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RIGIDITY RESULTS IN GENERALIZED ISOTHERMAL FLUIDS

REMI CARLES, KLEBER CARRAPATOSO, AND MATTHIEU HILLAIRET

ABSTRACT. We investigate the long-time behavior of solutions to the isother-
mal Euler, Korteweg or quantum Navier-Stokes equations, as well as gener-
alizations of these equations where the convex pressure law is asymptotically
linear near vacuum. By writing the system with a suitable time-dependent
scaling we prove that the densities of global solutions display universal dis-
persion rate and asymptotic profile. This result applies to weak solutions
defined in an appropriate way. In the exactly isothermal case, we establish the
compactness of bounded sets of such weak solutions, by introducing modified
entropies adapted to the new unknown functions.

1. INTRODUCTION

In the isentropic case v > 1, the Euler equation on R¢, d > 1,

{(%p + div (pu) = 0,

(L.1) O (pu) + div(pu @ u) + V (p7) = 0,

enjoys the formal conservations of mass,

M(t) = /Rd p(t,z)dz = M(0),

and entropy (or energy),

E@) = %/Rd p(t,2)|u(t, z)|*dz + % /Rd p(t,z)"dz = E(0).

In general, smooth solutions are defined only locally in time (see [26] 16, [35]).
However, for some range of -, if the initial velocity has a special structure and the
initial density is sufficiently small, the classical solution is defined globally in time.
In addition the large time behavior of the solution can be described rather precisely,
as established in [28]. We restate some results from [28] in the following theorem:

Theorem 1.1 (From [28]). Let 1 < v < 1+2/d and s > d/2+ 1. There exists
n > 0 such that the following holds.

(i) If po,uo € H*(RY) are such that H(pév_l)m,uo)HHs(Rd) < 1, then the system
(T3 with initial data p(0,x) = po(z) and u(0,x) = x+uo(z) admits a unique global
solution, in the sense that (p, @) € C([0,00); H*(R?)), where a(t,r) = u(t, )
In addition, there exists Roo, Uso € H*(R?) such that

(e e (3) st 2~ 20 (5)
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(ii) Conversely, if Roo,Us € H*(R?) are such that ||(R((>1_1)/2,U00)||H3(Rd) < 7,
then there exists po,up € H*(R?) such that the solution to (L)) with p(0, ) = po(x)
and u(0,x) = x+ug(z) is global in time in the same sense as above, and (L2)) holds.

In particular, in the frame of small data (in the sense described above), the
dispersion
o MBeolli=e
t—o00 td
is universal but the asymptotic profile Ro, can be arbitrary. Typically, given any
function ¢ € S(RY), R, = e will be allowed provided that e > 0 is sufficiently
small. For completeness we provide a brief proof of the above theorem in appendix.

o) oo (mey

We emphasize that the structure of the velocity is crucial: the initial velocity
is a small (decaying) perturbation of a linear velocity. In a way, the above result
is the Euler generalization of the global existence results for the Burgers equation
with expanding data. Refinements of this result can be found in [21], 20} 29].

The isothermal Euler equation corresponds to the value v = 1 in (),

L3 Op + div (pu) = 0,
(13) O(pu) + div(pu @ u) + kVp =0, k>0,

The mass is still formally conserved, and the energy now reads

E@) = %/Rd p(t,x)|u(t, z)*de + /Rd p(t,x)Inp(t, z)dz = E(0).

Unlike in the isentropic case, the energy has an indefinite sign, a property which
causes many technical problems. In this paper, we show that the isothermal Euler
equation on R%, d > 1, with asymptotically vanishing density, p(t,-) € L'(R?),
displays a specific large time behavior, in the sense that if the solution is global
in time, then the density disperses with a rate different from the above one, and
possesses a universal asymptotic Gaussian profile. This property remains when
the convex pressure law P(p) satisfies P'(0) > 0, as well as for the Korteweg and
quantum Navier-Stokes equations:

Op + div (pu) = 0,
1.4 2 A
(1.4) O¢(pu) + div(pu @ u) + VP(p) = %pv (%) + vdiv (pDu),
with €, > 0, where Du denotes the symmetric part of the gradient,
1
Du := 3 (Vu + tVu) .

For this system, we still have conservation of mass and the energy

(1.5) E(t)= %/p(t,x)|u(t,:1:)|2d:1:+ %/|V\/p(t,x)|2d3:—|—/F(p(t,:z:))dx,

where ,
P(r
F(p)=p/ (Q)dr,
1

r
satisfies

E(t) = —l//p|Du|2.
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In the case € = 0 and P(p) = kp, equation ([[4) is the precise system derived
in [I2], as a correction to the isothermal quantum Euler equation. We emphasize
that, because of the lack of positivity of the term F' in the energy functional, only
the barotropic variant — where P(p) = kp” with v > 1 — is studied in references.
Classically, a Bohm potential (corresponding to the term multiplied by ¢ in (I4]))
is also added, see [5l 19} 22| B3] for instance. In the case where the dissipation is
absent (v = 0), but with capillarity (¢ > 0), we refer to [8] [3] [4] [7].

A loose statement of our main result reads (a more precise version is provided
in the next section, see Theorem 21T)):

Theorem 1.2. Let (p,u) be a global weak solution to (L) with initial density/velocity
(po, uo) satisfying
(1 [of? + Juol*)' /2 y/po € L*(RY).
Then there exists a mapping 7 : [0,00) — [1,00) such that
~ /
7(t) 2P (0)In(2),

lpollzr exp(—|z[*/7(t)?)
p(tu :E) t:oo rd/2 T(t)d

weakly in L'(RY).

Formally, this theorem entails that, in contrast with the isentropic case, the
density of solutions to (4] disperses as follows :

1
HpOHLl(]Rd) «

(2P/(0)y/7)" (tm)d’

with a universal profile. Note however that in the general framework of the theorem,
we do not establish an L estimate like above; such a decay is proven rigorously
only in the case of specific initial data considered in Section B.I] below. This result
applies to a notion of “weak solution” that is based on standard a priori estimates
satisfied by smooth solutions to ([4). We make precise the definition of such
solutions in the next section, see Definition 211

1P| oo ey,

The main ingredient of the proof is to translate in terms of our isothermal
equations a change of unknown functions introduced for the dispersive logarith-
mic Schrédinger equation in [I4]. This enables to transform () into a system
with unknowns (R, U) for which the associated energy is positive-definite. A sec-
ond feature of the new system is that, asymptotically in time, it reads (keeping
only the dominating terms):

1
&R + — div (RU) =0,

T
8:(RU) + 2P'(0)yR + P'(0)VR = 0,

where 7 is the time-dependent scaling mentioned in Theorem By taking the
divergence of the second equation and replace 9;div(RU) with the first one, we
obtain then (keeping again only the dominating terms):

(1.6)

IR =0

R — P'(0)LR =0,
where £ is the Fokker-Planck operator LR = AR + 2div(yR). In this last system,
the first equation implies that R converges to a stationary solution to the second
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equation. The analysis of the long-time behavior of solutions to this Fokker-Planck
equation, as provided in [6], entails the expected result.

The outline of the paper is as follows. In the next section, we provide rigorous
definitions of weak solutions and precise statements for our main result. Section Bl
is then devoted to the long-time behavior of solutions to (L4]). In this section, we
compute at first explicit solutions to (4] with Gaussian densities. These explicit
computations motivate the introduction of the change of variable that we use after-
wards. In what remains of this section we give an exhaustive proof of the precise
version for Theorem The long-time analysis mentioned here is based on the a
priori existence of solutions. However, in the compressible setting, global existence
of solutions is questionable. So, in the last section of the paper, we focus on the
notion of weak solutions that we consider. At first, we present the a priori esti-
mates which motivate their definition. We end the paper by proving a sequential
compactness result. This sequential compactness property is a cornerstone for the
proof of existence of weak solutions, see e.g. [24,[I§]. As for the large time behavior,
we simply state a loose version of our result here (see Theorem 10 for the precise
statement):

Theorem 1.3. Assume v > 0, 0 < & < v, P(p) = kp with k > 0, and let
T > 0. Let (pn, un)nen be a sequence of weak solutions to (L4) on (0,T), enjoying
a suitable notion of energy dissipation, BD-entropy dissipation, and Mellet- Vasseur
type inequality. Then up to the extraction of a subsequence, (pn,Un)nen cORVETgES

to a weak solution of ([LA) on (0,T).

It is for the system (2.8]) in terms of (R,U), as mentioned above, that fairly
natural a priori estimates are required in the above statement. Even though the
notions of solution for (IL4) and (Z8)) are equivalent (Lemma [Z7] below), we did
not find a direct approach to express the pseudo energy, pseudo BD-entropy and
Mellet-Vasseur type inequality mentioned above in a direct way in terms of (p, u),
that is, without resorting to (R, U).

2. WEAK SOLUTIONS AND LARGE TIME BEHAVIOR

We now state a precise definition regarding the notion of solution that we consider
in this paper. Even though, in ([I4]), the fluid genuine unknowns are p and u, the
mathematical theory that we develop in Section [ suits better to the unknowns
/P and /pu. Therefore we state our definition of weak solution in terms of these
latter unknowns. Nevertheless, we shall keep these notations, even though no fluid
velocity field u underlies the computation of /pu.

Definition 2.1. Letv >0 and ¢ > 0. Given T > 0, we call weak solution to (4]
on (0,T) any pair (p,u) such that there is a collection (\/p, \/pu, Sk, Tn) satisfying

i) The following regularities:

((@) + [ul) v/p € L (0, T; LA(RY)) ,  where (z) = \/1+ ],
(e +v)Vyp e L= (0,T; L*(RY)),

eV2/p € L*(0,T; L*(R%)),

Vv Ty € L?(0,T; L*(RY)),
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with the compatibility conditions
VP =0 ae on (0,T) xR /pu=0 ae on {{/p=0}.
ii) Euler case ¢ = v = 0: The following equations in D'((0,T) x RY)
Op + div(pu) = 0,
{at(pu) + div(y/pu ® \/pu) + VP(p) = 0.
111) Korteweg and Navier-Stokes cases € +v > 0: The following equations

in D'((0,T) x RY)

1
Op/p + div(y/pu) = §Trace(TN),

(2.1)

(2.2) 22
O¢(pu) + div(y/pu @ y/pu) + VP(p) = div (u\/ﬁSN + ESK> ,

with Sy the symmetric part of T, and the compatibility conditions:

(2.3) VTN = V(Vpy/pu) — 2¢/pu @ V/p,
(2.4) Sk = pV>\/p—Vp®V/p.

We emphasize that the above definition is essentially the “standard” one, up to
the fact that we require |z|\/p € L>°(0,T; L*(R?)). The reason for this assumption
will become clear in the Subsection 1] where we will recall the a priori estimates
motivating this definition (see Lemma [Z7] as well as the definition of the pseudo-
energy & in (Z13)).

Several remarks are in order. When the symbol p alone appears, it must be
understood as |\/ﬁ|2, while when the symbol u appears alone, it is defined by
u=/pu/\/p1 s5>0. Under the compatibility condition of item i) this yields a well-
defined vector-field. As for the stress-tensors involved in the momentum equation
([22), we emphasize that (Z3) reads formally Ty = \/pVu.

An originality of the previous definition is that in the case e + v > 0, we do
not ask for the continuity equation in terms of p but in terms of |/p. However, we
prove here that the usual continuity equation as written in (2.2) is a consequence
to this definition thanks to the regularity of \/p and ,/pu. This is the content of
the following lemma;:

Lemma 2.2. Let ¢ + v > 0. Assume that (p,u) is a weak solution to Z2) on
(0, T) in the sense of Definition[Z1l Then it satisfies

Oip +div(pu) =0 in D'((0,T) x RY).
Proof. By definition, we have
1
Op/p + div ({/pu) = ETrace(TN)

Here we note that \/pu € L>°(0,T; L*(R%)) (so that div(y/pu) € L>(0,T; H1(R?))).
We can then multiply this equation by \/p € L>(0,T; H'(R?)). We obtain:

Orp = —2+/pdiv(y/pu) + /p Trace(Ty).
At this point we remark that, by definition of Ty :

div(pu) = /p Trace(Tn) + 2y/pu - V/p
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and, since pu = \/p,/pu, the products of the identity below are well-defined:

div(pu) = /pdiv(y/pu) + /pu - V/p.

Combining these equation entails

div(pu) = 2/pdiv(y/pu) — /p TraceTy.
We conclude thus that:
Op = —div(pu).
O

The assumptions regarding the regularity of the solution actually imply that the
mass of any weak solution is constant:

Lemma 2.3. Lete,v > 0 and (p,u) be a solution to (LAl on the interval (0,T) in
the sense of Definition 21l Then we have rho € C(0,T; L*(R?)) and the mass is
conserved,

/ p(t,a:)dx:/ p(0,z)dz, Vtel0,T).
R4 R4

Proof. The only point to notice is that the regularity assumed on the solution
makes it possible to perform integrations by parts in the continuity equation. The
previous lemma shows indeed that whether we consider the Euler equation or the
case e+v > 0, we can work at the level of the usual continuity equation. Integrating
in space, recall that,/p, \/pu € L>(0,T; L?(R?)), hence pu € L>(0,T; L*(R%)), and
boundary terms at spatial infinity vanish in the integrations by parts. 0

2.1. Rewriting of (L4) with a suitable time-dependent scaling. In the case
where the density p is defined for all time and is dispersive (in the sense that it goes
to zero pointwise), it is natural to examine the behavior of P near 0, since it gives
an “asymptotic pressure law” as time goes to infinity. A consequence of our result
is that the large time behavior in (I4) is very different according to P’(0) > 0 or
P'(0) = 0. Herein, we assume that P € C?(0,00; RT) with P’(0) > 0 and P” > 0.
Typically, when P” = 0, we recover the isothermal case, P(p) = kp, and we can
also consider

N

P(p) = /@p—l—z,@p”, N2>1, k; >0, v >1,

j=1
with no other restriction on 7; (in any dimension), or even the exotic case P(p) =
e”. The most general class of pressure laws that we shall consider is fixed by the
following assumptions:

Assumption 2.4 (Pressure law). The pressure P € C*(RT;R*) N C?(0,00; RT)
is convex (P"(p) = 0 for all p > 0), and satisfies
k= P'(0) > 0.

Resuming the approach from [14] (the link between Schrédinger equation and

Euler-Korteweg equation is formally given by the Madelung transform), we change

the unknown functions as follows. Introduce 7(¢) solution of the ordinary differential
equation

(2.5) f=—, r0)=1, #0)=0.
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The reason for considering this equation will become clear in Subsection Bl We
find in [I4], for slightly more general initial data:
Lemma 2.5. Let a,k > 0, g € R. Consider the ordinary differential equation
2
(2.6) =", 1(0)=a, #(0)=4
T

It has a unique solution 7 € C?(0,00), and it satisfies, as t — 0o,
T7(t) =2tVkrInt (1 4+ OK(t))) , 7() =2Velnt(1+O(1))),

where

Inlnt
)= Int

We sketch the proof of this lemma in Appendix [Bl without paying attention to
the quantitative estimate of the remainder term. We now introduce the Gaussian
I(y) = e ¥, and we set

27) plt.a) = ——R <ti) looller i gy = L)U (t%) + @:E

T(t)4 7(t) ) [T’ T(t T(t T(t)™
where we denote by y the spatial variable for R and U. Denoting 6 = IIGSI:‘ LLll , (C4)

becomes, in terms of these new unknowns,
1
O R+ — div (RU) =0,
T
1 .
(2.8) O (RU) + = div(RU ® U) + 2kyR + P’ (24

2 /R
- RY M
272 VR

The analogue of Definition 2] is the following:

) VR

) + = div(RDU) + ZZVR.
T T

Definition 2.6. Let v >0 and € > 0. Given T > 0, we call weak solution to (Z8)
on (0,T) any pair (R,U) such that there exists a collection (v R,/ RU, Sk, Tn)
satisfying
i) The following regularities:
((y) +U) VR € L™ (0,T; L*(RY)),
(e +v)VVR € L*® (0,T; LA(R?))
e V2VR e L*(0,T; L*(RY)),
Vv Ty € L*(0,T; L*(R?)),
with the compatibility conditions
VR >0 a.e. on (0,T) xR%, VRU =0 a.e. on {VR=0}.
ii) Euler case ¢ = v = 0: The following equations in D'((0,T) x RY)
1
IR+ — div(RU) = 0,
(2.9) Ty
Oi(RU) + = div(VRU @ VRU) + 2kyR + P' (2%) VR = 0.
T
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iii) Korteweg and Navier-Stokes cases ¢ +v > 0: The following equations
in D'((0,T) x R?)

1. 1
VR + = le(\/RU) = FTMCG(TN),
1
(2.10) O (RU) + gdiV(\/}_%UQ@\/}_%U) +2kyR+ P’ (“B) VR
2 .
= div (%\/T%SN + E—2SK> +2LVR,
T 2T T
with Sy the symmetric part of Tn and the compatibility conditions:

(2.11) VRTy = V(VRVRU) — 2VRU © VVR,
(2.12) Sk = VRV*VR - VVR® VVR.

Mimicking the proof of Lemma [Z2] we see that in the case ¢ + v > 0, if (R,U)
is a weak solution to (ZI0) on (0,7) in the sense of Definition [Z0] then it satisfies

OR+ ~div(RU) =0 in D((0,T) x RY).
T

Similarly, the mass of any weak solution is conserved,

/ R(t,y)dy = / R(0, y)dy.
R4 R4
In view of [27), we check directly:

Lemma 2.7 (Equivalence of the notions of solution). Let T' > 0. Then (p,u) is a
weak solution of (LA on (0,T) if and only if (R,U) is a weak solution of [ZJ) on
(0,T), where (p,u) and (R,U) are related through (2.

Remark 2.8. If in Definition 2T}, we had required only (1+|ul)\/p € L*(0,T; L*(R%)),
then the above equivalence would not hold. In the same spirit, the change of un-
known (270) would make the notion of solution rather delicate in the case of the
Newtonian Navier-Stokes equation, a case where typically u € L?(0,T; H'(R%)).
More generally, we do not consider velocities enjoying integrability properties, un-
less the density appears as a weight in the integral.

Remark 2.9. To complement the previous remark, we emphasize that for the Euler
equation ([ILT), for v > 1, the local existence result by Makino, Ukai and Kawashima
[26] requires ug € H*(RY) with s > d/2 + 1, while Theorem [[T] uses the fact
that uo(z) — x is a small H® function, generalizing the expanding case in Burg-
ers’ equation. In the present case, the change of unknown functions (27) implies
u(0,z) = U(0,x), and we assume no special property on ug, since u always comes
with /p as a multiplying factor in Definition 211

We define the pseudo-energy £ of the system (2.8]) by

1 e?
&)= 55 [ RIUP+ 5 [ [WVRE+P0) [(RlP + RInR)

74 OR
*7/(;(?)’

(2.13)
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/ /
//P - P )dadv,

(2.14) £(t) = —D(t) — u:& / R(t, ) div U (¢, y)dy,

where the dissipation D(¢) is defined by
D) = /R|U|2 +dlq! (/ P (o) — 0P (0) |C,_9_§,)
+e —/|v\/_|2+—/|sN|2

By convexity we have G > 0, and P(c) > P'(0)o for o > 0, so D(t) > 0. Note also
the identities

where

which formally satisfies

(2.15)

P'(0
016) o) =" 60), Flp)= P0)ping+ Gl
Recall the Csiszar-Kullback inequality (see e.g. [2L Th. 8.2.7]): for f,g > 0 with

fRdf:fRd 9s
||f —gﬂil(Rd) < 2||f||L1(]Rd)/f(‘r) In (%) dz.
/(R|y|2+R1nR>=/R1n§’

the conservation of the mass for R and the definition ([2.7)) imply that the pseudo-
energy &£ is non-negative, £ > 0

Writing

As for global solutions, we have the following natural definition:

Definition 2.10. Let v > 0 and ¢ > 0. We call global weak solution to (28]
any pair (R,U) which, by restriction, yields a weak solution to [2.8)) on (0,T) for
arbitrary T > 0.

2.2. Main result: large-time behavior of weak solutions to (ZI0). With the
previous definitions and remarks, a quantitative and precise statement of Theorem
reads as follows:

Theorem 2.11. Let e,v > 0. Assume that P satisfies Assumption [2.4), and let
(R, U) be a global weak solution of ([2.8)), in the sense of Definition 210

) If ;7 D(t)dt < oo, then
/Rd vty 20 and | [ (RO y)dy} =,
unless [yR(0,y)dy = [(RU)(0,y)dy =0, a case where

[ urtdy= [ R0y =0
Rd Rd

(b) Ifsup&(t) / D(t)dt < oo, then R(t,-) — T weakly in L*(R?) ast — oo.

t=0
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(¢) If sup&(t) < oo and the energy E defined by (L) satisfies E(t) = o(Int)
20
as t — oo, then

| PRy~ [ wPrw.
R4 0 JRd

Remark 2.12. Unlike in Theorem [T, no smallness assumption is made on U at
t =0 (U may even be linear in space), so there is no such geometrical structure on
the initial velocity as in [28] 20].

Remark 2.13. In view of 2I4)-(@I5) and the property £ > 0, the assumptions of
point (b) are fairly natural, after noticing that

TT'((tt))3 : ( / Rdy>1/2 <T—14 / R divU|2dy>1/2
( / Rdy>1/2 D(t).

Similarly, at least in the case v = 0, the formal conservation of the energy E defined
by ([LA), encompasses the assumption of point (c).

Remark 2.14 (Wasserstein distance). The points (b) and (c) of Theorem 2ITlimply
the large time convergence of R to I' in the Wasserstein distance W5, defined, for
v1 and v, probability measures, by

1/p
Wy (v1,v2) = inf { (/ |z — ylpdu(w,y)> ;o (M) = Vg} :
R4 xRd

where 1 varies among all probability measures on R x R?, and T R? x R4 — R¢
denotes the canonical projection onto the j-th factor. This implies, for instance,
the convergence of fractional momenta (see e.g. [34] Theorem 7.12])

(2.17) [ Rty — [1PTeay. 0<s <.
— 00

Back to the initial unknowns (p,u), Theorem 211l and ([27) yield

/R|diVU|dy§

S

SRl

lpolloirey 1 _ioi2/mn2
Pt T am s
as announced in Theorem [[2] where the symbol ~ means that only a weak limit
is considered. However, in the special case of Gaussian initial data considered in
Section[3.]] it is easy to check that all the assumptions of Theorem 211 are satisfied,
and moreover that R(t,-) — T strongly in L'(R?). Finally, another consequence of
Lemma 28] the (proof of the) last point in Theorem 2TT] and (27) is

1 2 / /
5 / ptfult.a)Pde, ~ P'O)dlpollLies) It~ ~P'(0) /

This shows that indeed, no a priori information can be directly extracted from the
energy F defined in (L3).

p(t,x) In p(t, x)dx.
d

3. FROM GAUSSIANS TO THEOREM [2.11]

This part of the paper is devoted to the large time behavior of solutions to (3]
and its variants. We first compute explicit Gaussian solutions and then proceed to
the proof of Theorem 2111
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3.1. Explicit solution. In this section, we resume and generalize some results
established in [36] [I7]. The generalizations concern two aspects: we allow densities
and velocities which are not centered at the same point (hence Z; and ¢; below),
and we consider the quantum Navier-Stokes equation.

3.1.1. Euler and Newtonian Navier-Stokes equations. We recall the compressible
Euler equation for isothermal fluids on R?

{&p + div (pu) = 0,

3.1
(3-1) O(pu) + div(pu @ u) + kVp = 0,

where k£ > 0. As noticed in [36], (BI]) has a family of explicit solutions with Gauss-
ian densities and affine velocities centered at the same point. Allowing different
initial centers for these quantities leads to considering

Bo1z1 Co1
(3.2) p(0,2) = bpe™ Ti=1 2% y(0,2)=| | +]| ¢ |,
Bodxd Cod
with b, ag; > 0, By, co,; € R. Seeking a solution of the form
61 (t):vl (&1 (t)
p(t,r) = b(t)e” S5 Olj(t)(ﬂvj—fj)27 u(t,z) = + ,
Bd(t):vd Cd(t)
and plugging this ansatz into ([BI]), we obtain a set of ordinary differential equations:
(3.3) & +2a;8; =0, Bj + ﬁf‘ —2ka; = 0,
d
(3.4) fj = ijj + ¢4, b= bz (O.éjf? + 2043‘5]‘?]‘ — 2a,c;T; — ﬁ]) ,
j=1
(35) éj + ﬂjCj + ZIQOijj =0.

Mimicking [23], seeking «; and 5, of the form

i (f) = 0 oy T
=S PO Say

we check that the two equations in [B3) are satisfied if and only if

ZHOZOJ'

(36) %j——, Tj(O):l, ’f'j(()):ﬂoj,

Tj

and we find

bo
bt) = ———r,
v TS, ()

Remark 3.1. Since the velocity is affine in x, this computation also yields explicit
solutions for the isothermal (Newtonian) Navier-Stokes equations, but not for its
quantum counterpart, as we will see below.

T;(t) = cojt,  ¢i(t) = coj (1 _H® t> .

7;(t)
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3.1.2. Korteweg and quantum Navier-Stokes equations. As in [I7], we generalize
@BI) by allowing the presence of a Korteweg term (¢ > 0), and we extend this
contribution by allowing a quantum dissipation (quantum Navier-Stokes equation,
when v > 0). We recall the isothermal Korteweg and quantum Navier-Stokes
equations

Op + div (pu) = 0,

(8.7) O(pu) + div(pu @ u) + KVp = 6—;pV (M) +vdiv (pD(u)),

NG

with €, > 0, and where the Korteweg term is also equal to
2

EZVAp — e2div(V/p® Vyp),
which is called the Bohm’s identity. Proceeding as in the previous subsection,

B3)-B3H) become

(38) dj + 204ij = O, Bj + ﬁ? — 2:‘<Laj = 82(1? — I/ajﬁj,

d
KR _ ; .2 _ - _
Tj =BT+ ej b=bY (4T + 20577 — 205657 — )
=1
éj + ﬁjCj + 2majfj = —820455]‘ + I/ajﬁjfj.

Again, we seek o and 3; of the form

Qpj; T; (t)
aj(t) = =pirg, Bilt) = =orss
T; (t) T; (t)
we check that the two equations in (B.8]) are satisfied if and only if
2Kk o] i
we,v 0; 0; j e
(39) 7-;7 = 5 vj + 52 5,1;] - VO‘OJ'T%]# T‘?)V(O) = 15 7—;7 (0) = ﬂ()jv

and we find, like before,

b(t) bo T;(t) t, ci(t) 1 Ul yy(t)t
= TTd e La\t)=Cogt, GAL) = Coj R :

15, 75 (t) ()
3.1.3. A wuniversal behavior. Tt is obvious that the Euler equation B is a par-
ticular case of (B), by taking ¢ = v = 0. The Korteweg equation (v = 0) is
in turn related to the nonlinear Schriodinger equation, through Madelung trans-
form. In the present case, consider the logarithmic Schrodinger equation in the
semi-classical regime,

2
(3.10) ie0)° + %Aw = rn (|¢°]?) ¥°.

The Madelung transform consists in writing the solution as ¥ = \/ﬁe“"/ €, with
p = 0 and ¢ real-valued. Plugging this form into [B.I0) and identifying the real and
imaginary parts yields (81, with the identification u = V¢. The model [B.I0) was
introduced in [9], where the authors noticed that this equation possessed explicit
(complex) Gaussian solutions: the phase ¢ is then quadratic, hence a velocity
u = V¢ which is linear (or affine). For fixed £ > 0, the large time dynamics for

BI0) was studied in [14].
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As a matter of fact, the presence of a Korteweg (¢ > 0) or quantum Navier-Stokes
(v > 0) term does not alter the large time dynamics provided in Lemma 25

Lemma 3.2. Let a,x >0, B € R, and e,v > 0. Consider

2k & 7o

(3.11) 7OV = + —v Y(0) =«, 77(0) = 8.

= (Ta,u)?; (Ta,u)z’

It has a unique solution 7% € C%(0,00), and it satisfies, as t — oo,
TEV(t) ~ 2tVkInt, 75Y(t) ~ 2VkInt.
t—00 t—o0

We present a sketchy proof of Lemma in Appendix

Lemma 32 shows that € and v do not influence the large time dynamics in (B.6).
In particular,

aj(t) ~ (Zt\/nlnt)_2, Bi(t) ~ Lo ~ [£(0)]] 1 1

t—s00 t—oo t’ tmoo w2 (2t\/kInt)d’
Tj(t) = cojt = o(a;(t)), ¢(t) =20,

thus revealing some unexpected universal behavior for the explicit solutions to (B7).
This is an important hint to believe in Theorem [2.11] as well as a precious guide in
the computation, in particular in the derivation of the change of unknown functions

@).

3.2. Proof of Theorem [2.17] For the end of this section, we consider a pressure
P satisfying Assumption 2.4l As a preamble, we prove a useful a priori estimate:

Lemma 3.3. Consider a density R(t,y) and a velocity-field U(t,y). Suppose that
the pseudo-energy

1 , &2 9 9 T OR
Elt) = — RIUF" + - IVVR|"+k [ (Rly|"+RInR)+ — G| =
Rd 2T Rd Rd 9 Rd

272 -

is bounded from above for positive times, E(t) < A for allt > 0. Then there exists
Co > 0 such that for all t > 0,

1 2 OR
oor [ RO+ [ 9VRRes [ RO Ry [ 6 (5) < co
R4 27’ Rd Rd R T

272

In view of Remark 2213 the assumption of this lemma is a consequence of the
assumptions of Theorem 2111

Proof. We note that since P is convex, G > 0, so all the terms in £ but one are
non-negative. The functional

1 2
Ei(t) == | RIUP+ —5 [ [VVRP+P'(0)( [ Ry?*+ | RWR
2T 2T R>1

d
T OR
o=
o5/ <Td )
is the sum of non-negative terms, and

E(t) <A+P’(0)/ Rin~.
R<1
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1
/ Rln—g/ R,
R<1 R R4

Using the interpolation inequality

Note that for any n > 0,

. 1—n—dn/2 dn/2 -
/]Rd R On”RHLl(an)n [yl RHL’{ (®ey 0<7< d+2
we infer

1—n—dn/2 dn/2
E4(t) < A+ CoPO)IR L ety BTV -

Choosing n < 2/(d + 2) and invoking the boundedness of mass, we deduce that

&4 (t) remains uniformly bounded for ¢ > 0. The lemma follows by recalling the
estimate used above,

1 dn/2 dn/2
Rm SR ey My PRI
R<1

O

Remark 3.4. In view of the evolution of & given by (ZI4]), and given that the
dissipation D defined by (2I8]) is non-negative, the assumptions of Lemma B3] are
fairly natural. The uniform boundedness of &, consequence of the conclusion of
Lemma [3.3] explains why the assumption

/ D(t)dt < oo,
0

made in Theorem[2.17] is quite sensible, even without invoking the Csiszar-Kullback
inequality to claim that & > 0.

Proof of Theorem [2.11. We assume that (vVR,VRU,Ty,Sk) is a global weak so-
lution of ([2.8]), in the sense of Definition 210

(a) The proof of the first point is a rather straightforward consequence of Defini-
tion 2.10l and the assumption fo t)dt < oo. Define

L@:Aywwmw,@mzéﬂmwm»

Integrating the momentum equation in ([Z.I0) with respect to y (and just setting
¢ = v =0 in the case of the Euler equation), we find

. 1 d 2
Ii=-= [ div(RU®U)-2xI, — — [ VP (&) + —/ div (Sk)
T2 Rd 9 Rd T 27’2

+ = div(\/ESN)+£/ VR.
]Rd

72 Jpa T

In view of Definition 210, RU®RU, R € L{°.(0, 00; L*(R?)) as well as eSk, VW RSy €

L2 .(0,00; LY(R?)). On the other hand, the property [ D(t)dt < oo yields
[P (0) = aP'(0)]|,_en € Liy.(0, 00; Ll(Rd)). Therefore, all the functions whose

divergence or grad1ent is present above belong to L (0, 00; L*(R%)), so integrating
by parts in space yields

loc

:.Zl = —2/%:[2.
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Similarly, multiplying the continuity equation by y and integrating in space,
. 1 1 1
Iy =—— div(RU RU = =14,
2= == [ wan(rr) = 5 [ U= 57,

where we have used the property R|y||U| € L{2,(0,00; L' (R?)), which stems from
Definition and Cauchy-Schwarz inequality. Therefore,
) ) 1
Il = —2/1:[2, IQ = —211
T
Introducing Jo = 775, we readily compute Jo =0, hence

~L,(0)t + T2(0) ) t
#v Ti(t) = Z:(0) — 2:%/0 To(s)ds.

The first point of Theorem [Z11] is then a direct consequence of Lemma

Ir(t) =

(b) We split the proof of the second point into four steps.

Step 1. We first obtain an equation satisfied by R only. Since 9;(720;R) =
—0, div(RU) as well as 9;(720; R ) = 7202 R + 2770, R, we obtain from (28] that

720?R + 2770,R = P'(0)LR + v2 (RU®U) +div (P'(&) — P'(0)) - VR)
e? T
+V?: <—2\/§SN + —2SK) +v-AR,
T 2T T

where we denote by £ the Fokker-Planck operator LR := Ay R + 2div, (yR).

Step 2. Since 72 < (77)? as t — o0, it is natural to introduce the new time variable

1 1 7 1 1
= / _— = — —_ = — T ~  —
s(t) = P'(0) — =3 / =3 In7(t) e Inlnt,
where the last estimate stems from Lemma 25 and we define a : s — a(s) = t.
We observe that, thanks to Lemma [Z0] the following asymptotic estimates hold in
terms of the s-variable:
~ / 2s _ets . ~ 7 2
T o as) o 2/ P'(0)e**e® |, Toa(s) o 24/ P’(0)e
Setting R(Svy) = R(tu y)7 U(Su y) = U(tay) and T]\_](S,y) = TN(tvy)u SK(Svy) =
Sk (t,y), a straightforward computation shows that R satisfies

OsR — (if:(a))aR-l-(f;(i O2R = LR+ N,[R,U,Ty,Sk],
where
NalR, U, T, S = ﬁvfz . (RU @ 1)
(3.12) +div (P (545) - P'(0) vR)
+ V2 <(TO \/—SN+ )SK> TZZAR,

and the same compatibility conditions between overhned quantities as in (ZIT])—
ZI2). We also remark that we have

div (P’ (¢27) - P'(0)) VR) = G 090‘)

d

A(P(a)—aP’(O))‘ o
(roa)d
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In view of Lemma [33] (R, U) verifies for some constant Cy > 0

U)
(3.13) sup/ R(1+ |y]* +|In R|)dy < Cy,
and we also have, by the assumption [~ D(t)dt < oo,
[ E2) (VR + 2 9VALL ) o
0 \Toa 2(Rd) L2(R4)
(3.14) +/ (7 0 a)?(1 o a)? / (P(c) — aP'(0)) ’ dy | ds
0 R¢ T rom?

* toa
+’//0 o IS N 32y ds < O,

for some constant C7 > 0.

Step 3. Let s € [0,1] and consider a sequence s,, — 0o when n — co. Define the
sequences R, (s,y) := R(s + 5n,9), Un(s,y) := U(s + 5n,9), Tnm := Tn (s + 50, 9),
Skon =Sk (s + sn,y) and a,(s) := a(s + s,), in such a way that

/ /
2P (0) as}_zn + L@aan = ERn +Nan [Rn7 Unu TN,na SK,n]

(7 oay)? (7 oay)?

Moreover, estimates (BI3) and (3I4) yield

(3.15) OsR,, —

(3.16) sup sup R,(1+ |y/*+ |InR,|)dy < C,
neN sef0,1] Jrd
and
1 .
Touw
i n H —0,
A e B (Y R A I
1
(3.17) lim ; (70 an)?(T 0 an)? (/R (P(c) — aP'(0)) L: o dy> ds =0,
(roan)

1
i v [ T2 8l ds =

n—>co Toa
From (B10) and Dunford-Pettis theorem, we deduce that there exists
Ro € L'((0,1) x RY)
such that (up to extracting a subsequence)
R, — R, weakly in L'((0,1) x R%) as n — oo,

with Ro, of finite (mean) relative entropy fol Jga |Roe In(Roo /T)| < o0
Therefore, passing to the limit n — oo in Equation (315]), we obtain

(3.18) DsRoo = LRo in D'((0,1) x RY).

In order to establish ([B.I8]), the convergence of the second, third and fourth terms
of (BIH) are evident, hence we only give the details for the convergence of the term
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No, [Bis Un, T ns Sk ) in D'((0,1) x RY). For any ¢ € D((0,1) x R?) we have

n

1 S ! 1 _
‘<mv2 5 (RnUw@Un)7¢>’ = /O/Rd m(RnUn®Un) : VZpdyds

1 Yitoay, 2 —_ 9
. (ﬁﬁ) (/0 (Fooz) WAl a5 ).

from which we deduce, using ([B.I6]) and ([3.I7), the convergence of the first term of
Na, [Rn,Un, TN, Sk ,n), that is

1 _ _
lim ———=V?: (R,U, ®U,) = 0in D'((0,1) x RY).

n—oo (7' o an)Q

For the second term, we write
’<le ((Pl((T‘Zg:)d) - P/(O))VRR) 7¢>‘

[ [ roan o) 0P

_ A¢dyds

(roan)d

1 ! . 2 d /
< (i‘ﬁ’um> </0 /Rd(man) (r0an)d (P(0) — 0P (0))\6 - dyds),

- (roan)d

which again converges to 0 thanks to (310) and (3I7). Concerning the third term,
we recall first the compatibility condition gK,n = R,V?*R, — VR, @ V\VR,
from (ZI2), from which we obtain

1 ) =
1
1 _ _
: 52/0 /R (1 oan)? ('VVR—W + IRnI) (IV2¢] + [V3¢]) dy ds

1 1 Foa 2 _
2 N )
= (s%%W) </0 <Toan> IV\/R_nILg(Rd)dS>

1 _
+e2 | sup ———5 | sup sup |[[RullL1(ge),
s€[0,1] (TOOén) neN se[0,1]

which goes to 0 by using (.16) and (17). For the fourth term of Ny, [Rp, Un, TN 1, Ske.n),s

we have

u<¥v2-(\/}z_§ )¢> y/l/ _ L RSn. Viedyds
(Toan)2 ' nONn - 0 Rd (Toan)2 nONn - J

1
1 — _
—— VR, |Sna| V%0 dyd
/0 /Rd (Toay)? ‘ N, H oldyds
1 1
! 1 5 2 2 ! 7.'004 — 2 2
ol [ VAL ) ([ R e 4
NV</(; (Toay)(Toay) H L2(Rd) S) </0 (Toan)? H N, HL2(Rd) 5>
1
3

1 _ b Foa -
<v|sup sup ——— sup sup ||Rnllp1(ra (/ ————[ISn.n 2 ds) ,
<n€N s€[0,1] (foay)(to an)> (neN «el0.1] [ RnllL (RT) o (Toay)? | ||L2(]Rd)

82

<v




18 R. CARLES, K. CARRAPATOSO, AND M. HILLAIRET

and that last expression converges to 0. Finally, for the last term of No,, [Ry, U, TN ., Sk n),

we obtain
. 1 .
<ToanARn,¢>‘—V// ToaanA¢dde
0 RdToan

T Oy,
Sv| sup T2 sup sup ||Rn||L1(Rd) ,
s€[0,1] T © Qn neN s€[0,1]
which also goes to 0.

Step 4. We now follow the arguments of [14] in order to show that R., = I', which
concludes the proof of point (b). Because R, has finite entropy and, by a tightness
argument, R,, cannot lose mass thanks to (.I6)), [6, Corollary 2.17] entail that the
solution to ([BI8)) satisfies

v

| Rocls) = Tllaces) — 0,

since R and I" have the same mass in view of (Z7). On the other hand, in the

s-variable we have )
_ Toa _
0sR+ ——— div(RU) =0,
+ P(0)T o« v(RU)
and (EI1) implies

TOoX

div(R,U,) — 0in L2((0,1); W= bY(R?)) as n — oo.

TOoW
Therefore 0;Roo = 0, hence Ro, = I'. Since the limit is unique, no extraction of a
subsequence is needed, and the result does not depend on the sequence s,, — o0,
hence the result.

(¢) The last point of Theorem [2.11]is proven by rewriting the energy E, defined by
(CH), in terms of the new unknowns (R, U) via [27):

1 2

B =5 [ stoluttaPde+ 5 [ 1VVoEaPde+ [ Flole,z)da
2y, 0(7)° > 7
=53 | REIUG Iy + ==~ [ Rt y)lyldy +0— [ B(t,y)y - U(t,y)dy
g? 2 0 T

+97/‘V\/R(t,y)‘ dy+/F (ﬁR(t,ﬁ>> da.

Recalling the identity (214,
F(p) = P'(0)plnp + G(p),

we can write

0(+)?

B = 55 [ REpUG) P+ 205 [ ReeolyPdy+ 07 [ Rttty

T 972
+ 9? / ‘V\/R(t,y)rdy + 0P (0) /R(t,y) In R(t,y)dy
+60P'(0)In % /R(t, y)dy + 77 / G (%R(t, y)) dy.

In view of Lemma [3.3] the first, fourth, fifth and last terms are bounded functions
of time. Invoking in addition Cauchy-Schwarz inequality, the third term is O(7) =
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O(VInt) from Lemma Therefore, since we have assumed E(t) = o(lnt), we
infer

-\2
%/R(t,yﬂypdy — P'(0) lan/R(t,y)dy =o(Int) ast— oco.
Lemma 23] yields
7=2/P'(0)Int(1+0(1)), InT=(1+0(1))Int,
therefore

2/R(t,y)|y|2dy—d/R(t,y)dyt;g()-

Recalling that the mass is conserved, and an easy property of the Gaussian I,

/R(t,y)dy= /R(O,y)dy= /F(y)dy, /Iylzl“(y)dy = g/l“(y)dy,

the proof of the last point of Theorem 2TT] follows. O

4. ON THE NOTION OF WEAK SOLUTIONS

In this part, we investigate the notion of weak solutions that we consider for
the long-time analysis. At first, we provide a priori estimates satisfied by clas-
sical solutions to (LA4) such that the density decays sufficiently fast at infinity.
These estimates justify the regularity statements of Definition Second, we
prove sequential compactness of bounded sets of weak solutions. Classically, this
compactness result is a cornerstone for obtaining existence of weak solutions.

4.1. A priori estimates. In this section, we present some a priori estimates that
motivate our definition of weak solution. As we noticed before, the structure of (2.8))
suits better a priori estimates than ([L4)). So, from now on, we consider solutions
(R,U) of the system written in this form.

4.1.1. Energy estimate. First, we have an extension of Lemma [3.3
Proposition 4.1. Consider e,v > 0. Assume that the initial data satisfies
Ro(1+ |y +InRy) € L', /RoUy € L?, eV\/Ry € L.
Let (R,U) be a smooth solution to [Z8)) associated to the initial data (Ry,Up), then
R(1+ |y* + In R) € L>=(R*; L} (RY)),
%\/EU e L=(R*; L2(RY)),

SUVR € Lx(®Y LRY),
(4.1) \/g\/}_w e L2(R; L(RY)),
g\/gv\/}_z € L*(RT; L*(RY)),

g\/ﬁDU € L*(RT; L*(RY)).
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Proof. In the same vein as in Remarkm we first remark that

/R|d1vU| /R+——/R|DU|2 /R+ -D.

Therefore, using ([214), the conservation of mass and the fact that [ :—2 < 00, we
obtain that the pseudo energy & is uniformly bounded from above. Lemma
implies that £ is uniformly bounded in time, and its nonnegative dissipation D is
integrable in time, which gives the desired a priori bounds on (R, U). O

4.1.2. Pseudo entropy and effective velocity. Contrary to the Newtonian case, the
previous a priori estimate is not sufficient to run a classical compactness argument
for proving existence of solutions. So, we provide here a further estimate satisfied
by a “pseudo entropy” of an effective velocity. This construction is inspired of [5].
Given A\ € R, define the effective velocity

Wyx=U+ AVInR.
Then the pair (R, W)) satisfies

A

1
O:R + = div(RWy) = S AR,
T T

1
(4.2) OH(BW)) + —5 div(RWx @ Wx) + 2P (0)yR + P' (%) VR

272 2L Ry <A\/\/Ej> + 55 div(RDW)) + = A A(RW) + _VR

where A; :=4X\? —4vA 4+ €2 and Ay := v — 2\

Remark 4.2. If 0 < ¢ < v, we define \ = X=YE—= V;L‘EQ > 0 so that Ay = 0 and
A2 = V2 —e2 > 0. Then (R, W)) satisfies

1
0:R+ =5 div(RW)) = %AR,
T T

1
(4.3) 0y (RW) + - div(RWx ® W) + 2P (0)yR + P' (&) VR

- A—j div(RDWS) + %A(RWA) + 2 VR
T T T

We observe that when e = 0, then Wy = U, and ([&3)) is just the original equation
23) with e = 0.
We define the pseudo A-entropy of (R,U) by

: ¢ OR
Exi= 5 2/R|WA|2+ 12/|V\/§|2+P/(0)/(R|y|2+RlnR)+%/G(_d>7

T

and its associated dissipation
_ T 2 2 T a Y
Dyi= 5 [{RWAP 4 MOVER} + dlr (/ [P(0) — oP (0)]|U_9_5.>

A A 4NP'(0
+ —2/R|DW,\|2+ g/R|VV[/A|2+ T()/W\/RF

4\
po)

/—G”( )|v\/_|2+Ml R|V2InR|.

This is nothing but the pseudo energy and dissipation associated to (d.2]).
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By reproducing computations of the a priori estimate to this system, we obtain:

Lemma 4.3. Let (R,U) be a smooth solution to [Z8) and consider the effective
velocity Wy :=U 4+ AV In R with A € R. Then the pseudo A-entropy E\ satisfies

) .
Qe ipy = M/R—ul/RdivW,\.
dt T2 73

Remark 4.4. If we set A = v, we note that A\; = €2 and A» = —v. In this case, two
terms in the dissipation combine to yield:

A A
-— R|DWA|2+—/R|VW,\|2 = 1/ | AW, |? = i/ |AU|?.
7-4 T4 T4 R 7-4 R

Thus, we recover the BD-entropy estimate associated with our system (see [10, [11]
for the introduction of this method, and [33] in the case with a Bohm potential).
We apply only this particular case to obtain the regularity statement below. Never-
theless, we apply the choice of A from Remark in the next subsection (to prove
a Mellet-Vasseur estimate). This choice enables to delete the Korteweg term, this
is why we provided a statement with a general A in the previous lemma.

Combining the latter entropy estimate with energy estimate yields controls on
(R,U), which enable to consider various cases for the parameters ¢ and v. This
ensures the following regularity properties of a classical solution:

Proposition 4.5. Consider e,v > 0. Assume that the initial data satisfies
Ro(1+ |y +InRy) € L*'(RY), /RolUp € L*(R?Y), (e +v)V/Ry € L*(R%).
Let (R,U) be a smooth solution to (Z8) associated to the initial data (R, Uy), then
R(1+ |yl + mR) € L*R"; L' (RY)),

%\/EU € L®(RT; L*(R?)),

EXIG VR e 1@t 2(RY),

\/gx/ﬁU € L*(R*; L2(RY)),

(4.4) 6\/7—73V\/§ € L*(R*; L*(RY)),
Vv

g\/}_%VU € L*(RY; L*(RY),

VVR e L*(R*; L*(RY)),

v OR OR 9 Lot 11 /md
——dG”< d)|v\/}_z| e LY(R*; LY (RY)),

T2 T rd
i@mw log R € L2(R*; L*(RY)),
and we observe that last estimate implies (see [22, [33])

1/2,,1/4
@vz’\/ﬁeL?(RﬂL?(Rd», c Y VRi e LAR*; LARY).
.

T
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Proof of Proposition [{.3} From ([2I4) and Lemma 3 with A = v, it follows
GEO+a0)+D0+D.0 =2 [ R

and we conclude in a similar way as in the proof of Proposition [£.]] using now that
Jdt/7(t)* < oo and recalling that P'(o) = P'(0) + ¢G" (o) with P’(0) > 0 and
G" > 0. O
4.1.3. Mellet-Vasseur estimate. It turns out that the above estimates are insuffi-
cient for the construction of solutions to (L)) via a compactness approach: the
above information do not enable to pass to the limit in the convective term RU @ U
(see the introduction of [32] for more precise statements). So, when 0 < & < v, we
add a further estimate that we adapt from [27], 5] to the isothermal case. For this,
we restrict from now to the isothermal case P(p) = kp.

Proposition 4.6. Let v > 0 and 0 < ¢ < v, P(p) = kp with k > 0, and T > 0.
Assume that the initial data satisfy

Ro(1+ |y +InRy) € LY(RY), +/RoUp € L*(R?Y), (e +v)V/Ry € L*(RY).

Let (R,U) be a smooth solution to [28)) associated to the initial data (Ro,Up).
Consider \(e) := (v — Vv2 —€2)/2 > 0 and define the effective velocity

We:=U+ Ae)VInR,
so that (R, W) satisfies [@3]). Denote pprv(2) = (14 2)In(1 + 2) for z > 0, and
suppose further that
/d Ropmv ([Weol* +1yl?) dy < oo
R

Then there exists a constant Kp depending only on T and C{ depending only on
initial data such that

sup {/Rd Romv (IWe® + |yl?) dy}

te(0,7)
T
[ ] Ry (WP + 107) (AEITWLE + @DV} dydt < K,
0 R

where Aa(g) == V2 — &2 > 0.

Remark 4.7. The functional is not quite the same as in [27], where the authors
analyze @y (|u|?). Considering an effective velocity follows from [5]. On the other
hand, the introduction of the term |y|? is due to the presence of term yR in (Z.8),
which is a specific feature of our approach adapted to the isothermal case, and
seems necessary in order to obtain closed estimates.

Proof. We first remark that, by construction, we have:

(4.5) Gy =1+l(1+2), 2ol () <1, V230
Given (R, W.) a solution to [@3)), we have then:
d

! Romv (IW* +[y*)

_ /ZM%@MV (Wol? + yl?) + 2/R<p;w (Wl + [y]?) W - 8, ..
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For conciseness, we drop the arguments of psv and its derivative in what follows.
We may then rewrite the last integral on the right-hand side by applying that

Ae) A2(€)

T2 72

ROW. = 2 IARWL) — (AR)W.] + div(RD(W.))
: 1
+ VR — kVR - 2kyR — < RW. - VWV,
T T

from which we obtain

d Ae) A2 ()
4. — = —=1 2 I
+2(”—T—n> I2+2(i2—2n> Is,
T T
with

o= [ {21ARIV) — (ARW.] Wephyy + ARouv},
I = /diV(RD(Ws)) Wby
L= /vnwswéw,

I3 :/yR'WéP;WV'

We compute bounds above for these integrals by applying standard transformations
and application of ([@H]). By integrating by parts we obtain

b= [ RIVQW.P)Poiny -2 [ BOW.Peny +2 [ Ry + 2P ein)

== [ RGPSy —2 [ BT Poly +0 ( [ra+ue+ |w5|2>> .

For the term I; we have

hi=— [ Re DOV +0 ( [ raw.+ |y|2>|saxw||D<Ws>||vws|)

— —/R<p§wv|D(W5)|Q +0 (/R|VW5|2> .

We compute Iy by integrating by parts, which gives

I = —/Rdist v —2/R[(W5-V)W51~Wasﬁ’ﬂ’4v —2/RWs YOV

and introducing an absolute constant C' and a small parameter n > 0 to be fixed
later on, we obtain

Ll <c ( [ EDOV e + [ RO+ |y|2><pxw|vws|)
C
< [ RepyIDOVIP + S < [row.+ [ ra +sa’Mv>>

C
< [ Réw DOV + £ ( [row. s [Ra+ie+ |Wa|2>) .
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Concerning I3, Young inequality yields

IIsl</RIyIIWE|(ln(1+IWs|2+|yl2)+1) </R(|y|2+|Wa|2)+/Rsan.

We substitute Iy, I1, Is and I3 with these computations into ([40]), and we remark
that 7 and 1/7 are uniformly bounded with their derivatives on [0,7]. We obtain
then that there exist positive constants ¢y and Cp depending only on T' for which

(4.7)
G [Rew +er [ Ry DEITWLE + X2 DOVIPY < (Crly+1) + ) x

<(n [ Rewloop+ 2 ([ rwp s [Ros P+ [ row ).

Choosing 7 sufficiently small so the first term of the right hand side is absorbed by
the left hand side, we are in position to apply a Gronwall lemma to f Royyv. We
note here that combining the estimates of Propositions E.1] and entails

T T
//R|VW€|2+/ / RO+ |y + [W.]?) < Kr(Co + C}),
0 JRrd 0 JRd

and we obtain

sup / Ronyv < KrCy.
te(0,T) JRd

It remains to integrate [@7) to conclude. O

Remark 4.8. We note that, when ¢ > 0, the choice pprv(2) = (1 + 2)In(1 + 2) is
not unique. Indeed, with the term Iy we control a full gradient of W,, while the
term I only enables a control of the symmetric part of this gradient. Hence, when
€ = 0 we have to choose an entropy such that zw}(ﬂ, is bounded, and the parasite
term appearing in I; is controlled with the previous pseudo-entropy estimate. On
the other hand, when ¢ > 0, this Mellet-Vasseur estimate is self-consistent and we
can afford entropies ¢ such that zgp” < <p,, typically, any power-like entropy.

Remark 4.9. The restriction ¢ < v is mandatory to enable the choice of a parameter
A such that the Korteweg term disappears in the system for (R, Wy), see {Z3).

4.2. Compactness of weak solutions. In this section we assume v > 0 and
0 < & < v, and we consider the isothermal case P(p) = kp with k > 0. From
Section @] any classical solution (R, U) to ([2.8)) on (0,T) decaying sufficiently fast
at infinity satisfies the following a priori estimates:

e The conservation of mass:

(4.8) sup / R =M,
te(0,7) JRd

where M is the mass of the initial data,
e From the dissipation of the pseudo energy:

(49) sup {#/}R (R|U|2+52|V\/§|2)+n/RdR(|y|2+|lnR|)}

te(0,T)
T .
+/ <l3/ (R|U|2+a2|v\/f_%|2)+i4/ |SN|2> dt < Co,
0 T Rd T Rd

where Cy depends on initial data only.
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e From the dissipation of the pseudo BD-entropy:

1
(4.10)  sup {ﬁ/(R|U+VVInR|2+52|V\/}_%|2) +/£/R(|y|2—|—|1nR|)}

te(0,T)

T .
4
+ [ (S [ (RUP+29VRR) + 2 [+ =5 [ IVVERP ) at
o \7° T
T 2
ve 2 2
+/0 F</R|v In R| >dt§0{),

where C) depends again only on initial data and Ay stands for the skew-
symmetric part of Ty.

e The Mellet-Vasseur type inequality: denoting parv(2) = (1 4 z)In(1 + 2),
there holds

sup {/RSDMV (W + Jy] )}

(4.11) te(0,T)

//va (W[ + 912) {AE) T ? + Ao(e) S [} < Cllr,

with C(/)I, o+ depending only on initial data and 7', where hereafter in this
section we define the effective velocity W, associated to (R, U) by

We:=U+ Ae)VInR,

where we recall that \(g) = LX=Y2—== V;LEZ >0and Xa(e) = V12 —e2 > 0.
We proceed by studying the compactness of weak solutions to (2.8]) which satisfy

the estimates (L.8)-@3)—(@I0)-@II). The different arguments follow closely the
proof of [27, Theorem 2.1].

Theorem 4.10. Assume v > 0 and 0 < € < v, P(p) = kp with & > 0, and
let T > 0. Consider (v Ry, VERyUp)nen a sequence of weak solutions to ([Z.8))
satisfying (A8)-(@9)-@I0)-@I0) with constants Cy, Cy, C'(;:T independent of n €
N, and denote by Sk, and Ty, the tensors associated to (v/Ry,,/R,U,). Then,
there exists (\/}_%, \/RU), with associated tensors Sk and Ty, such that:

i) Up to the extraction of a subsequence, (v/ Ry, v/ RnUn, TN n)nen Satisfy

VR, - VR in C([0,T); L*(R%)),
VR, U, — VRU in L*(0,T; L*(R%)),
Tnn — Tn in L?(0,T; L*(RY)) — w,

ii) (vVR,vRU) is a weak solution to ZJ) in the sense of Definition [Z8.

Proof of Theorem[{-10, To start with, we remark that, thanks to (Z8)—(@Z9)-(ZI10),
the sequence we consider is bounded in the following respective spaces:
(b1) (V/R,), is bounded in L>(0,T; H'(R?) N L2(R%; |y|2dy)),
(b2) (VR,U,), is bounded in L*>(0,T; L*(R%)),
(b3) (']TN n)n is bounded in L2(0,T; L2(Rd))
(b4) (V2V/R,,), is bounded in L2(0 T; LA(R%)) if ¢ > 0.

Up to the extraction of a subsequence, we can then construct (v/R,VRU,Ty) as
the following limits:
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(c1) VR, — VR in L®(0,T; H'(R?)) — wx

(c2) VR,U, — VRU in L>=(0,T; L*(R%) ) w,

(¢3) Ty n — Ty in L0, T; LQ(Rd)) w,

(c4) V2VR, = V>*VR in L?(o,T,L2(Rd)) —wife>0.

We note directly that the non-negativity of v/R is preserved in the weak limit.

Step 1. From (b1) and Sobolev embeddings, we have

q€2,0)ifd=2,

(b5)  (VR,), is bounded in L>(0, T; LY(R%)) for all
q€[2,24]ifd >3,

where 2* = 2d/(d — 2). Together with (b2), this implies

g€ l,0)ifd=2,

b6) (R,Up,), is bounded in L (0,T; LI(R?)) for all
(b6) ( ) is bounded in L>( (R%)) for a {qé[ Ld]ifd> 3,

where d’ is the Holder conjugate exponent of d. Recalling the continuity equation
satisfied by R,

1 . 1
VR, = = le(\/RnUn) + FTrace(TNm),

and that 7 is uniformly bounded from below on (0,T), the bounds (b1)-(b2)-(b3)
yield that (8;V/R,), is bounded in L?(0,T; H~'(R?)). Consequently, as in [27,
Lemma 4.1], we apply Aubin-Lions’ lemma in the form [30, Corollary 4] with the
triplet H'(RY) N L2(R%; |y|?dy) ¢ L2(RY) ¢ H~'(R?), where the first embedding
is compact. This yields that

(c5) (VRy)n is relatively compact in C([0, T]; L?(R)).

Furthermore, in the case ¢ > 0, estimates (b1)—(b4) imply that (v/R,), is bounded
in L2(0,T; H*(R%)) which yields, applying Aubin-Lions’ lemma again, that

(c5?) (VRy)n is relatively compact in L2(0,T; HL (R?)) if £ > 0.

Step 2. The second step of the proof is to obtain the relative compactness of
(RnU, )n- We remark that, by definition:

Un) = VR, TN n + 2V RU, ® VR,
We combine here (bl)—(b2)—(b3). This yields that (V(R,U,)), is bounded in
L?(0,T; LY(R%)), hence (R, U,), is bounded in L?(0,T; W11 (R9)) thanks to (b5).
As for 9;(R,U,), we apply the momentum equation to write:

8y (RaUs) *——dlv (VRnUn @ \/RuUy) — 26yRy — KV Ry + ZLVR,,
T

2

+ = divSk. + — div(v/ReSn.n),
272 ’ T2 ’

where we recall that Sk ,, = VR,V*VR, — VR, @ VV/R,,. Again, the bounds
on /Ry, VR, Uy, Ty, and V2\/R,, coming from (b1)-(b2)-(b3)—(b4) imply that
0:(R,U,) is bounded in L?(0,T; W~11(R%)). So, by the Aubin-Lions’ lemma with
the triplet WhY(K) C LP(K) ¢ W~LY(K) for any p € [1,d') and any compact
K C RY, where the first embedding is compact, we obtain that

(c6) (R,Uy)y is relatively compact in L2(0,T; LY, (R%)) for all p € [1,d).



RIGIDITY IN ISOTHERMAL FLUIDS 27

In what follows we assume that we have extracted a subsequence (that we do

not relabel) so that we have the convergences:

e VR, = VR in C([0,T]; L*(R%));

e R, U, — M in L*(0,T; LY (R?)) for any 1 < p < d';

e VR, — VR in L*(0,T; H. (RY)) if ¢ > 0.
We add here that (B3] entails that the sequence (R, ), is bounded in L>(0, T; L%/?(R%))
for any 2 < g < oo if d = 2 and any 2 < ¢ < 2* if d > 3, hence it admits (up to
the extraction of a subsequence) a weak-* limit. Thanks to the strong convergence
(c5) of (VR,)n we have that

g €[2,00) if d =2,

(c7) R, — R in L>(0,T; L?(R%)) — wx for all .
q€2,2*ifd > 3.

Step 3. We proceed with defining the asymptotic velocity-field U. For this, we re-
mark first that, for arbitrary K C (0,T) x R? there holds, for arbitrary 2 < ¢ < 2*
and p such that 1/p=1/2+1/qe (1-1/d,1):

[ RnUnll e () < IV Ball Lo IV BoUnll L2 (0,7) x4 -

Taking K = {V/R = 0} N ((0,T) x B(0, A)) for arbitrary A > 0 we apply that
VR,1x — VR1g = 0in LP(K) (by (c5)), and is bounded in L"(K) for arbitrary
r € (¢,2*) (by (b5)). By interpolation, we conclude that v/R,1x — 0 in L(K).
Recalling that ||\/§nUnHL2((01T)X]Rd) remains bounded and that R,U,1x — M in
LP(K), we infer that M =0 on {v/R = 0}. So, we set

0 on {VR =0},
U - M
& on ((0,T) x R\ {VR = 0}.
We note here that by construction
R,U, . VRU,
U= lim = lim a.e. on ((0,7) x RY) \ {VR=0}.

n—oo R, n—oo /R,

In a similar fashion we define the asymptotic effective velocity field W, in the
case € > 0. We observe first that

RyuUp + 2XMe)\/RuV/Rn — M + 2X\(e)VRVVR =: M. a.e. on (0,T) x R%,
and we have M, =0 on {v/R = 0}. Hence we set

0 on {vR =0},
W, =
%—i—%\(a)@ on ((0,7) x R\ {VR = 0}.

Step 4. The last important step is to prove the strong convergence of the sequence
(VR,Uy,)y in L2(0,T; L2 (RY)). In order to do so, we work with the effective ve-
locity We, = U, + A(e)VIn R,, (which is just equal to U, when ¢ = 0). We first
remark that we have a.e. convergence of Ry (|y|? + |Wen|?). Estimate (@I

with Fatou’s Lemma yield

sup / Reoarv (Jyf2 + [We[?) < .
0,7)
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We may now repeat the arguments of 27, pp. 445-446] and [5]. Namely, we first
fix A, A’ > 0, and remark that

R, U, M
VR W, = Tt VVR, — Tt VVR ac. on {VR#0},

as well as [vVR,Wen1jw. . |<al < AVR, — 0 a.e. on {V/R = 0}. Hence we get

vV RnWS,n1|WE,n|<Aﬂ |Rn|<A? = \/§W€1|WE|<AQ |R|<A’ &.€. On (O,T) X Rd.
We write, for any compact K C R?,

/oT /K IV EnUn—VRUP < O/OT /K [V EnWe = VRW2+CN(e) /OT/K VRV

and evaluate each term separately. The second term goes to 0 thanks to (&),
while for the first term we estimate

T
/ / |V RuW-., — VRW.|?
0 K

T

S C(/ / v RoWenliw, . |<An|R, <A — \/RWEI\WEKANRKA/F
0o JK

(4.12)

T
+/ /|VRnWa,n1\W€,n\>A|2+|\/RnWa,n1|W5,n\<Aﬂ|Rn|>A/|2
0 K
T
+/ /|\/f—3W51|WE|>A|2+|\/§W51|WE|<A0\R\>A/|2 :
0 K

For fixed A and A’, the first term on the right-hand side of ([@I2]) converges to 0
when n — oo, while for the second one we have, introducing 2 < ¢ < 2*:

T
//|\/RnUn1|Un\>A|2+|\/RnUn1\Un|<Aﬁ\Rn\>A’|2
0 K
<1 /T/R (ol + |Ua2)/2) + = /T/Rq
\ln(l—i—A?) o Ji n®PMv Y n |Al|q—2 o Jx n
2

<C 1 n A

h In(1+ A2)  |A’]2—9 )’
with a constant C' independent of n. Proceeding in a similar way for the third term
of ([@I2), we obtain that

T 2
1 A
. _ 2 <
hmsup/o /K IV/RaUn —VRUP? < C <ln(1 ot |A,|2q) :

n—r00

for arbitrary A and A’, which implies the convergence
(c8) VRnU, — VRU in L2 ((0,T) x R%).

by letting A’ — oo and then A — co. We note here that, by construction v RU = 0
where U = 0 in particular on the set {v/R = 0}.

We may finally combine (c1)—(c2)—(c3)—(c4)—(c5)—(c6)—(c7)-(c8) to pass to
the limit in the continuity and momentum equations satisfied by (v/ R, vVR,U,)
and their associated tensors Sk ,, Ty, and obtain that the different items of
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Definition are satisfied by the limit (v/R,v/RU) and their associated tensors
Sk, Ty O

APPENDIX A. ON LARGE TIME BEHAVIOR FOR ISENTROPIC EULER EQUATIONS

In this appendix, we prove Theorem [[LTt for the Euler equation with pressure
law P(p) = p7, v > 1, there is no such thing as a universal asymptotic profile for
the density. In addition, the dispersion associated to global smooth solutions is not
the same as in the isothermal case. To see this, we rewrite the arguments from [28],
in the simplest case in order to illustrate the above claims. Consider on R¢, d > 1,

Orp + div (pu) = 0,
(A1) {at(pu) +div(pu @ u) + £V (p7) = 0,

with £ >0 and 1 < v <1+ 2. Consider the analogue of (2.7,

1 t T 1 t T T
Pltw) = qy <1+t’1+t>’ ut2) = <1+t’1+t>+1+t

Denoting by o and y the time and space variables for (R, U), we readily check that
in terms of (R, U), (A is equivalent to
. 8, R+ div (RU) = 0,
2
(A-2) Jy(RU) 4+ div(RU @ U) 4 k(1 — o) =472V (RY) = 0.
Note that in the case v = 1+ 2/d, (R,U) solves exactly (AJ). This algebraic
identity can be viewed as the counterpart of the pseudo-conformal transform in
the framework of nonlinear Schrodinger equations (see e.g. [I5]), after Madelung
transform and a semi-classical limit (see e.g. [3, [ [13]). (Leaving out the semi-
classical limit, this shows that at least in the case v = 1+ 2/d, (AJ) could be
replaced by Korteweg equations, with essentially the same conclusions as below.)
The important remark is that the time interval ¢ € [0, 00) has been compactified,
since it corresponds to o € [0,1). Therefore, if the solution of (A2)) is defined (at
least) on the time interval [0, 1], going back to the original unknowns yields a global

solution to ([(A.T]).

We rewrite (A.2) away from vacuum as:

9y R + div (RU) = 0,

A3 1
(8.9 9,.U+U-VU + k(1 —a)dV*d*Z’EV(RV) =0.

Using the same change of unknown function used to symmetrize (A.T]) ([26] [16]),
but in the case of (R,U), that is,

(A3)) becomes

. . 1.
9 R+U-VR+ WTRdivUzo,

(A4) o

0oU+U-VU +r——(1 - o)1 2RVR = 0.
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Multiplying the second equation by the symmetric positive definite matrix

S(o) = M

d+2—dy
1—0 I
4Ky ( ) ¢
makes the system symmetric.

Case v = 1+ 2/d. In this case, the symmetrizer is constant. Using the stan-
dard results in this framework (see e.g. [25] [31]), we infer that if for s > d/2 + 1,
(R, U)ll grs(ray 1s sufficiently small at o = 0, then (A4) has a unique solution
(R,U) € C([0,1]; H*(R%)). By the same argument, we can actually solve (AZ)
backward in time, by prescribing the data at ¢ = 1: if these data are sufficiently

small, the solution satisfies (R,U) € C([0,1]; H*(R%)). Back to the initial un-
knowns, we infer Theorem [I.1]

Case 1 < v < 1+ 2/d. In this case, the symmetrizer S goes to zero as o — 1.
Setting, for m > 1+ d/2 an integer

Fulo):= Y. (||a;1%||§2 + (00T, 885U>L27L2) ,

0<|al<m
it is proven in [28] that F, satisfies the differential inequality
dfm <CFp+C(1— U)d'y/2717d/2 (Fjjz T FTSlm+3)/2) '

o

Defining G,,(0) = Fy, (o) exp(—Co), we get

dG, <(1- o_)d'y/2717d/2 (G%Q I Gg:ln+3)/2) _
do
Introducing
G
dg
16 = [ S
we have

H (Gon(0)) < H (G (0)) +cl/ (1— s)/2-1md/2 g
0
Since the last integral is convergent as o — 1 (recall that v > 1), and

H (Gn(0)) < H(Gn(0) +Cy /01 (1— S)dv/2—1—d/2 ds .

:=C
Noticing that H(0) = —oo, we see that if ||(R,U)||gm is sufficiently small, then
(R,U) is defined up to o = 1 (by contradiction). Again, we can adapt this argument
with data at o = 1 (replace G,,(0) with G,,,(1) in the above estimate), and decrease
time to o = 0, in order to infer Theorem [[.T] Note that in starting from o = 1, we
only assume (R, U)jg=1 in H™, with | R(1)|| gz small (not necessarily ||U(1)]] gm).

APPENDIX B. QUALITATIVE STUDY OF ORDINARY DIFFERENTIAL EQUATIONS

B.1. Universal dispersion. We sketch the proof of Lemma 25 and refer to [14]
for details. The fact that under the assumptions of Lemma 25 ([2.6]) has a unique
local C? solution is an immediate consequence of Cauchy-Lipschitz Theorem. Mul-
tiplying (Z.6]) by 7 and integrating, we find

(B.1) () = C +4kInT,
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where the value C' = 32 — 4xIn« is irrelevant for the rest of the discussion. Since
the left hand side of (B)) is non-negative, we readily have

T(t) > exp (—%) > 0,

for all t in the life-span of 7. This shows that the C? solution is uniformly convex,
and global in time.

Next, we note that 7 grows at least linearly in time. Indeed, if 8 > 0, then since
T is convex,

7(t) = Bt +a.

On the other hand, if 8 < 0, suppose that 7 is bounded, 7(t) < M. Then (2.0)
yields

hence a contradiction for ¢ large enough. Therefore, we can find T" > 0 such that
7(T) = 1 and 7(T") > 0, so arguing like above,

T(t) = #(T)(t —T)+7(T), and +(t)>0 Vt>T.

From the above discussion, there exists T > 0 such that for ¢ > T', 7(¢) > 0, and so

(B) yields
(B.2) 7(t) =+ C+4xln7(t), t=>T.

Separating the variables, we have

dr
VC +4kInT N

and the change of variable 0 = /C + 4k In 7 yields

/ 4 1 / (07 =C) /a4
VO +4klnt 2K

The asymptotic expansion of Dawson function (see e.g. [I]) yields, in the sense of

diverging integrals,
2 1 2
[oa d ~ — [oa .
/ e” do~ e

dt,

We get

& hence i t
VC +4kInT t=oo VArInT t—o0

We see here that the initial data of 7, appearing in the numerical value of C, are
irrelevant for the leading order large time behavior of 7. We readily infer

T(t)tw 2tV k1Int, %(t)tw 2VklInt,
— 00 —r 00

t

where the second relation stems from the first one and (B2).
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B.2. Perturbed dynamics. The proof of Lemma [3.2] resume several of the above
steps. Local existence follows again from the Cauchy-Lipschitz Theorem. Leaving
out the explicit dependence upon € and v in the notation, and multiplying (B.11))
by 7, integration now yields

. g2 tris)\?
(B.3) () = O+ dwlnr() = 370 - U/o (%) ds.
Writing
NT g2 b /7(s) 2
C+4rlnT(t) = (7(t)" + (02 + V/O (TS)> ds >0,
we still have 7(t) > e~¢/4% > (.
Now suppose that 7 € L>®(R,). Then (B.3)) and the above property imply

(#(1))* + u/ot (%)2(15 e L=(R,),
hence

v

(#(1))* + / (+(s))?ds € L®(R,.).

In particular, fo 2 < 0o. Integrating by parts,

/Ot(+()) ds = ()7 () — aff — /TT_T 1= af— /(2ﬁ+——y7>
— (D)3 (t) — aff — /(2n+ > I(Ti)).

Since 7 is bounded, we infer

[l

hence a contradiction. Therefore, there exists ¢,, — oo such that

Now we suppose that
oo /. 2
(B.4) / (ﬂ) ds = oc.
0 7(s)
Then (B.3)) implies
(B.5) AkInT(t) — (7(t)* — oo.

Integrating by parts yields

[

¢ AN L o (7)?
2 (Z) = [ (2s= +25 — vl
tn+ /tn<7') /tn<n7'3+€ 75 I/T4>
7'_
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In view of (B, the above three integrated terms are bounded. We infer

A #(s) 1 A
/ (—) <C+(2sup—+usup 2)/ (—) .
tn \T s>t, | T(5) s2t, 7(5)? ) Ji, \7
Now (B.A) yields, for t > t, > 1,
t 2\ 2 t LN\ 2
[ ez [ ()
tn T 2 tn T
This provides a contradiction with (B4). We infer that 7 is not bounded, and
00 /- 2
/ (LS)> ds < oo.
0 7(s)
But (B3) shows that for any sequence of time along which 7 goes to infinity, (7)2
also goes to infinity. Therefore,

T(t) — oo and 7(t) — 0.
t—o0 t—o0

For large time, (B.3)) becomes
L2
(7(t)) B 4k InT(t),
and we can resume the computation of the above subsection to infer Lemma [3.2]
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