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SWEEPING PROCESSES PERTURBED BY ROUGH SIGNALS

CHARLES CASTAING*, NICOLAS MARIE**, AND PAUL RAYNAUD DE FITTE***

Abstract. This paper deals with the existence and the uniqueness of the
solution to sweeping processes perturbed by a continuous signal of finite p-
variation with p ∈ [1, 3[. It covers pathwise stochastic noises directed by a
fractional Brownian motion of Hurst parameter greater than 1/3.
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1. Introduction

Consider a multifunction C : [0, T ] ⇒ Re with e ∈ N∗. Roughly speaking, the
Moreau sweeping process (see Moreau [20]) associated to C is the path X, living
in C, such that when it hits the frontier of C, a minimal force is applied to X in
order to keep it inside of C. Precisely, X is the solution to the following differential
inclusion:

(1)

−
dDY

d|DY |
(t) ∈ NC(t)(Y (t)) |DY |-a.e.

Y (0) = a ∈ C(0),

where DY is the differential measure associated with the continuous function of
bounded variation Y , |DY | is its variation measure, and NC(t)(Y (t)) is the normal
cone of C(t) at Y (t). This problem has been deeply studied by many authors. For
instance, the reader can refer to Moreau [20], Valadier [25] or Monteiro Marques [19].

Several authors studied some perturbed versions of Problem (1), in particular by a
stochastic multiplicative noise in Itô’s calculus framework (see Revuz and Yor [22]).
For instance, the reader can refer to Bernicot and Venel [3] or Castaing et al. [5].
On reflected diffusion processes, which perturbed sweeping processes with constant
constraint set, the reader can refer to Kang and Ramanan [13].
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Consider the perturbed Skorokhod problem

(2)


X(t) = H(t) + Y (t)

H(t) =

∫ t

0

f(X(s))dZ(s)

− dDY

d|DY |
(t) ∈ NCH(t)(Y (t)) |DY |-a.e. with Y (0) = a,

where CH(t) = C(t) − H(t), t ∈ [0, T ] (thus NCH(t)(Y (t)) = NC(t)(X(t))), Z :

[0, T ] → Rd is a continuous signal of finite p-variation with d ∈ N∗ and p ∈ [1,∞[,
f ∈ Lipγ(Re,Me,d(R)) with γ > p, and the integral against Z is taken in the sense
of rough paths. On the rough integral, the reader can refer to Lyons [16], Friz and
Victoir [11] or Friz and Hairer [9]. Throughout the paper, the multifunction C
satisfies the following assumption.

Assumption 1.1. C is a convex compact valued multifunction, continuous for the
Hausdorff distance, and there exists a continuous selection γ : [0, T ]→ Re satisfying

Be(γ(t), r) ⊂ int(C(t)) ; ∀t ∈ [0, T ],

where Be(γ(t), r) denotes the closed ball of radius r centered at γ(t).

This assumption is equivalent to saying that C(t) has nonempty interior for every
t ∈ [0, T ], see [5, Lemma 2.2].

In Falkowski and Słomiński [8], when p ∈ [1, 2[ and C(t) is a cuboid of Re for
every t ∈ [0, T ], the authors proved the existence and uniqueness of the solution of
Problem (2). Furthermore, several authors studied the existence and uniqueness of
the solution for reflected rough differential equations. In [1], M. Besalú et al. proved
the existence and uniqueness of the solution for delayed rough differential equations
with non-negativity constraints. Recently, S. Aida gets the existence of solutions
for a large class of reflected rough differential equations in [2] and [1]. Finally, in [6],
A. Deya et al. proved the existence and uniqueness of the solution for 1-dimensional
reflected rough differential equations. An interesting remark related to these refer-
ences is that when C is not a cuboid, moving or not, it is a challenge to get the
uniqueness of the solution for reflected rough differential equations and sweeping
processes.

For p ∈ [1, 3[, the purpose of this paper is to prove the existence of solutions
to Problem (2) when C satisfies Assumption 1.1, and a necessary and sufficient
condition for uniqueness close to the monotonicity of the normal cone which allows
to prove the uniqueness when p = 1 and there is an additive continuous signal of
finite q-variation with q ∈ [1, 3[.

Section 2 deals with some preliminaries on sweeping processes and the rough in-
tegral. Section 3 is devoted to the existence of solutions to Problem (2) when Z
is a moderately irregular signal (i.e. p ∈ [1, 2[) and when Z is a rough signal (i.e.
p ∈ [2, 3[). Section 4 deals with some uniqueness results. Finally, Section 5 deals
with sweeping processes perturbed by a pathwise stochastic noise directed by a
fractional Brownian motion of Hurst parameter greater than 1/3.

The following notations, definitions and properties are used throughout the pa-
per.

Notations and elementary properties:
1. Ch(t) := C(t)− h(t) for every function h : [0, T ]→ Re.
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2. NC(x) is the normal cone of C at x, for any closed convex subset C of Re and
any x ∈ Re (recall that NC(x) = ∅ if x 6∈ C).

3. ∆T := {(s, t) ∈ [0, T ]2 : s < t} and ∆s,t := {(u, v) ∈ [s, t]2 : u < v} for every
(s, t) ∈ ∆T .

4. For every function x from [0, T ] into Rd and (s, t) ∈ ∆T , x(s, t) := x(t)− x(s).
5. Consider (s, t) ∈ ∆T . The vector space of continuous functions from [s, t] into

Rd is denoted by C0([s, t],Rd) and equipped with the uniform norm ‖.‖∞,s,t
defined by

‖x‖∞,s,t := sup
u∈[s,t]

‖x(u)‖

for every x ∈ C0([s, t],Rd). Moreover, ‖.‖∞,T := ‖.‖∞,0,T and

C0
0 ([s, t],Rd) := {x ∈ C0([s, t],Rd) : x(0) = 0}.

6. Consider (s, t) ∈ ∆T . The set of all dissections of [s, t] is denoted by D[s,t] and
the set of all strictly increasing sequences (sn)n∈N of [s, t] such that s0 = s and
lim∞ sn = t is a denoted by D∞,[s,t].

7. Consider (s, t) ∈ ∆T . A continuous function x : [s, t]→ Rd has finite p-variation
if and only if,

‖x‖p-var,s,t := sup


∣∣∣∣∣
n−1∑
k=1

‖x(tk, tk+1)‖p
∣∣∣∣∣
1/p

; n ∈ N∗ and (tk)k∈J1,nK ∈ D[s,t]


< ∞.

Consider the vector space

Cp-var([s, t],Rd) := {x ∈ C0([s, t],Rd) : ‖x‖p-var,s,t <∞}.

The map ‖.‖p-var,s,t is a semi-norm on Cp-var([s, t],Rd).

Moreover, ‖.‖p-var,T := ‖.‖p-var,0,T .

Remarks :
a. For every q, r ∈ [1,∞[ such that q > r,

∀x ∈ Cr-var([s, t],Rd), ‖x‖q-var,s,t 6 ‖x‖r-var,s,t.

In particular, any continuous function of bounded variation on [s, t] belongs
to Cq-var([s, t],Rd) for every q ∈ [1,∞[.

b. For every (s, t) ∈ ∆T and x ∈ C1-var([s, t],R),

‖x‖1-var,s,t =

∫ t

s

|Dx|,

where |Dx| is the variation measure of the differential measure Dx associated
with x.

8. The vector space of Lipschitz continuous maps from Re intoMe,d(R) is denoted
by Lip(Re,Me,d(R)) and equipped with the Lipschitz semi-norm ‖.‖Lip defined
by

‖ϕ‖Lip := sup

{
‖ϕ(y)− ϕ(x)‖
‖y − x‖

; x, y ∈ Re and x 6= y

}
for every ϕ ∈ Lip(Re,Me,d(R)).

9. For every λ ∈ R,
bλc := max{n ∈ Z : n < λ}

and {λ} := λ− bλc.
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10. Consider γ ∈ [1,∞[. A continuous map ϕ : Re →Md,e(R) is γ-Lipschitz in the
sense of Stein if and only if,

‖ϕ‖Lipγ := ‖Dbγcϕ‖{γ}-Höl ∨max{‖Dkϕ‖∞ ; k ∈ J0, bγcK}
< ∞.

Consider the vector space

Lipγ(Re,Me,d(R)) := {ϕ ∈ C0(Re,Me,d(R)) : ‖ϕ‖Lipγ <∞}.
The map ‖.‖Lipγ is a norm on Lipγ(Re,Me,d(R)).

Remarks:
a. If ϕ ∈ Lipγ(Re,Me,d(R)), then ϕ ∈ Lip(Re,Me,d(R)).
b. If ϕ ∈ Cbγc+1(Re,Me,d(R)) is bounded with bounded derivatives, then ϕ ∈

Lipγ(Re,Me,d(R)).

2. Preliminaries

This section deals with some preliminaries on sweeping processes and the rough
integral. The first subsection states some fundamental results on unperturbed
sweeping processes coming from Moreau [20], Valadier [25] and Monteiro Marques
[19]. A continuity result of Castaing et al. [5], which is the cornerstone of the proofs
of Theorem 3.1 and Theorem 3.2, is also stated. The second subsection deals with
the integration along rough paths. In this paper, definitions and propositions are
stated as in Friz and Hairer [9], in accordance with M. Gubinelli’s approach (see
Gubinelli [12]).

2.1. Sweeping processes. The following theorem, due to Monteiro Marques [17,
18, 19] using an estimation due to Valadier (see [4, 25]), states a sufficient condition
of existence and uniqueness of the solution of the unperturbed sweeping process
defined by Problem (1).

Proposition 2.1. Assume that C is a convex compact valued multifunction, con-
tinuous for the Hausdorff distance, and such that there exists (x, r) ∈ Re×]0,∞[
satisfying

Be(x, r) ⊂ C(t) ; ∀t ∈ [0, T ].

Then Problem (1) has a unique continuous solution of finite 1-variation y : [0, T ]→
Re such that

‖y‖1-var,T 6 l(r, ‖a− x‖),
where l : R2

+ → R+ is the map defined by

l(s, S) :=

max

{
0,
S2 − s2

2s

}
if e > 1

max{0, S − s} if e = 1
; ∀s, S ∈ R+.

See Monteiro Marques [19] for a proof.

Let h be a continuous function from [0, T ] into Re such that h(0) = 0. If it exists,
a Skorokhod decomposition of (C, a, h) is a couple (vh, wh) such that:

(3)

 vh(t) = h(t) + wh(t)

− dDwh
d|Dwh|

(t) ∈ NCh(t)(wh(t)) |Dwh|-a.e. with wh(0) = a,

where vh and wh are continuous, and wh has bounded variation. Since NCh(t)(x) =
∅ when x 6∈ Ch(t), the system (3) implies that, |Dwh|-a.e., wh(t) ∈ Ch(t), that is,
vh(t) ∈ C(t). Under Assumption 1.1, by Proposition 2.1 together with Castaing et
al. [5, Lemma 2.2], (C, a, h) has a unique Skorokhod decomposition (vh, wh).
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Theorem 2.2. Under Assumption 1.1, if (hn)n∈N is a sequence of continuous
functions from [0, T ] into Re which converges uniformly to h ∈ C0([0, T ],Re), then

sup
n∈N
‖whn‖1-var,T <∞

and
(vhn , whn)

‖.‖∞,T−−−−→
n→∞

(vh, wh).

See Castaing et al. [5, Theorem 2.3].

Under Assumption 1.1, note that there exist R > 0, N ∈ N∗ and a dissection
(t0, . . . , tN ) of [0, T ] such that

(4) Be(γ(tk), R) ⊂ C(u)

for every k ∈ J0, N − 1K and u ∈ [tk, tk+1].

Proposition 2.3. Under Assumption 1.1:
(1) The map (v., w.) is continuous from

C0
0 ([0, T ],Re) to C0([0, T ],Re)× C1-var([0, T ],Re).

(2) Consider (s, t) ∈ ∆T and ρ ∈]0, R/2] where R is defined in (4). For every
h ∈ C0

0 ([s, t],Re) such that ‖h‖∞,s,t 6 ρ/2,
‖wh‖1-var,s,t 6M(ρ)

with
M(ρ) :=

N

2ρ
sup

u∈[0,T ]

sup
x,y∈C(u)

‖x− y‖2.

Proof. Refer to Castaing et al. [5, Lemma 5.3] for a proof of the first point.

Let us insert s and t in the dissection (t0, . . . , tN ) of [0, T ] and define k(s), k(t) ∈
J0, N + 2K by

tk(s) := s and tk(t) := t.

Consider k ∈ Jk(s), k(t)− 1K and u ∈ [tk, tk+1].

On the one hand,

Be(γ(tk)− h(tk), ρ) ⊂ Be(γ(tk)− h(u), R) ⊂ Ch(u).

So,
Be(γ(tk)− vh(tk), ρ) ⊂ C(u)− h(tk, u)− vh(tk).

On the other hand,
vh(tk, u) = h(tk, u) + wh,tk(u)

with
wh,tk(u) := wh(u)− wh(tk).

Moreover,

− dDwh
d|Dwh|

(u) ∈ NC(u)−h(u)(wh(u)) |Dwh|-a.e.

and then,−
dDwh,tk
d|Dwh,tk |

(u) ∈ NC(u)−h(tk,u)−vh(tk)(wh,tk(u)) |Dwh,tk |-a.e.

wh,tk(tk) = 0.

So, by Proposition 2.1:

‖wh‖1-var,tk,tk+1
= ‖wh,tk‖1-var,tk,tk+1

6 l(ρ, ‖γ(tk)− vh(tk)‖).
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Therefore,

‖wh‖1-var,s,t =

k(t)−1∑
k=k(s)

‖wh‖1-var,tk,tk+1

6 N sup
u∈[s,t]

l(ρ, ‖γ(u)− vh(u)‖)

6 M(ρ).

�

2.2. Young’s integral, rough integral. The first part of the subsection deals
with the definition and some basic properties of Young’s integral which allow to
integrate a map y ∈ Cr-var([0, T ],Me,d(R)) with respect to z ∈ Cq-var([0, T ],Rd)
when q, r ∈ [1,∞[ and 1/q+ 1/r > 1. The second part of the subsection deals with
the rough integral which extends Young’s integral when the condition 1/q+1/r > 1
is not satisfied anymore. The signal z has to be enhanced as a rough path.

Definition 2.4. A map ω : ∆T → R+ is a control function if and only if,
(1) ω is continous.
(2) ω(s, s) = 0 for every s ∈ [0, T ].
(3) ω is super-additive:

ω(s, u) + ω(u, t) 6 ω(s, t)

for every s, t, u ∈ [0, T ] such that s 6 u 6 t.

Example. Let p > 1. For every z ∈ Cp-var([0, T ],Rd), the map

ωp,z : (s, t) ∈ ∆T 7−→ ωp,z(s, t) := ‖z‖pp-var,s,t
is a control function.

Proposition 2.5. Let p > 1. Consider x ∈ C0([0, T ],Rd) and a sequence (xn)n∈N
of elements of Cp-var([0, T ],Rd) such that

lim
n→∞

‖xn − x‖∞,T = 0 and sup
n∈N
‖xn‖p-var,T <∞.

Then x ∈ Cp-var([0, T ],Rd) and

lim
n→∞

‖xn − x‖(p+ε)-var,T = 0 ; ∀ε > 0.

See Friz and Victoir [11, Lemma 5.12 and Lemma 5.27] for a proof.

Proposition 2.6. (Young’s integral) Consider q, r ∈ [1,∞[ such that 1/q+1/r > 1,
and two maps y ∈ Cr-var([0, T ],Me,d(R)) and z ∈ Cq-var([0, T ],Rd). For every
n ∈ N∗ and (tnk )k∈J1,nK ∈ D[0,T ], the limit

lim
n→∞

n−1∑
k=1

y(tnk )z(tnk , t
n
k+1)

exists and does not depend on the dissection (tnk )k∈J1,nK. That limit is denoted by∫ T

0

y(s)dz(s)

and called Young’s integral of y with respect to z on [0, T ]. Moreover, there exists
a constant c(q, r) > 0, depending only on q and r, such that for every (s, t) ∈ ∆T ,∥∥∥∥∫ .

0

y(s)dz(s)

∥∥∥∥
r-var,s,t

6 c(q, r)‖z‖q-var,s,t(‖y‖r-var,s,t + ‖y‖∞,s,t).
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See Lyons [16, Theorem 1.16], Lejay [14, Theorem 1] or Friz and Victoir [11, The-
orem 6.8] for a proof.

Proposition 2.7. Consider q, r ∈ [1,∞[ such that 1/q + 1/r > 1, two maps
y ∈ Cr-var([0, T ],Me,d(R)) and z ∈ Cq-var([0, T ],Rd), and a sequence (yn)n∈N of
elements of Cr-var([0, T ],Me,d(R)) such that:

lim
n→∞

‖yn − y‖∞,T = 0 and sup
n∈N
‖yn‖r-var,T <∞.

Then,

lim
n→∞

∥∥∥∥∫ .

0

yn(s)dz(s)−
∫ .

0

y(s)dz(s)

∥∥∥∥
∞,T

= 0.

See Friz and Victoir [11, Proposition 6.12] for a proof.

Consider p ∈ [2, 3[ and let us define the rough integral for continuous functions
of finite p-variation.

Remark. In the sequel, the reader has to keep in mind that:
(1) Me,d(R) ∼= Re ⊗ Rd.
(2) Md,1(R) ∼=M1,d(R) ∼= Rd.
(3) L(Rd,Me,d(R)) ∼= L(Rd,L(Rd,Re)) ∼= L(Rd ⊗ Rd,Re).

Definition 2.8. Consider z ∈ C1-var([0, T ],Rd). The step-2 signature of z is the
map S2(z) : ∆T → Rd ×Md(R) defined by

S2(z)(s, t) :=

(
z(s, t),

∫
s<u<v<t

dz(v)⊗ dz(u)

)
for every (s, t) ∈ ∆T .

Notation. ST (Rd) := {S2(z)(0, .) ; z ∈ C1-var([0, T ],Rd)}.

Definition 2.9. The geometric p-rough paths metric space GΩp,T (Rd) is the closure
of ST (Rd) in Cp-var([0, T ],Rd)× Cp/2-var([0, T ],Md(R)).

Definition 2.10. For z ∈ Cp-var([0, T ],Rd), a map y ∈ Cp-var([0, T ],Me,d(R)) is
controlled by z if and only if there exists y′ ∈ Cp-var([0, T ],L(Rd,Me,d(R))) such
that

y(s, t) = y′(s)z(s, t) +Ry(s, t) ; ∀(s, t) ∈ ∆T

with ‖Ry‖p/2-var,T <∞. For fixed z, the pairs (y, y′) as above define a vector space
denoted by D

p/2
z ([0, T ],Me,d(R)) and equipped with the semi-norm ‖.‖z,p/2,T such

that
‖(y, y′)‖z,p/2,T := ‖y′‖p-var,T + ‖Ry‖p/2-var,T

for every (y, y′) ∈ D
p/2
z ([0, T ],Me,d(R)).

Theorem 2.11. (Rough integral) Consider z := (z,Z) ∈ GΩp,T (Rd) and (y, y′) ∈
D
p/2
z ([0, T ],Me,d(R)). For every n ∈ N∗ and (tnk )k∈J1,nK ∈ D[0,T ], the limit

lim
n→∞

n−1∑
k=1

(y(tnk )z(tnk , t
n
k+1) + y′(tnk )Z(tnk , t

n
k+1))

exists and does not depend on the dissection (tnk )k∈J1,nK. That limit is denoted by∫ T

0

y(s)dz(s)

and called rough integral of y with respect to z on [0, T ]. Moreover,
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(1) There exists a constant c(p) > 0, depending only on p, such that for every
(s, t) ∈ ∆T ,∥∥∥∥∫ t

s

y(u)dz(u)− y(s)z(s, t)− y′(s)Z(s, t)

∥∥∥∥ 6 c(p)(‖z‖p-var,s,t‖Ry‖p/2-var,s,t

+‖Z‖p/2-var,s,t‖y′‖p-var,s,t).

(2) The map

(y, y′) 7−→
(∫ .

0

y(s)dz(s), y

)
is continuous from D

p/2
z ([0, T ],Me,d(R)) into D

p/2
z ([0, T ],Re).

See Friz and Shekhar [10, Theorem 34] for a proof with the p-variation topology,
and see Gubinelli [12, Theorem 1] or Friz and Hairer [9, Theorem 4.10] for a proof
with the 1/p-Hölder topology.

Proposition 2.12. Consider z := (z,Z) ∈ GΩp,T (Rd), a continuous map

(y, y′) : [0, T ] −→Me,d(R)× L(Rd,Me,d(R)),

and a sequence (yn, y
′
n)n∈N of elements of Dp/2

z ([0, T ],Me,d(R)) such that

(y′n, Ryn)
d∞,T−−−−→
n→∞

(y′, Ry) and sup
n∈N
‖(yn, y′n)‖z,p/2,T <∞.

Then, (y, y′) ∈ D
p/2
z ([0, T ],Me,d(R)) and

lim
n→∞

∥∥∥∥∫ .

0

yn(s)dz(s)−
∫ .

0

y(s)dz(s)

∥∥∥∥
∞,T

= 0.

Proof. On the one hand, since

(y′n, Ryn)
d∞,T−−−−→
n→∞

(y′, Ry),

the function y is the uniform limit of the sequence (yn)n∈N. Moreover, since

sup
n∈N
‖(yn, y′n)‖z,p/2,T <∞,

by Proposition 2.5,

y′ ∈ Cp-var([0, T ],L(Rd,Me,d(R))) and Ry ∈ Cp/2-var([0, T ],Me,d(R)).

So, (y, y′) ∈ D
p/2
z ([0, T ],Me,d(R)).

On the other hand, also by Proposition 2.5, for any ε > 0 such that p+ ε ∈ [2, 3[,

lim
n→∞

‖(yn, y′n)− (y, y′)‖z,(p+ε)/2,T = lim
n→∞

‖y′n − y′‖(p+ε)-var,T
+ lim
n→∞

‖Ryn −Ry‖(p+ε)/2-var,T
= 0.

So, by continuity of the rough integral (see Theorem 2.11),

lim
n→∞

∥∥∥∥(∫ .

0

yn(s)dz(s), yn

)
−
(∫ .

0

y(s)dz(s), y

)∥∥∥∥
z,(p+ε)/2,T

= 0.

Therefore, in particular:

lim
n→∞

∥∥∥∥∫ .

0

yn(s)dz(s)−
∫ .

0

y(s)dz(s)

∥∥∥∥
∞,T

= 0.

�
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Proposition 2.13. Consider z := (z,Z) ∈ GΩp,T (Rd), (x, x′) ∈ D
p/2
z ([0, T ],Re)

and ϕ ∈ Lipγ−1(Re,Rd). The couple of maps (ϕ(x), ϕ(x)′), defined by

ϕ(x)(t) := ϕ(x(t)) and ϕ(x)′(t) := Dϕ(x(t))x′(t)

for every t ∈ [0, T ], belongs to D
p/2
z ([0, T ],Me,d(R)).

Remark. By Theorem 2.11 and Proposition 2.13 together,∫ .

0

ϕ(x(u))dz(u)

is defined. For every (s, t) ∈ ∆T , consider

Iϕ,z,x(s, t) :=

∥∥∥∥∫ t

s

ϕ(x(u))dz(u)− ϕ(x(s))z(s, t)−Dϕ(x(s))x′(s)Z(s, t)

∥∥∥∥ .
For every (s, t) ∈ ∆T , since

‖ϕ(x)‖p-var,s,t 6 ‖ϕ‖Lipγ−1‖x‖p-var,s,t,
‖ϕ(x)′‖p-var,s,t 6 ‖ϕ‖Lipγ−1(‖x′‖p-var,s,t + ‖x′‖∞,s,t‖x‖p-var,s,t) and

‖Rϕ(x)‖p/2-var,s,t 6 ‖ϕ‖Lipγ−1(‖x‖2p-var,s,t + ‖Rx‖p/2-var,s,t),

by Theorem 2.11,

Iϕ,z,x(s, t) 6 c(p)‖ϕ‖Lipγ−1(‖x′‖p-var,s,t + ‖x′‖∞,s,t‖x‖p-var,s,t
+‖x‖2p-var,s,t + ‖Rx‖p/2-var,s,t)ωp,z(s, t)1/p,

where ωp,z : ∆T → R+ is the control function defined by

ωp,z(u, v) := 2p−1(‖z‖pp-var,u,v + ‖Z‖pp/2-var,u,v) ; ∀(u, v) ∈ ∆T .

Proposition 2.14. Consider z := (z,Z) ∈ GΩp,T (Rd), ϕ ∈ Lipγ−1(Re,Rd), a
continuous map

(x, x′) : [0, T ] −→ Re × L(Rd,Re),

and a sequence (xn, x
′
n)n∈N of elements of Dp/2

z ([0, T ],Re) such that

(x′n, Rxn)
d∞,T−−−−→
n→∞

(x′, Rx) and sup
n∈N
‖(xn, x′n)‖z,p/2,T <∞.

Then, (ϕ(x), ϕ(x)′) ∈ D
p/2
z ([0, T ],Me,d(R)) and

lim
n→∞

∥∥∥∥∫ .

0

ϕ(xn(s))dz(s)−
∫ .

0

ϕ(x(s))dz(s)

∥∥∥∥
∞,T

= 0.

Proof. Since

(x′n, Rxn)
d∞,T−−−−→
n→∞

(x′, Rx) and sup
n∈N
‖(xn, x′n)‖z,p/2,T <∞,

by Friz and Hairer [9, Theorem 7.5] together with Proposition 2.5,

(ϕ(xn)′, Rϕ(xn))
d∞,T−−−−→
n→∞

(ϕ(x)′, Rϕ(x)) and sup
n∈N
‖(ϕ(xn), ϕ(xn)′)‖z,p/2,T <∞.

So, by Proposition 2.12,

lim
n→∞

∥∥∥∥∫ .

0

ϕ(xn(s))dz(s)−
∫ .

0

ϕ(x(s))dz(s)

∥∥∥∥
∞,T

= 0.

�
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3. Existence of solutions

The existence of a solution to Problem (2) is established in Theorem 3.1 when
p ∈ [1, 2[, and in Theorem 3.2 when p ∈ [2, 3[.

Theorem 3.1. Under Assumption 1.1, if p ∈ [1, 2[, Problem (2) has at least one
solution which belongs to Cp-var([0, T ],Re).

Proof. Consider the discrete scheme

(5)


Xn(t) = Hn(t) + Yn(t)

Hn(t) =

∫ t

0

f(Xn−1(s))dZ(s)

− dDYn
d|DYn|

(t) ∈ NCHn (t)(Yn(t)) |DYn|-a.e. with Yn(0) = a

for Problem (2), initialized by

(6)

−
dDX0

d|DX0|
(t) ∈ NC(t)(X0(t)) |DX0|-a.e.

X0(0) = a.

Since the map ‖Z‖p-var,0,. is continuous from [0, T ] into R+, and since ‖Z‖p-var,0,0 =
0, there exists τ0 ∈ [0, T ] such that

‖Z‖p-var,τ0 6 µ :=
m

c(p, p)‖f‖Lipγ (m+M + 1)
,

where m := R/4 and M := M(R/2) (see Proposition 2.3.(2)). Let us show that for
every n ∈ N,

(7)

 ‖Xn‖p-var,τ0 6 m+M
‖Hn‖p-var,τ0 6 m
‖Yn‖1-var,τ0 6 M.

By (6) together with Proposition 2.3,

‖X0‖p-var,τ0 6M.

Assume that Condition (7) is satisfied for n ∈ N arbitrarily chosen. By Proposition
2.6, and since ‖Z‖p-var,0,. is an increasing map,

‖Hn+1‖p-var,τ0 6 c(p, p)‖Z‖p-var,τ0(‖Df‖∞‖Xn‖p-var,τ0 + ‖f ◦Xn‖∞,τ0)

6 µc(p, p)‖f‖Lipγ (m+M + 1)

6 m.

Since Yn+1 = wHn+1 , by Proposition 2.3,

‖Yn+1‖1-var,τ0 6M.

Therefore,

‖Xn+1‖p-var,τ0 6 ‖Hn+1‖p-var,τ0 + ‖Yn+1‖p-var,τ0 6 m+M.

By induction, (7) is satisfied for every n ∈ N.

For every t ∈ [0, T ], the map ‖Z‖p-var,t,. is continuous from [t, T ] into R+ and
‖Z‖p-var,t,t = 0. Moreover, the constant µ depends only on p, m, M and ‖f‖Lipγ .
So, since [0, T ] is compact, there exist N ∈ N∗ and (τk)k∈J0,NK ∈ D[τ0,T ] such that

‖Z‖p-var,τk,τk+1
6 µ ; ∀k ∈ J0, N − 1K.
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Since for every n ∈ N∗ the maps

(s, t) ∈ ∆T 7−→ ‖Xn‖pp-var,s,t,
(s, t) ∈ ∆T 7−→ ‖Hn‖pp-var,s,t and
(s, t) ∈ ∆T 7−→ ‖Yn‖1-var,s,t

are control functions, recursively, the sequence (Hn, Xn, Yn)n∈N∗ is bounded in

Cp,1T := Cp-var([0, T ],Re)× Cp-var([0, T ],Re)× C1-var([0, T ],Re).

By Proposition 2.6, for every n ∈ N∗ and (s, t) ∈ ∆T ,

‖Hn(t)−Hn(s)‖ 6 c(p, p)
(
‖Df‖∞ sup

n∈N
‖Xn‖p-var,T + ‖f‖∞

)
‖Z‖p-var,s,t.

Since (s, t) ∈ ∆T 7→ ‖Z‖p-var,s,t is a continuous map such that ‖Z‖p-var,t,t = 0 for
every t ∈ [0, T ], (Hn)n∈N∗ is equicontinuous. Therefore, by Arzelà-Ascoli’s theorem
together with Proposition 2.5, there exists an extraction ϕ : N∗ → N∗ such that
(Hϕ(n))n∈N∗ converges uniformly to an element H of Cp-var([0, T ],Re).

Since (Hϕ(n))n∈N∗ converges uniformly to H, by Theorem 2.2, (Xϕ(n), Yϕ(n))n∈N∗

converges uniformly to (X,Y ) := (vH , wH). So, for every t ∈ [0, T ], X(t) = H(t) + Y (t)

− dDY

d|DY |
(t) ∈ NCH(t)(Y (t)) |DY |-a.e. with Y (0) = a,

and by Proposition 2.5,

X ∈ Cp-var([0, T ],Re) and Y ∈ C1-var([0, T ],Re).

Moreover, since (Xϕ(n))n∈N∗ converges uniformly to X, by Proposition 2.7,

lim
n→∞

∥∥∥∥Hϕ(n) −
∫ .

0

f(X(s))dZ(s)

∥∥∥∥
∞,T

= 0.

Therefore, since (Hϕ(n))n∈N∗ converges also to H in C0([0, T ],Re),

H(t) =

∫ t

0

f(X(s))dZ(s) ; ∀t ∈ [0, T ].

�

In the sequel, assume that there exists Z : [0, T ]→Md(R) such that Z := (Z,Z) ∈
GΩp,T (Rd).

Theorem 3.2. Under Assumption 1.1, if p ∈ [2, 3[, Problem (2) has at least one
solution which belongs to Cp-var([0, T ],Re).

Proof. Consider the discrete scheme

(8)


Xn(t) = Hn(t) + Yn(t)

Hn(t) =

∫ t

0

f(Xn−1(s))dZ(s)

− dDYn
d|DYn|

(t) ∈ NCHn (t)(Yn(t)) |DYn|-a.e. with Yn(0) = a

for Problem (2), initialized by

(9)

−
dDX0

d|DX0|
(t) ∈ NC(t)(X0(t)) |DX0|-a.e.

X0(0) = a.
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Since the map ωp,Z(0, .) is continuous from [0, T ] into R+, and since ωp,Z(0, 0) = 0,
there exists τ0 ∈ [0, T ] such that

ωp,Z(0, τ0) 6
mC

c(p, 1)p‖f‖pLipγ (MC + 1)p
∧ mC

(c2 ∨ c6)p(1 + µC +MR + µ2
C)p

∧ 1

1 + µpC +Mp
R + µ2p

C

,

where mC := R/4, MC := M(R/2), µC := mC +MC ,

MR := (c1MC41/p) ∨ (c5(µpC + 1)1/p)

and the positive constants c1, c2, c5 and c6, depending only on p and ‖f‖Lipγ , are
defined in the sequel.

First of all, let us control the solution of the discrete scheme for n ∈ {0, 1}:
• (n = 0) By (9) together with Proposition 2.3:

‖X0‖1-var,τ0 6MC .

• (n = 1) Since X0 ∈ C1-var([0, T ],Re), by Proposition 2.6:

‖H1‖p-var,τ0 6 c(p, 1)ωp,Z(0, τ0)1/p‖f‖Lipγ (MC + 1)

6 mC .

Since Y1 = wH1 , by Proposition 2.3:

‖Y1‖1-var,τ0 6MC .

Therefore,

‖X1‖p-var,τ0 6 ‖H1‖p-var,τ0 + ‖Y1‖p-var,τ0 6 µC .
Let us show that for every n ∈ N\{0, 1},

(10) (Xn−1, f(Xn−2)) ∈ D
p/2
Z ([0, τ0],Re)

and

(11)


‖Xn‖p-var,τ0 6 µC
‖Hn‖p-var,τ0 6 mC

‖Yn‖1-var,τ0 6 MC

‖RXn‖p/2-var,τ0 6 MR.

Set X ′1 := f(X0). For every (s, t) ∈ ∆τ0 ,

RX1(s, t) = X1(s, t)−X ′1(s)Z(s, t)

= Y1(s, t) +

∫ t

s

f(X0(u))dZ(u)− f(X0(s))Z(s, t).

By Young-Love estimate (see Friz and Victoir [11, Theorem 6.8], or [7, Section 3.6
and the interesting historical notes pages 212-213]), for every (s, t) ∈ ∆τ0 ,

‖RX1(s, t)‖ 6 ‖Y1‖p/2-var,s,t +
1

1− 21−3/p
‖f‖Lipγ‖Z‖p-var,τ0‖X0‖p/2-var,s,t.

By super-additivity of the control functions ‖Y1‖p/2p/2-var,. and ‖X0‖p/2p/2-var,., there
exists a constant c1 > 0, depending only on p and ‖f‖Lipγ , such that

‖RX1
‖p/2-var,τ0 6 c1(‖Y1‖p/2p/2-var,τ0 + ‖Z‖p/2p-var,τ0‖X0‖p/2p/2-var,τ0)2/p

6 c1MC(1 + ωp,Z(0, τ0)1/2)2/p.

Then, ‖RX1
‖p/2-var,τ0 6 c1MC41/p 6MR and

(X1, f(X0)) ∈ D
p/2
Z ([0, τ0],Re).
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So, the rough integral

H2 :=

∫ .

0

f(X1(s))dZ(s)

is well defined. For every (s, t) ∈ ∆T ,

‖H2(s, t)‖ 6 ‖f‖Lipγ‖Z‖p-var,s,t + ‖f‖2Lipγ‖Z‖p/2-var,s,t + If,Z,Xn(s, t)

6 (‖f‖Lipγ ∨ ‖f‖2Lipγ )ωp,Z(s, t)1/p

+c(p)‖f‖Lipγ (1 ∨ ‖f‖Lipγ )(‖X0‖p-var,s,t + ‖X1‖p-var,s,t
+‖X1‖2p-var,s,t + ‖RX1

‖p/2-var,s,t)ωp,Z(s, t)1/p

6 c2(1 + µC +MR + µ2
C)ωp,Z(s, t)1/p,

where c2 > 0 is a constant depending only on p and ‖f‖Lipγ . By super-additivity
of the control function ωp,Z:

‖H2‖p-var,τ0 6 c2(1 + µC +MR + µ2
C)ωp,Z(0, τ0)1/p

6 mC .

So, by Proposition 2.3,
‖Y2‖p-var,τ0 6MC

and
‖X2‖p-var,τ0 6 ‖H2‖p-var,τ0 + ‖Y2‖p-var,τ0 6 µC .

Therefore, Conditions (10)-(11) hold true for n = 2.

Assume that Conditions (10)-(11) hold true until n ∈ N\{0, 1} arbitrarily chosen.
Set X ′n := f(Xn−1). For every (s, t) ∈ ∆τ0 ,

RXn(s, t) = Xn(s, t)−X ′n(s)Z(s, t)

= Yn(s, t) +

∫ t

s

f(Xn−1(u))dZ(u)− f(Xn−1(s))Z(s, t).

So, for every (s, t) ∈ ∆τ0 ,

‖RXn(s, t)‖ 6 ‖Yn(s, t)‖+ ‖Df(Xn−1(s))f(Xn−2(s))Z(s, t)‖+ If,Z,Xn−1
(s, t)

6 ‖Yn‖p/2-var,s,t + ‖f‖2Lipγ‖Z‖p/2-var,s,t
+c(p)(‖Z‖p-var,s,t‖Rf(Xn−1)‖p/2-var,s,t
+‖Z‖p/2-var,s,t‖Df(Xn−1(.))f(Xn−2)‖p-var,s,t)

6 ‖Yn‖p/2-var,s,t + ‖f‖2Lipγ‖Z‖p/2-var,s,t
+c(p)‖f‖Lipγ (‖Z‖p-var,τ0ωn(s, t)2/p +M(n, τ0)‖Z‖p/2-var,s,t),

where

M(n, τ0) := ‖f(Xn−2)‖p-var,τ0 + ‖f(Xn−2)‖∞,τ0‖Xn−1‖p-var,τ0
6 ‖f‖Lipγ (‖Xn−2‖p-var,τ0 + ‖Xn−1‖p-var,τ0)

and ωn : ∆τ0 → R+ is the control function defined by

ωn(u, v) := 2p/2−1(‖Xn−1‖pp-var,u,v + ‖RXn−1
‖p/2p/2-var,u,v)

for every (u, v) ∈ ∆τ0 . By super-additivity of the control functions

‖Yn‖p/2p/2-var,., ‖Z‖
p/2
p/2-var,. and ωn,
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there exist three constants c3, c4, c5 > 0, depending only on p and ‖f‖Lipγ , such
that

‖RXn‖p/2-var,τ0 6 c3(‖Yn‖p/2p/2-var,τ0 + ‖Z‖p/2p/2-var,τ0

+‖Z‖p/2p-var,τ0ωn(0, τ0) +M(n, τ0)p/2‖Z‖p/2p/2-var,τ0)2/p

6 c4(‖Yn‖pp/2-var,τ0 + (1 + ωn(0, τ0) +M(n, τ0)p/2)2ωp,Z(0, τ0))1/p

6 c5(µpC + (1 + µpC + ‖RXn−1
‖pp/2-var,τ0 + µ2p

C )ωp,Z(0, τ0))1/p

6 c5(µpC + (1 + µpC +Mp
R + µ2p

C )ωp,Z(0, τ0))1/p.

Then, ‖RXn‖p/2-var,τ0 6 c5(µpC + 1)1/p 6MR and

(Xn, f(Xn−1)) ∈ D
p/2
Z ([0, τ0],Re).

So, the rough integral

Hn+1 :=

∫ .

0

f(Xn(s))dZ(s)

is well defined. For every (s, t) ∈ ∆T ,

‖Hn+1(s, t)‖ 6 ‖f‖Lipγ‖Z‖p-var,s,t + ‖f‖2Lipγ‖Z‖p/2-var,s,t + If,Z,Xn(s, t)

6 (‖f‖Lipγ ∨ ‖f‖2Lipγ )ωp,Z(s, t)1/p

+c(p)‖f‖Lipγ (1 ∨ ‖f‖Lipγ )(‖Xn−1‖p-var,s,t + ‖Xn‖p-var,s,t
+‖Xn‖2p-var,s,t + ‖RXn‖p/2-var,s,t)ωp,Z(s, t)1/p

6 c6(1 + µC +MR + µ2
C)ωp,Z(s, t)1/p,

where c6 > 0 is a constant depending only on p and ‖f‖Lipγ . By super-additivity
of the control function ωp,Z:

‖Hn+1‖p-var,τ0 6 c6(1 + µC +MR + µ2
C)ωp,Z(0, τ0)1/p

6 mC .

So, by Proposition 2.3,
‖Yn+1‖p-var,τ0 6MC

and
‖Xn+1‖p-var,τ0 6 ‖Hn+1‖p-var,τ0 + ‖Yn+1‖p-var,τ0 6 µC .

By induction, Conditions (10)-(11) are satisfied for every n ∈ N\{0, 1}. As in the
proof of Theorem 3.1, the sequence (Hn, Xn, Yn)n∈N\{0,1} is bounded in Cp,1T . In
addition, the sequence (RXn)n∈N\{0,1} is bounded in Cp/2-var([0, T ],Re).

For every n ∈ N\{0, 1} and (s, t) ∈ ∆T ,

‖Hn(s, t)‖ 6 (‖f‖Lipγ ∨ ‖f‖2Lipγ

+c(p)‖f‖Lipγ (1 ∨ ‖f‖Lipγ )(sup
n∈N
‖Xn−2‖p-var,T + sup

n∈N
‖Xn−1‖p-var,T

+ sup
n∈N
‖Xn−1‖2p-var,T + sup

n∈N
‖RXn−1‖p/2-var,T ))ωp,Z(s, t)1/p.

Since ωp,Z is a control function, (Hn)n∈N\{0,1} is equicontinuous. Therefore, by
Arzelà-Ascoli’s theorem together with Proposition 2.5, there exists an extraction
ϕ : N\{0, 1} → N\{0, 1} such that (Hϕ(n))n∈N\{0,1} converges uniformly to an ele-
ment H of Cp-var([0, T ],Re).

Since (Hϕ(n))n∈N\{0,1} converges uniformly to H, by Theorem 2.2, the sequence
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(Xϕ(n), Yϕ(n))n∈N\{0,1} converges uniformly to (X,Y ) := (vH , wH). So, for every
t ∈ [0, T ],  X(t) = H(t) + Y (t)

− dDY

d|DY |
(t) ∈ NCH(t)(Y (t)) |DY |-a.e. with Y (0) = a,

and by Proposition 2.5,

X ∈ Cp-var([0, T ],Re) and Y ∈ C1-var([0, T ],Re).
Denoting X ′ := f(X), X ′ (resp. RX) is the uniform limit of (X ′ϕ(n))n∈N\{0,1}
(resp. (RXϕ(n)

)n∈N\{0,1}). So, by Proposition 2.14:

lim
n→∞

∥∥∥∥Hϕ(n) −
∫ .

0

f(X(s))dZ(s)

∥∥∥∥
∞,T

= 0.

Therefore, since (Hϕ(n))n∈N∗ converges also to H in C0([0, T ],Re),

H(t) =

∫ t

0

f(X(s))dZ(s) ; ∀t ∈ [0, T ].

�

4. Some uniqueness results

When p = 1 and there is an additive continuous signal of finite q-variation with
q ∈ [1, 3[, the uniqueness of the solution to Problem (2) is established in Proposition
4.1 below. Proposition 4.2 and Proposition 4.3 provide necessary and sufficient
conditions for uniqueness of the solution when p ∈ [1, 2[ and p ∈ [2, 3[ respectively.
These conditions are close to the monotonicity of the normal cone which allows to
prove the uniqueness when p = 1 (see Proposition 4.1).

Proposition 4.1. Assume that p = 1 and consider the Skorokhod problem

(12)


X(t) = H(t) + Y (t)

H(t) =

∫ t

0

f(X(s))dZ(s) + σW (t)

− dDY

d|DY |
(t) ∈ NCH(t)(Y (t)) |DY |-a.e. with Y (0) = a,

where σ ∈ Me,d(R) and W ∈ Cq-var([0, T ],Rd) with q ∈ [1, 3[. Under Assumption
1.1, Problem (12) has a unique solution which belongs to Cq-var([0, T ],Re).

Proof. Consider two solutions (X,Y ) and (X∗, Y ∗) of Problem (2) on [0, T ]. Since
(s, t) ∈ ∆T 7→ ‖Z‖1-var,s,t is a control function, there exists n ∈ N∗ and (τk)k∈J0,nK ∈
D[0,T ] such that

(13) ‖Z‖1-var,τk,τk+1
6M :=

1

4‖f‖Lipγ
; ∀k ∈ J0, n− 1K.

For every t ∈ [0, τ1],

‖X(t)−X∗(t)‖2 = ‖H(t)−H∗(t)‖2 + 2

∫ t

0

〈Y (s)− Y ∗(s), d(Y − Y ∗)(s)〉

+2

∫ t

0

〈H(t)−H∗(t), d(Y − Y ∗)(s)〉

6 m1(τ1)2 + 2m2(t) + 2m3(t),

with m1(τ1) := ‖H −H∗‖∞,τ1 ,

m2(t) :=

∫ t

0

〈X(s)−X∗(s), d(Y − Y ∗)(s)〉,
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and

m3(t) :=

∫ t

0

〈H(t)−H∗(t)− (H(s)−H∗(s)), d(Y − Y ∗)(s)〉.

Consider t ∈ [0, τ1]. By Friz and Victoir [11], Proposition 2.2:

‖H(t)−H∗(t)‖ =

∥∥∥∥∫ t

0

(f(X(s))− f(X∗(s)))dZ(s)

∥∥∥∥
6 ‖f‖Lipγ‖X −X∗‖∞,τ1‖Z‖1-var,τ1 .

So,

(14) m1(τ1) 6
1

4
‖X −X∗‖∞,τ1 .

Since the map x ∈ C(t) 7→ NC(t)(x) is monotone, m2(t) 6 0. By the integration by
parts formula,

m3(t) =

∫ t

0

〈Y (s)− Y ∗(s), d(H −H∗)(s)〉

=

∫ t

0

〈X(s)−X∗(s)− (H(s)−H∗(s)), (f(X(s))− f(X∗(s)))dZ(s)〉.

So, by Friz and Victoir [11], Proposition 2.2 and Inequality (14),

m3(t) 6 ‖Df‖∞‖X −X∗‖∞,τ1(‖X −X∗‖∞,τ1 + ‖H −H∗‖∞,τ1)‖Z‖1-var,τ1
6 ‖f‖Lipγ‖Z‖1-var,τ1(1 + ‖f‖Lipγ‖Z‖1-var,τ1)‖X −X∗‖2∞,τ1
6 5/16‖X −X∗‖2∞,τ1 .

Therefore,

‖X −X∗‖2∞,τ1 6
11

16
‖X −X∗‖2∞,τ1 .

Necessarily, (X,Y ) = (X∗, Y ∗) on [0, τ1].

For k ∈ J0, n− 1K, assume that (X,Y ) = (X∗, Y ∗) on [0, τk]. By Equation (13) and
exactly the same ideas as on [0, τ1]:

‖X −X∗‖2∞,τk,τk+1
6

11

16
‖X −X∗‖2∞,τk,τk+1

.

So, (X,Y ) = (X∗, Y ∗) on [0, τk+1]. Recursively, Problem (2) has a unique solution
on [0, T ]. �

Remark. The cornerstone of the proof of Proposition 4.1 is that

(15)
∫ t

0

〈X(s)−X∗(s), d(Y − Y ∗)(s)〉 6 0 ; ∀t ∈ [0, T ].

Thanks to the monotonicity of the map x ∈ C(t) 7→ NC(t)(x) (t ∈ [0, T ]), Inequal-
ity (15) is true. When p ∈]1, 3[, it is not possible to get inequalities involving only
the uniform norm of X − X∗. In that case, the construction of the Young/rough
integral suggests to use ideas similar to those of the proof of Proposition 4.1, but
using the p-variation norm of X −X∗.

In a probabilistic setting, uniqueness up to equality almost everywhere can be
obtained for Brownian motion, with p > 2, in the frame of Itô calculus, using the
martingale property of stochastic integrals and Doob’s inequality, see [24, 15, 23]
for a fixed convex set C and [3, 5] for a moving set.
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The two following propositions show that when p ∈]1, 3[, there exist some con-
ditions close to Inequality (15), ensuring the uniqueness of the solution to Problem
(2).

Proposition 4.2. Consider (s, t) ∈ ∆T , p ∈ [1, 2[ and two solutions (X,Y ) and
(X∗, Y ∗) to Problem (2) under Assumption 1.1. On [s, t], (X,Y ) = (X∗, Y ∗) if
and only if X(s) = X∗(s) and

(16)
∫ v

u

〈X(u, r)−X∗(u, r), d(Y − Y ∗)(r)〉 6 0 ; ∀(u, v) ∈ ∆s,t.

Proof. For the sake of simplicity, the proposition is proved on [0, T ] instead of [s, t],
with (s, t) ∈ ∆T .

First of all, if (X,Y ) = (X∗, Y ∗) on [s, t], then∫ v

u

〈X(u, r)−X∗(u, r), d(Y − Y ∗)(r)〉 = 0 ; ∀(u, v) ∈ ∆s,t.

Now, let us prove that if X(s) = X∗(s) and Inequality (16) is true, then (X,Y ) =
(X∗, Y ∗).

For every (s, t) ∈ ∆T ,

‖X(s, t)−X∗(s, t)‖2 = ‖H(s, t)−H∗(s, t)‖2

+2

∫ t

s

〈Y (s, u)− Y ∗(s, u), d(Y − Y ∗)(u)〉

+2

∫ t

s

〈H(s, t)−H∗(s, t), d(Y − Y ∗)(u)〉

= ‖H(s, t)−H∗(s, t)‖2

+2

∫ t

s

〈X(s, u)−X∗(s, u), d(Y − Y ∗)(u)〉

+2

∫ t

s

〈H(s, t)−H(s, u)− (H∗(s, t)−H∗(s, u)), d(Y − Y ∗)(u)〉

6 ‖H −H∗‖2p-var,s,t + 2m(s, t)

with

m(s, t) :=

∫ t

s

〈H(u, t)−H∗(u, t), d(Y − Y ∗)(u)〉.

Let (s, t) ∈ ∆T be arbitrarily chosen.

On the one hand,

m(s, t) 6 2e · c(p, p)‖H −H∗‖p-var,s,t‖Y − Y ∗‖p-var,s,t.
So, there exists a constant c1 > 0, not depending on s and t, such that

‖X(s, t)−X∗(s, t)‖p 6 (‖H −H∗‖2p-var,s,t + 2m(s, t))p/2

6 c1(‖H −H∗‖pp-var,s,t
+(‖H −H∗‖pp-var,s,t)1/2(‖Y − Y ∗‖pp-var,s,t)1/2).

Since 1/2 + 1/2 = 1, the right-hand side of the previous inequality defines a control
function (see Friz and Victoir [11], Exercice 1.9), and then there exists a constant
c2 > 0, not depending on s and t, such that

‖X −X∗‖pp-var,s,t 6 c1(‖H −H∗‖pp-var,s,t + ‖H −H∗‖p/2p-var,s,t‖Y − Y ∗‖
p/2
p-var,s,t)

6 c2(‖H −H∗‖pp-var,s,t + ‖H −H∗‖p/2p-var,s,t‖X −X∗‖
p/2
p-var,s,t).(17)
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The right-hand side of the previous inequality defines a control function.

On the other hand, since X(0) = X∗(0):

‖H −H∗‖p-var,s,t 6 c(p, p)‖Z‖p-var,s,t(‖f ◦X − f ◦X∗‖p-var,s,t
+‖f(X(s))− f(X(0))− (f(X∗(s))− f(X∗(0)))‖)

6 2c(p, p)‖Z‖p-var,s,t‖f ◦X − f ◦X∗‖p-var,t.

Consider (u, v) ∈ ∆t and

δ(u, v) := ‖(f ◦X)(u, v)− (f ◦X∗)(u, v)‖.

Applying Taylor’s formula to the map f between X(u, v) and X∗(u, v):

δ(u, v) 6

∥∥∥∥∫ 1

0

Df(X(u) + θX(u, v))(X(u, v)−X∗(u, v))dθ

∥∥∥∥
+

∥∥∥∥∫ 1

0

(Df(X(u) + θX(u, v))−Df(X∗(u) + θX∗(u, v)))X∗(u, v)dθ

∥∥∥∥
6 ‖f‖Lipγ (‖X −X∗‖p-var,u,v + 2‖X∗‖p-var,u,v‖X −X∗‖p-var,t).

So, there exists a constant c3 > 0, not depending on t, such that

‖f ◦X − f ◦X∗‖p-var,t 6 c3‖X −X∗‖p-var,t,

and then there exists a constant c4 > 0, not depending on s and t, such that

(18) ‖H −H∗‖p-var,s,t 6 c4‖Z‖p-var,s,t‖X −X∗‖p-var,t.

By Equation (17) and Equation (18) together, there exists a constant c5 > 0, not
depending on s and t, such that

‖X −X∗‖p-var,s,t 6 c5‖Z‖1/2p-var,s,t‖X −X∗‖p-var,t.

Since (u, v) ∈ ∆T 7→ ‖Z‖pp-var,u,v is a control function, there exists N ∈ N∗ and
(τk)k∈J0,NK ∈ D[0,T ] such that

‖Z‖p-var,τk,τk+1
6

1

4c25
; ∀k ∈ J0, N − 1K.

First,

‖X −X∗‖p-var,τ1 6 c5‖Z‖1/2p-var,τ1‖X −X
∗‖p-var,τ1

6
1

2
‖X −X∗‖p-var,τ1 .

So, X = X∗ on [0, τ1]. For k ∈ J1, N − 1K, assume that X = X∗ on [0, τk]. Then,

‖X −X∗‖p-var,τk+1
= ‖X −X∗‖p-var,τk,τk+1

6
1

2
‖X −X∗‖p-var,τk+1

.

So, X = X∗ on [0, τk+1]. Recursively, X = X∗ on [0, T ]. �

Proposition 4.3. Consider (s, t) ∈ ∆T , p ∈ [2, 3[ and two solutions (X,Y ) and
(X∗, Y ∗) to Problem (2) under Assumption 1.1. On [s, t], (X,Y ) = (X∗, Y ∗) if
and only if X(s) = X∗(s) and

(19)
∫ v

u

〈RX(u, r)−RX∗(u, r), d(Y − Y ∗)(r)〉 6 0 ; ∀(u, v) ∈ ∆s,t.
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Proof. For the sake of simplicity, the proposition is proved on [0, T ] instead of [s, t]
with (s, t) ∈ ∆T .

First of all, if (X,Y ) = (X∗, Y ∗) on [s, t], then∫ v

u

〈RX(u, r)−RX∗(u, r), d(Y − Y ∗)(r)〉 = 0 ; ∀(u, v) ∈ ∆s,t.

Now, let us prove that if X(s) = X∗(s) and Inequality (19) is true, then (X,Y ) =
(X∗, Y ∗).

There exists a constant c1 > 0 such that for every (s, t) ∈ ∆T ,

(20) ‖(X −X∗, (X −X∗)′)‖Z,p/2,s,t
=‖f(X)− f(X∗)‖p-var,s,t + ‖RX −RX∗‖p/2-var,s,t
6c1(‖RX −RX∗‖p/2-var,s,t + ‖Z‖p-var,s,t‖(X −X∗, (X −X∗)′)‖Z,p/2,t).

Let us find a suitable control function dominating

(s, t) ∈ ∆T 7−→ ‖RX −RX∗‖p/2p/2-var,s,t.

For every (s, t) ∈ ∆T ,

‖RX(s, t)−RX∗(s, t)‖2 = ‖RH(s, t)−RH∗(s, t)‖2

+2

∫ t

s

〈Y (s, u)− Y ∗(s, u), d(Y − Y ∗)(u)〉

+2

∫ t

s

〈RH(s, t)−RH∗(s, t), d(Y − Y ∗)(u)〉

= ‖RH(s, t)−RH∗(s, t)‖2

+2

∫ t

s

〈RX(s, u)−RX∗(s, u), d(Y − Y ∗)(u)〉

+2

∫ t

s

〈RH(s, t)−RH(s, u)− (RH∗(s, t)−RH∗(s, u)), d(Y − Y ∗)(u)〉

6 ‖RH −RH∗‖2p/2-var,s,t + 2m(s, t)

with

m(s, t) :=

∫ t

s

〈RH(u, t)−RH∗(u, t), d(Y − Y ∗)(u)〉.

Let (s, t) ∈ ∆T be arbitrarily chosen.

On the one hand,

m(s, t) 6 2e · c(p, p)‖RH −RH∗‖p/2-var,s,t‖Y − Y ∗‖p/2-var,s,t.

So, there exists a constant c2 > 0, not depending on s and t, such that

‖RX(s, t)−RX∗(s, t)‖p/2 6 (‖RH −RH∗‖2p/2-var,s,t + 2m(s, t))p/4

6 c2(‖RH −RH∗‖p/2p/2-var,s,t

+(‖RH −RH∗‖p/2p/2-var,s,t)
1/2(‖Y − Y ∗‖p/2p/2-var,s,t)

1/2).

Since 1/2 + 1/2 = 1, the right-hand side of the previous inequality defines a control
function (see Friz and Victoir [11], Exercice 1.9), and then there exists a constant
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c3 > 0, not depending on s and t, such that

‖RX −RX∗‖p/2p/2-var,s,t 6 c2(‖RH −RH∗‖p/2p/2-var,s,t

+‖RH −RH∗‖p/4p/2-var,s,t‖Y − Y
∗‖p/4p/2-var,s,t)

6 c3(‖RH −RH∗‖p/2p/2-var,s,t

+‖RH −RH∗‖p/4p/2-var,s,t‖RX −RX∗‖
p/4
p/2-var,s,t).(21)

On the other hand, since X(0) = X∗(0):

‖f(X)′(s)− f(X∗)′(s)‖ = ‖Df(X(s))f(X(s))−Df(X(0))f(X(0))

−(Df(X∗(s))f(X∗(s))−Df(X∗(0))f(X∗(0)))‖
6 ‖f(X)′ − f(X∗)′‖p-var,t.

Then,

‖RH(s, t)−RH∗(s, t)‖ 6 IZ,f(X)−f(X∗)(s, t) + ‖(f(X)′(s)− f(X∗)′(s))Z(s, t)‖
6 c(p)(‖Rf(X) −Rf(X∗)‖p/2-var,s,t‖Z‖p-var,s,t

+‖f(X)′ − f(X∗)′‖p-var,s,t‖Z‖p/2-var,s,t)
+‖f(X)′ − f(X∗)′‖p-var,t‖Z‖p/2-var,s,t.

So, with the same ideas as in P. Friz and M. Hairer [9, Theorem 8.4 p. 115], there
exists a constant c4 > 0, not depending on s and t, such that

(22) ‖RH −RH∗‖p/2-var,s,t 6 c4‖(X −X∗, (X −X∗)′)‖Z,p/2,tωp,Z(s, t)1/p.

By Equations (20), (21) and (22) together, there exists a constant c5 > 0, not
depending on s and t, such that

‖(X −X∗, (X −X∗)′)‖Z,p/2,s,t 6 c5‖(X −X∗, (X −X∗)′)‖Z,p/2,tωp,Z(s, t)1/(2p).

The conclusion of the proof is the same as in Proposition 4.2. �

5. Sweeping processes perturbed by a stochastic noise directed by a
fBm

First of all, let us recall the definition of fractional Brownian motion.

Definition 5.1. Let (B(t))t∈[0,T ] be a d-dimensional centered Gaussian process. It
is a fractional Brownian motion of Hurst parameter H ∈]0, 1[ if and only if,

cov(Bi(s), Bj(s)) =
1

2
(|t|2H + |s|2H − |t− s|2H)δi,j

for every (i, j) ∈ J1, dK2 and (s, t) ∈ [0, T ]2.

Fore more details on fractional Brownian motion, we refer the reader to Nualart
[21, Chapter 5].

Let B := (B(t))t∈[0,T ] be a d-dimensional fractional Brownian motion of Hurst
parameter H ∈]1/3, 1[, defined on a probability space (Ω,A,P).

By Garcia-Rodemich-Rumsey’s lemma (see Nualart [21, Lemma A.3.1]), almost
all paths of B are α-Hölder continuous with α ∈]0, H[. So, in particular, for almost
every ω ∈ Ω, B(ω) is a continuous function of finite p-variation with p ∈]1/H,∞[.
By Friz and Victoir [11, Proposition 15.5 and Theorem 15.33], there exists an en-
hanced Gaussian process B : (Ω,A)→ GΩp,T (Rd) such that B(1) = B.
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Consider b ∈ C [p]+1(Re), σ ∈ C [p]+1(Re,Me,d(R)) and the following sweeping
process, perturbed by a pathwise stochastic noise directed by B:

(23)


X(t) = H(t) + Y (t)

H(t) =

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dB(s)

− dDY

d|DY |
(t) ∈ NCH(t)(Y (t)) |DY |-a.e. with Y (0) = a

.

Let W := (W (t))t∈[0,T ] be the stochastic process defined by:

W (t) := te1 +

d∑
k=1

Bk(t)ek+1 ; ∀t ∈ [0, T ].

By Friz and Victoir [11, Theorem 9.26], there exists an enhanced stochastic process
W : (Ω,A) → GΩp,T (Rd+1) such that W(1) := W . Consider also the map f :
Re →Me,d+1(R) defined by:

f(x)(u, v) := b(x)u+ σ(x)v ; ∀x ∈ Re, ∀(u, v) ∈ Rd+1.

So, Problem (23) can be reformulated as follow:
X(ω, t) = H(ω, t) + Y (ω, t)

H(ω, t) =

∫ t

0

f(X(ω, s))dW(ω, s)

− dDY

d|DY |
(ω, t) ∈ NCH(ω,t)(Y (ω, t)) |DY (ω)|-a.e. with Y (0) = a

; ω ∈ Ω.

Therefore, the previous results of this paper apply to Problem (23):

Theorem 5.2. (Existence) Assume that, for every t ∈ [0, T ], C(t) is a random
set with convex compact values with nonempty interior, and that the paths of C are
continuous for the Hausdorff distance. Then Problem (23) has at least one solution,
whose paths belong to Cp-var([0, T ],Re), for p ∈]1/H,∞[.

Proof. This is a direct pathwise application of Theorems 3.1 and 3.2. �

Proposition 5.3. (Existence and uniqueness for an additive fractional noise) As-
sume that, for every t ∈ [0, T ], C(t) is a random set with convex compact values
with nonempty interior, and that the paths of C are continuous for the Hausdorff
distance. If σ is a constant map, then Problem (23) has a unique solution, whose
paths belong to Cp-var([0, T ],Re), for p ∈]1/H,∞[.

Proof. This is a direct pathwise application of Theorem 3.1, Theorem 3.2 and
Proposition 4.1. �

Remark. For instance, Proposition 5.3 ensures the existence and uniqueness of
the solution to a multidimensional reflected fractional Ornstein-Uhlenbeck process.
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