporal position of the localized 
structure emerging at the point of maximum compression : 𝐴0 =

√𝑃𝑚/3. For instance, the first Peregrine-like structure reaches a 
maximum compression at z = 3.75 km and tC = 276 ps. In this 
particular case, the corresponding value A0 is almost equal to the 
square-root of the power of the flattop pulse taken at tC in the 
early stage of propagation, namely at z = 1.5 km 

When looking at the spectral properties in Fig. 1c, we also 
confirm the typical features of the Peregrine breather at z = 3.75 
km, in particular the linearly decreasing wings when plotted in 
a log scale. One can also notice in the magnified view the 
sinusoidal over-modulation of the spectrum linked to the 
interference between the two Peregrine-like structures that are 
temporally spaced by ~554 ps. Let us stress here that contrary 
to the case of smooth pulses where it has been rigorously 
demonstrated that PS emerge in the semi-classical limit of the 
NLSE [21], there is up no mathematical proof of the existence of 
this perfect shape in the dam break problem. Indeed, from the 
phase-profiles plotted in Fig. 1(b), we can see that even if the 
typical -phase shift of PS is observed in the wings, the phase 
may also exhibit a significant additional tilt. These conclusions 
may be confirmed by the use of more advanced tools such as the 
local inverse scattering transform [22]. The increasing 
complexity of the temporal waveform does not allow such a 
spectral comparison at z = 10 km. All the oscillations of the 
dispersive dam break flows appear to breathe and locally reach 
the asymptotic Peregrine-like solution at maximum 
compression. However, their maximal peak power decreases 
with propagation until reaching an asymptotic state predicted in 
Refs. [18,19], namely a modulated soliton train with a peak 

power close to 4 P0. This can be observed for longer propagation 
distance (>15 km) but a detailed study of this phenomenon is 
beyond the scope of this work. 

 

 
 

 

Fig. 1.  (a-c) NLSE simulation of the nonlinear propagation of a 600-ps 
12th-order super-Gaussian pulse in an anomalous dispersive fiber 
(𝑁~210). (a) Temporal dynamics as a function of propagation 
distance. (b) Zoom on different temporal profiles (black solid lines) at 
3.75 and 10 km (bottom to top) compared to the theoretical fit based on 
Peregrine breather solution (red dashed line). Temporal phase profiles 
are also plotted with mixed blue lines. (c) Corresponding spectral profile 
at 3.75 km (the inset is a magnification of the wing of the spectrum). (d-
e) NLSE simulation for a 52-ps 3rd-order super-Gaussian pulse (𝑁~52). 
(d) Temporal dynamics as a function of propagation distance. (e) Zoom 
on different temporal profiles (black solid lines) at 1.9, 2.66, and 3.23 km 
(bottom to top) compared to the Peregrine solution (red dashed line). 
Temporal phase profiles are also plotted with mixed blue lines.  

It is worth mentioning that, in our simulations, spontaneous 
modulation instability (MI) emerges mainly from the center of 
the box problem after 12 km of propagation (see Fig. 1a). 
Therefore, the observation of dispersive dam break flows and 
their possible collision may be limited by the unstable nature of 
the flat top of the pulse [19]. Indeed, the MI develops from 
numerical noise and prevents the genuine analysis of the 
interaction event of the two counter-propagating dispersive 
dam break flows which should occur at a longer distance  
𝑣 𝑇𝑏𝑜𝑥 2⁄  ~ 14.4 km (relation given for the ideal box problem). 
This noise-driven MI regime is characterized by the emergence 
of Akhmediev breather structures with frequency that 
experiences the highest MI gain [24]. However, this 
spontaneous emergence of MI leads to collision processes with 
DSW-like nonlinear wave trains, which generate rogue wave 
structures with peak power up to 29 W. By considering typical 
experimental input noise in our simulations, the deleterious 
effect of MI would arise even at shorter distances. Consequently, 



we have reduced the initial pulse width to 52 ps in the 
experiments in order to enable the interaction of the counter-
propagating wave trains on a very short distance. Figure 1d 
presents the corresponding numerical evolution with input 
pulse used in the experiment. We are able to characterize 
focusing dispersive dam break flows whose localized peaks are 
well fitted by the Peregrine breather (see Fig. 1e). In addition, 
the collision of the two counter-propagating flows can be now 
easily observed at 3.23 km. We confirm that the resulting high 
amplitude structure profile is again well fitted by the central 
peak of the Peregrine solution and associated phase jumps. 

 

 

Fig. 2.  Experimental setup. CWL: Continuous Wave Laser; IM: Intensity 
Modulator (40 GHz typical bandwidth); EPG: Electrical Pulse Generator 
(IXBlue Photonics Modbox); SMF: single-mode fiber; OVA: Optical 
Variable Attenuator; EDFA: Erbium Doped Fiber Amplifier; OSO: Optical 
Sampling Oscilloscope (Alnair Labs, Eye-checker EYE 2000C); OSA: 
Optical Spectrum Analyzer (Yokogawa AQ6370). Inset: temporal profile 
of the input pulse (solid line) compared with a 3rd order super-Gaussian 
fit (circles). 

The experimental setup is depicted in Fig. 2 and is based 
exclusively of devices commercially available and typical of the 
telecommunication industry. A continuous wave laser at 1550 
nm is first intensity modulated using a lithium niobate 
modulator driven by an electrical generator, thus delivering 
super-Gaussian pulses at a repetition rate of 100 MHz. Great 
care has been taken to the symmetry of the resulting pulses that 
should present sharp edges to be as close as possible to the ideal 
box problem. The intensity profile of these 52 ps flat-top pulses 
recorded with a high-speed photodiode is provided in the inset 
of Fig. 2. The resulting pulse is then amplified by an erbium 
doped fiber amplifier (EDFA). The peak-power of the pulse is 
accurately controlled by an optical variable attenuator. Note that 
contrary to experiments dealing with DSW generation in 
normally dispersive fibers [14,25], the level of the extinction 
ratio is not here of crucial importance: in the focusing regime of 
propagation, a residual coherent background will not interfere 
with the pulse structure. On the contrary, one limiting factor 
could be the development of unwanted spontaneous 
modulation instability on the top of the super-Gaussian pulse 
[19,20]. As mentioned previously, to circumvent this problem, 
we have chosen a pulse with a relatively short duration and we 
inserted a narrow-band optical bandpass filter (OBPF) with a 
spectral width of 1 nm. The propagation takes place in a 
standard single-mode fiber (SMF28) with parameters 
corresponding to the ones described previously. Different 
lengths of fibers ranging from 1 km up to 3.7 km have been 
tested during the experiments. The analysis of the output signal 
is carried out in the temporal and spectral domains by means of 

an optical sampling oscilloscope (OSO) and an optical spectrum 
analyzer (OSA), respectively.  

In Fig. 3a, we report a first series of measurements according 
to the propagation distance. More precisely, thanks to a full set 
of SMF segments characterized by different lengths, we have 
depicted the output intensity profile as a function of the 
propagation distance for a fixed input peak power 𝑃0= 1.9 W. 
We clearly observe in the concatenated map the expanding 
nonlinear oscillatory regularization emerging from the initial 
discontinuous nature of the intensity profile.  

 

 

Fig. 3.  Longitudinal evolution of (a) temporal and (c) spectral intensity 
profiles for 𝑃0= 1.9 W recorded experimentally (b,d) Corresponding 
simulations based on the NLSE with fiber losses taken into account. 

Indeed, after 1.5 km of propagation, two typical high-peak 
power spikes of light (FWHM duration of ~2 ps) are generated 
in the edges of the super-Gaussian wave. Their temporal 
separation of ~30 ps is in agreement with the results expected 
from numerical simulations (see Fig. 3b) including typical losses 
of 0.2 dB∙km-1. The ratio between the peak power of these spikes 
and the top of the initial super-Gaussian pulse is also well 
predicted. We can notice that, as expected by our numerical 
results, these structures emerge from the flattop edges of the 
pulse, subsequently compress and reach a maximum peak 
power before partly vanishing after 2.5 km. Following this 
breathing stage, a second set of oscillations emerge in the inner 
part of the pulse and counter-propagate. This particular 
dynamics is one of the main features of the focusing dispersive 
dam break flows in the box problem. As a result, for longer 
propagation distance, a collision occurs to generate a giant spike 
here localized at 𝑧 = 3.2 km [19]. The spectral evolution 
displayed in Fig. 3c confirms the complex dynamics involved by 
the super-Gaussian pulse in agreement with the simulations 
reported in Fig. 3d. The initially narrow 79-GHz spectrum (-
20dB spectral width) broadens up to a ~420-GHz width with a 
triangular shape (when plotted in a logarithmic scale, see Fig. 4c) 
that is typical of Peregrine breathers [2,3]. Due to the presence 
of two structures, the spectrum is intensity modulated with a 
period of ~34-GHz that corresponds to the inverse of the 
temporal spacing between the pulses (see also Fig. 4c). The 
breathing of nonlinear structures is also apparent on the 
spectrum map for longer propagation distances. The emergence 



of additional and unequally temporally spaced peaks leads to 
more complex spectra. We have checked that no spectral 
signature of unwanted spontaneous MI was visible in the 
spectrum. 

In order to go further into the analysis of the generated highly 
localized structures, we have characterized their pulse shape at 
different stages of propagation and compare in Fig. 4 their 
intensity profiles with a genuine Peregrine breather solution of 
the NLSE. Details of the structure obtained at the first point of 
maximum compression is provided in Fig. 4a and outline a slight 
discrepancy regarding the peak-power (i.e., maximal focusing) 
that may be attributed to the bandwidth limitation of our OSO. 

 

 

Fig. 4.  (a,b) Temporal and (c,d) spectral intensity profiles obtained  at 
two propagation distances 1.96 and 3.25 km. Experiments are shown 
with magenta lines whereas simulations are shown with black lines. 
Theoretical fit: Peregrine breather solution (green dashed line).  

Therefore, this limitation as well as a small temporal 
asymmetry in the input experimental waveform, also prevent us 
to clearly resolve the exact formation of the giant structure 
emerging at the collision of counter-propagating modulated 
wave trains (z = 3.25 km) in Fig. 4b. Spectral measurements are 
summarized in Fig. 4c-d and show a good agreement with the 
numerical simulations. 
 

To conclude, we have provided the experimental evidence of 
the complex nonlinear reshaping of a super-Gaussian pulse 
upon nonlinear propagation in a weakly dispersion focusing 
medium. Our results confirm the qualitative behavior measured 
in the spatial domain [20] and the power of the space/time 
duality. After an initial shock-like stage induced by the overlap 
of the highly chirped and sharp edges of the pulse with its top 
region, strong temporal oscillations appear and nonlinearly 
reshape into a Peregrine-like structure at each maximum 
compression. This transient evolution is then marked by the 
breathing of the wave structures. Contrary to Ref. [20], we have 
used fully coherent initial conditions and a medium of 
propagation with fully instantaneous nonlinear Kerr response. 
Finally, we have also characterized the collision of the two 
counter-propagating dispersive dam break flows in the form of 
a Peregrine-like structure.  

 
Acknowledgments. We acknowledge Prof. Guy Millot for 
providing the super-Gaussian laser source. 

 

Funding.  Agence Nationale de la Recherche (ANR) (ANR-15-IDEX-
03, project PIA2/ISITE-BFC ; ANR-11-LABX-01-01, Labex Action); 
Région Bourgogne-Franche-Comté (PARI Photcom); Program 
FEDER-FSE Bourgogne 2014-2020; Institut Universitaire de France 
(IUF). 

References 
1. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 

(1980). 
2. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and 
J. M. Dudley, Nat. Phys. 6, 790 (2010). 
3. K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. 
Millot, Opt. Lett. 36, 2140 (2011). 

4. B. Frisquet, B. Kibler, and G. Millot, Phys. Rev. X 3, 041032 (2013). 
5. B. Frisquet, A. Chabchoub, J. Fatome, C. Finot, B. Kibler, and G. Millot, Phys. 
Rev. A 89, 023821 (2014). 
6. B. Kibler, A. Chabchoub, A. A. Gelash, N. Akhmediev, and V. E. Zakharov, 

Phys. Rev. X 5, 041026 (2015). 
7. A. Tikan, C. Billet, G. El, A. Tovbis, M. Bertola, T. Sylvestre, F. Gustave, S. 
Randoux, G. Genty, P. Suret, and J. M. Dudley, Phys. Rev. Lett. 119, 033901 
(2017). 

8. M. Närhi, B. Wetzel, C. Billet, S. Toenger, T. Sylvestre, J. -M. Merolla, R. 
Morandotti, F. Dias, G. Genty, and J. M. Dudley, Nat. Commun. 7, 13675 
(2016). 
9. P. Suret, R. El Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. 

Bielawski, Nat. Commun. 7, 13136 (2016). 
10. A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 
204502 (2011). 
11. H. Bailung, S. K. Sharma, and Y. Nakamura, Phys. Rev. Lett. 107, 255005 
(2011). 

12. G.A. El and M. A. Hoefer. Physica D: Nonlinear Phenomena 333, 11 (2016) 
13. J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, Phys. Rev. X 4, 
021022 (2014). 
14. G. Xu, M. Conforti, A. Kudlinski, A. Mussot, and S. Trillo, Phys. Rev. Lett. 118, 

254101 (2017). 
15. B. Wetzel, D. Bongiovanni, M. Kues, Y. Hu, Z. Chen, S. Trillo, J. M. Dudley, S. 
Wabnitz, and R. Morandotti, Phys. Rev. Lett. 117, 073902 (2016). 
16. A. Chabchoub, B. Kibler, C. Finot, G. Millot, M. Onorato, J. M. Dudley, and 

A. V. Babanin, Ann. Phys.  361, 490 (2015). 
17. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974). 
18. R. Jenkins and K. D. McLaughlin, Commun. Pure Appl. Math. 67, 246-320 
(2014). 
19. G. A. El, E. G. Khamis, and A. Tovbis, Nonlinearity 29, 2798 (2016). 

20. W. Wan, Dmitry V. Dylov, C. Barsi, and J. W. Fleischer, Opt. Lett. 35, 2819 
(2010). 
21. M. Bertola and A. Tovbis, Commun. Pure Appl. Math. 66, 678 (2013) 
22. S. Randoux, P. Suret, G. El, Scientific reports 6, 29238, (2016) 

23. G. P. Agrawal, Nonlinear Fiber Optics. Fifth Edition (Academic Press, 2013). 
24. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 
17, 21497 (2009). 
25. A. Parriaux, M. Conforti, A. Bendahmane, J. Fatome, C. Finot, S. Trillo, N. 

Picqué, and G. Millot, Opt. Lett. 42, 3044 (2017). 
 


