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Highlight 

A strongly iron-responsive gene, of previously unknown function, At3g12900, encodes a 

scopoletin 8-hydroxylase involved in coumarin biosynthesis, and plays an important role in 

the iron uptake strategy in Arabidopsis. 

 

Abstract 

Iron (Fe) deficiency is a serious agricultural problem, particularly for alkaline soils. Secretion 

of coumarins by Arabidopsis thaliana roots is induced under Fe-deficiency. An essential 

enzyme for the biosynthesis of major Arabidopsis coumarins, scopoletin and its derivatives, is 

Feruloyl-CoA 6’-Hydroxylase1 (F6′H1), that belongs to a large enzyme family of the 2-

oxoglutarate and Fe(II)-dependent dioxygenases. Another member of this family, which is a 

close homologue of F6’H1, and is encoded by a strongly Fe-responsive gene, At3g12900, is 

functionally characterized in the presented work. We purified the At3g12900 protein 

heterologously expressed in Escherichia coli and demonstrated that it is involved in the 

conversion of scopoletin into fraxetin, via hydroxylation at the C8-position, scopoletin 8-

hydroxylase (S8H). Its function in plant cells was confirmed by the transient expression of 

S8H protein in Nicotiana benthamiana leaves, followed by the metabolite profiling and the 

biochemical and ionomic characterization of Arabidopsis s8h knockout lines grown under 

various Fe regimes. Our results indicate that S8H is involved in coumarin biosynthesis, as part 

of mechanisms used by plants to assimilate Fe.  

 

Keywords: abiotic stress, Arabidopsis, enzyme activity, fraxetin, Fe- and 2OG-dependent 

dioxygenase, plant–environment interactions, mineral nutrition 

 

Introduction 

Iron (Fe) is an essential micronutrient for all living organisms. In plants, chloroplast and mitochondria 

have high Fe demand (Nouet et al., 2011). Fe is abundant in soils, but its availability is often limited 
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due to soil conditions, which can be highly heterogeneous, such as pH and redox presence of co-

elements (Moosavi and Ronaghi, 2011; Marschner, 2012). Fe deficiency is a serious agricultural 

problem, particularly in alkaline and calcareous soils (Mengel, 1994). These types of soils, which 

represent approximately 30 % of the world's cropland, are characterized by a higher pH that in 

combination with the presence of oxygen leads to Fe precipitation in the form of insoluble ferric 

oxides (Fe2O3) (Morrissey and Guerinot, 2009).  

 

Higher plants have developed two different types of strategies in response to Fe limitation. A 

reduction-based strategy (Strategy I), which occurs in all plants except graminaceous species, where 

release of protons into the rhizosphere is enhanced by Fe deficiency-induced proton-translocating 

adenosine triphosphatases (Marschner and Roemheld, 1994; Kim and Guerinot, 2007), such as AHA2 

in Arabidopsis (Santi and Schmidt, 2009). As a result, at lower pH the ferric oxide precipitates are 

dissolved, and the plasma membrane bound Ferric Chelate Reductase 2 (FRO2) (Robinson et al., 

1999) catalyses the reduction of ferric ions (Fe3+) into more soluble, and bioavailable to plants, 

ferrous ions (Fe2+). Once reduced, Fe2+ ions are transported into the root epidermal cells across the 

plasma membrane by the divalent metal transporter Iron Regulated Transporter 1 (IRT1) (Vert et al., 

2002; Varotto et al., 2002). A second strategy, used by graminaceous species, is based on the release 

of soluble mugineic acid family phytosiderophores (PS) from the root epidermis forming the 

complexes with Fe3+ (Takagi et al., 1984; Marschner and Roemheld, 1994; Kim and Guerinot, 2007). 

The resulting Fe3+-PS complexes are then transported into the root epidermis via a high-affinity 

uptake system without the requirement of a reduction step (Curie et al., 2001; Kim and Guerinot, 

2007).  

 

The precise mechanisms underlying responses of Strategy I plants to low Fe availability in calcareous 

soils are not clear. However, it is well documented that Fe deficiency enhances the release of 

reductants/chelators (mainly phenolics) in many dicots (Marschner and Roemheld, 1994; Jin et al., 

2007). Recently, it was shown that Fe deficiency induces the secretion of secondary metabolites, like 

scopoletin and its derivatives, by Arabidopsis roots (Rodriguez-Celma et al., 2013a; Fourcroy et al., 

2014), and that a Feruloyl-CoA 6'-Hydroxylase1 (F6'H1) is required for the biosynthesis of the Fe(III)-

chelating coumarin esculetin, which is released into the rhizosphere as part of the Strategy I-type Fe 

acquisition (Schmid et al., 2014).  
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Scopoletin and, its corresponding glycoside, scopolin, are the predominant coumarins in Arabidopsis 

roots. But simultaneously, many other coumarin compounds such as skimmin, esculetin, fraxetin and 

the recently discovered coumarinolignans, are present in the roots of this model plant (Rohde et al., 

2004; Bednarek et al., 2005; Kai et al., 2006; Kai et al., 2008; Schmid et al., 2014; Schmidt et al., 2014; 

Ziegler et al., 2016; Siso-Terraza et al. 2016; Ziegler et al., 2017). In our previous work, we reported 

the presence of a significant natural variation in scopoletin and scopolin accumulation between 

various Arabidopsis accessions (Siwinska et al., 2014). It is interesting that Strategy I plants differ 

considerably between plant species and genotypes in their tolerance to Fe deficiency. In Arabidopsis, 

an accumulation of various coumarins, in particular scopoletin and fraxetin together with their 

corresponding glycosides, was shown to be highly induced in response to Fe limited condition 

(Fourcroy et al., 2014; Schmid et al., 2014; Schmidt et al., 2014). Up to now, no enzymes involved in 

the last step of fraxetin biosynthesis have been identified. 

 

The biosynthesis of coumarins, and their accumulation, are due to Fe deficiency, but the exact 

mechanisms of action underlying these processes have remained largely unknown. To better 

understand these mechanisms, we have selected and functionally characterized an enzyme with a 

previously unknown biological role, encoded by the At3g12900 gene, which shares significant 

homologies with the F6’H1 and F6’H2 described by Kai et al. (2008), as involved in the synthesis of 

scopoletin, and which is pointed in the literature as a strongly iron-responsive (Lan et al., 2011; 

Rodriguez-Celma et al., 2013b; Mai et al., 2015; Mai and Bauer, 2016). This lead us to identify the 

At3g12900 oxidoreductase as a scopoletin 8-hydroxylase (S8H) involved in the biosynthesis of 

fraxetin that is associated with regulation of Fe homeostasis in Arabidopsis. 

 

Materials and methods  

Plant material 

Arabidopsis thaliana (Arabidopsis) Col-0 accession was used as the wild-type. The s8h-1 

(SM_3.27151) and s8h-2 (SM_3.23443) T-DNA insertional mutant lines (Figure S1) were 

identified in the SM collection (http://signal.salk.edu/; Tissier et al., 1999) of single copy 

dSpm insertions (Col-0 background). Seeds of both s8h lines are available at the stock centre 
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NASC (http://arabidopsis.info/). Genotyping of s8h-1 and s8h-2 was done using protocols and 

primers described in Table S1. Selected s8h-1 homozygous mutants were tested for S8H gene 

expression by qRT-PCR (Figure S2, Table S2). A lack of S8H transcript in s8h-2 mutant 

background was confirmed by RT-PCR using primers shown in Table S2. Nicotiana 

benthamiana seeds were kindly gifted by Dr Etienne Herbach (INRA, Colmar, France). 

 

Growth conditions 

Hydroponic cultures. Plants were grown in two types of modified Heeg solutions (Heeg et al. 

2008) described in details in Table S3. First solution (10xHeeg) was prepared as previously 

described (Ihnatowicz et al., 2014), a second solution (1xHeeg) contained 10 times less 

microelements (except for Fe
2+

). Arabidopsis seeds were surface sterilized by soaking in 70 % 

ethanol for 2 min and subsequently kept in 5 % calcium hypochlorite solution for 8 min. 

Afterwards, seeds were rinsed three times in autoclaved deionized water. The surface-

sterilized seeds were sown out ton tip-cut 0.65% agar-filled tubes or on micro-centrifuge 

tubes’ lids (filled with solidified Heeg medium) that were placed into tip boxes with control 

hydroponic solution (40 µM Fe
2+

). After a few-days stratification at 4 °C, boxes with plants 

were kept in controlled environment (16 h light at 22 °C/~7000 lux and 8 h dark at 20 °C). 

Approximately three weeks later, plants were transferred either to a freshly made control 

solution or to Fe-deficient (10 µM Fe
2+

) or Fe-depleted (0 µM Fe
2+

) solutions. In the first sets 

of experiments hydroponic solutions were fully changed once per week, while in the second 

sets of experiments boxes containing old nutrient solution were refilled by the addition of a 

fresh medium.  

 

In vitro cultures on plates. The surface-sterilized seeds were sown out on Petri dishes 

containing different homemade Murashige and Skoog’s (MS) medium: (1) half strength MS 

medium (0.5 MS) with macro-elements in half strength and micro-elements/vitamins in full 

strength and (2) one fourth strength MS medium (0.25 MS) with macro-elements in one 

fourth strength and microelements/vitamins in half strength. Both types of media contained 1 

% sucrose, 0.8 % agar supplemented with 4 mg/l glycine, 200 mg/l myo-inositol, 1 mg/l 

thiamine hydrochloride, 0.5 mg/l pyridoxine hydrochloride and 0.5 mg/l nicotinic acid. For 

stratification, plates were kept in the dark at 4 °C for 72 h and then placed under defined 

growth conditions (16 h light (~5000 lux) at 22 °C and 8 h dark at 20 °C).  
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In vitro liquid cultures. Ten days old seedlings from agar plates were transferred into 250 ml 

glass containing 20 ml sterile 0.25 MS liquid medium. Plants grown in liquid cultures were 

incubated on rotary platform shakers at 120 rpm. Ten days after transfer, 20 ml of fresh 

medium was added to each flask. 18 days after transfer, plants were harvested (29th day of 

culture), leaves and roots were frozen separately in liquid nitrogen and stored at −80 °C.  

 

Two weeks after germination, N. benthamiana seeds were transplanted and cultured 

independently for 3 additional weeks in plant growth chambers under a photoperiod of 16 h 

light (120 μmol m
−2

 s
−1

) at 24 °C and 8 h dark at 22 °C with 70 % humidity. 

 

Chemicals 

Acids: ferulic (Aldrich), coumaric (Sigma), cinnamic (Sigma) and caffeic (Fluka). Coumarins: 

coumarin (Sigma), daphnetin (Sigma), esculetin (Sigma), esculin (Sigma), fraxetin 

(Extrasynthèse), fraxin (Extrasynthèse), isoscopoletin (Extrasynthèse), limetin (Herboreal), 

scoparon (Herboreal), 6-methoxycoumarin (Apin Chemicals), 7-methoxycoumarin 

(Herboreal), scopoletin (Herboreal), scopolin (Aktin Chemicals Inc.), umbelliferon 

(Extrasynthèse), skimmin (Aktin Chemicals Inc.) and 4-methylumbelliferon (Sigma). The 

CoA thiol esters of the cinnamates (cinnamoyl CoA, p-coumaroyl CoA, caffeoyl CoA and 

feruloyl CoA) were enzymatically synthetized as described by Vialart et al. (2012). P-

coumarate and coenzymeA (CoA) were purchased from Sigma-Aldrich. Kanamycin, 

chloramphenicol and isopropyl-β-d-thio-galactopyrannoside (IPTG) were purchased from 

Duchefa. 

 

Construction of binary vector and Agrobacterium tumefaciens strains 

The amplified S8H ORF (details of PCR in Table S4) was first cloned into the pCR8 plasmid 

using the pCR®8/GW/TOPO® TA cloning kit (Invitrogen) (Vialart et al., 2012) using the 

Gateway technology. The recombinant pBIN-GW-S8H vector was further introduced into the 

LBA4404 A. tumefaciens strain and used together with the C5851 A. tumefaciens strain 

containing pBIN61-P19 (Voinnet et al., 2003, provided by D. Baulcombe (Department of 
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Plant Science, University of Cambridge, UK)) for transient expression in N. benthamiana 

leaves. 

 

Construction of pET28a+ expression vector and E. coli Rosetta 2 strain  

The ORF of S8H was amplified by PCR (5’ primer: 5’-

GGATCCGGTATCAATTTCGAGGACCAAAC-3’ and 3’ primer: 5’-

CTCGAGCTCGGCACGTGCGAAGTCGAG-3’) and cloned between the BamHI and XhoI 

sites of pET28a+. The recombinant plasmid was introduced into competent E. coli Rosetta 2 

(Novagen) strain by heat shock. 

 

Heterologous expression and purification of S8H  

E. coli Rosetta 2 strain transformed with pET28a+-S8H was cultured at 37 °C overnight in 10 

ml LB (Sambrook, 2001) supplemented with 100 mg/L kanamycin and 33 mg/L 

chloramphenicol. A 2 ml pre-culture was transferred to 1L of fresh LB containing kanamycin 

100 mg/L and chloramphenicol 33 mg/L. Induction of the S8H expression was adapted from 

the protocol developed by Oganesyan et al. (2007). Transformed cells were cultured at 37 °C 

until OD600nm reached 0.6. A salt stress with 0.5 M NaCl and heat stress at 47 °C were applied 

during 1 h in the presence of 2 mM betain. Then temperature was set at 20 °C for 1 h and 

finally the expression of S8H was initiated by adding 1 mM of IPTG. Cells were harvested 

after 14 h by a 20 min centrifugation at 4000 g at 4 °C and the pellet was resuspended in 4 ml 

of potassium phosphate buffer pH 8.0 with 10 mM imidazol. The cell suspension was 

sonicated (Bandelin SONOPLUS apparatus; for 20 sec x 5 with an interval of 50%, 60% 

power) and subsequently centrifuged at 10000 g for 20 min at 4 °C. The purification of 

soluble recombinant his-tagged proteins was done using the TALON Metal Affinity Resin 

(TAKARA) as described by the supplier. The purified proteins were eluted with 0.1 M 

potassium phosphate buffer, 200 mM imidazol solution (pH 8.0). 

 

Enzymatic activities measurements 

Enzymatic incubations were made immediately after the S8H purification. The protocol was 

adapted from Kai et al. (2008). The reaction was done in 200 µl volume at saturating 

concentration of FeSO4 (0.5 mM), α-cetoglutarate (5 mM), sodium ascorbate (5 mM) in 0.1 M 

potassium phosphate buffer at optimal pH (7.0), 200 µM substrate and 2.6 µg of purified 
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enzyme. Reaction mixtures were incubated for 10 min at optimal temperature of 31.5 °C. 

Enzymatic incubations with CoA esters were additionally incubated at the end of the reaction 

with 20 µl of 5 M NaOH for 20 min at 37 °C to hydrolase the ester bond and subsequently 

with 20 µl of acetic acid in order to close the lacton ring. Samples with acids and coumarins 

as substrates were stopped by the addition of 2 µl of trifluoroacetic acid and incubation in 20 

°C for 20 min. Reaction mixtures were then centrifuged for 30 min at 13000 rpm, the 

resulting supernatant was recovered, filtrated (0.22 µm) and analysed by HPLC.  

 

High Performance Liquid Chromatography (HPLC) 

Chromatographic separation was performed using HPLC Shimadzu system with DAD/UV 

detector. Injected volume was 50 µl. Samples were separated on Interchim C18 Lichrospher 

OD2 (250*4.0 mm, 5 µm) column with the flow speed 0.8 ml/min. Separation was performed 

by elution with following program (A) H2O and 0.1 % acetic acid (B) methanol and 0.1 % 

acetic acid: 0-35 min gradient 10 % - 70 % B, 35-36 min 70 % - 99 % B, 36-39 min 99 % - 99 

% B, isocratic elution and column regeneration. Wavelength was set at 338 nm to monitor the 

formation of fraxetin. 

 

UHPLC and LTQ LC/MS analysis 

Sample analysis was performed on a Nexera UHPLC system (Shimadzu Corp., Kyoto, Japan) 

coupled with LCMS 2020 mass spectrometer (Shimadzu). The chromatographic column was 

a C18 reverse phase (Zorbax Eclipse Plus, Agilent technologies, Santa Clara, CA, USA) 

150*2.1mm 1,8µm. Elution of the compounds was performed as described in Dugrand et al. 

(2013). To confirm the in vitro metabolisation of scopoletin into fraxetin, separation was 

conducted on a Ultimate 3000 chromatographic chain coupled with a LTQ-XL mass 

spectrometer (Thermo Electron Corporation, Waltham, MA, USA) as described by Karamat 

et al. (2012).  

 

Heterologous expression in N. benthamiana leaves 

A protocol for heterologous expression was adapted from Voinnet et al. (2003). Several 

freshly spread colonies (LBA4040 [pBIN-F6’H2], LBA4040 [pBIN-S8H)], C5851 [pBIN61-

P10]) were inoculated to 40 ml LB medium containing the proper antibiotics and incubated at 

28 °C for one night. The cultures were centrifuged for 10 min at 4000 g and the pellet re-
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suspended in 20 ml sterile deionizated water. This step was repeated 3 times in order to 

remove all traces of antibiotics. N. benthamiana leaves were infiltrated with recombinant 

strains in order to have an OD600 of 0.4 for pBIN61-P19 bacteria and 0.2 for pBIN-S8H or 

pBIN-F6’H2 bacteria. The infiltrated plants were stored in a growth chamber during 96 h. In 

parallel, for each experiment, N. benthamiana were infiltrated with LBA4404 [pBIN-GFP] as 

a positive control. Expression of GFP was checked under a binocular microscope. 

 

Extraction of polyphenols from N. benthamiana leaves 

Freshly harvested infiltrated N. benthamiana leaves were crushed in liquid nitrogen and 100 

mg mixed to 800 µl 80 % methanol. This solution was vigorously mixed during 30 sec prior a 

30 min centrifugation at 10000 g. The supernatant was transferred to a fresh tube and the 

pellet submitted to a second extraction with 800 µl 80 % methanol. Both supernatants were 

pooled and vacuum dried. The pellet was resuspended in 100 µl MeOH/H2O 80/20 v/v and 

analyzed by UHPLC. 

 

Preparation of methanol extracts from Arabidopsis roots 

Arabidopsis roots were frozen in liquid nitrogen and ground with a pestle and mortar. Fifty 

mg of plant tissue were mixed in 500 µl of 80 % methanol supplemented with 2.5 µM 4-

methylumbelliferon as an internal standard. Samples were sonicated for 10 min and 

centrifuged for 10 min at 10 000 g. Supernatants were transferred to fresh tubes, vacuum 

dried, resuspended in 100 µl MeOH/H2O 80/20 v/v and analyzed by UHPLC. 

 

Extraction of root exudates from nutrient solutions 

Nutrient solutions of Arabidopsis in vitro cultures were collected 18 days after the onset of Fe 

treatments. Phenolic compounds were retained in a BAKERBOND™ C18 column (J. T. 

Baker Chemical Co., Phillipsburg), eluted from the cartridge with 3 ml of 100 % methanol 

and dried in centrifugal evaporator. Dry extracts were stored at -20 °C for further analysis. 

 

Trace element analysis 

Arabidopsis roots were first lyophilized and subsequently milled before microwave (MARS) 

assisted digestion in concentrated nitric acid (Aristar). Metal concentrations were determined 
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by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) (Thermo iCAP Q, Bremen, 

Germany). 

 

Chlorophyll measurement 

Chlorophyll extraction with acetone was done by the method given by Porra et al. (1989). The 

absorbances of the diluted supernatants were taken at 750.0, 663.6 and 646.6 nm. After 

measurement, a special formula was used to convert absorbance measurements to mg of Chl (Porra 

et al., 1989). 

 

Statistical analysis 

All treatments included at least three biological replicates. Data processing and statistical 

analyses-pairwise comparisons using t-tests (except trace element analysis) were carried out 

using Excel (Microsoft Excel 2010). Error bars representing standard deviation (SD) are 

shown in the figures; the data presented are means. The significance level used here is p < 

0.01 indicated by (**) or p < 0.05 indicated by (*). Statistical significance of differences 

observed in trace element analysis were analyzed by R version 3.3.2 (2016-10-31) (R Core 

Team 2014) with the use of agricolae package; p < 0.05 was used. Values that are 

significantly different are indicated by different letters.  

 

Results 

Phylogenetic analysis of genes encoding Fe(II)- and 2OG-dependent dioxygenases from 

Arabidopsis genome 

More than 100 genes encoding enzymes sharing sequence homologies with dioxygenases 

were identified in the genome of Arabidopsis (Kawai et al., 2014). Almost half of them 

display characteristic amino acid sequence motifs involved in binding cofactors such as Fe
2+

 

and 2OG (His-X-Asp-X-His and Arg-X-Ser, respectively; Wilmouth et al., 2002). We 

performed phylogenetic analysis based on the nucleic sequences of putative genes encoding 

dioxygenases collected from TAIR. This analysis pointed out that two genes involved in 

scopoletin biosynthesis (At3g13610 and At1g55290, encoding F6’H1 and F6’H2 

respectively) were clustered together and identified the At3g12900 gene of unknown function 

to share the highest homology with both scopoletin synthases (Figure 1). 
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The amino acid sequences of three enzymes were compared to a leucoanthocyanidin 

dioxygenase (named anthocyanidin synthase - ANS) encoded by At4g22880 which catalyses 

the conversion of leucoanthocyanidins into anthocyanidins (Heller and Forkmann, 1986) and 

has the highest sequence identity to F6'H1 among enzymes of known crystallographic 

structure (Wilmouth et al., 2002). The Fe
2+

 binding site (His 235, His 293, Asp 237 in F6’H1) 

and the 2OG binding site (Arg 303 and Ser 305 in F6’H1) are highly conserved in all proteins 

(Figure S3). In contrast, the amino acid residues responsible for the substrates binding differ 

among the enzymes which is consistent with the activities already described for three of them: 

feruloyl-CoA ester for F6’H1 and F6’H2 (Kai et al., 2008) and leucoanthocyanidin for ANS 

(Wilmouth et al., 2002). These alignments highlight a different sequence for At3g12900 

which suggest another substrate specificity. 

 

 

 

Determination of in vitro substrate specificity and kinetic parameters of enzymatic reaction 

catalysed by the At3g12900 oxidoreductase 

In order to determine the substrate specificity, the At3g12900 6XHis-tagged protein was 

expressed in Escherichia coli. An improved protocol was used for the purification of 

heterologously expressed S8H enzyme to obtain the purified protein fraction (Figure S4). The 

purified enzyme was incubated in the presence of dioxygenase cofactors at saturating 

concentrations and 19 various potential substrates belonging to (1) cinnamoyl derivative CoA 

esters; (2) cinnamic derivative acids; (3) and coumarins (Table S5). Only scopoletin was 

converted into a product (Figure 2A) which has been unambiguously identified as fraxetin due 

to its UV absorption spectrum, its molecular mass (Figure 2ABC) and its MS fragmentation 

spectrum in comparison to a fraxetin commercial standard (Figure 2DE). The At3g12900 can 

therefore be considered as a scopoletin 8-hydroxylase (S8H) (Figure 3) catalysing the 

hydroxylation at the position C8 of scopoletin. The optimal reaction conditions were 

determined to be at pH 8.0±0.1 at 31.5±0.4 °C (Figure S5AB) and the optimal incubation time 

was set at 10 minutes (Figure S6A). These experimental conditions led us to determine the 

kinetic characteristics of the enzyme as being Km 11±2 µM, Vmax 1.73±0.09 pmol/sec/pmol of 

S8H (Figure S7). We also demonstrated that the enzyme efficiency is the best in presence of 
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50 µM Fe
2+

 (Figure S6B) and that higher concentrations significantly reduced the enzyme 

activity leading to a decreased fraxetin synthesis. 

 

In vivo activity of scopoletin 8-hydroxylase in Nicotiana benthamiana 

In order to confirm its function in plant cells, we transiently expressed the S8H enzyme in N. 

benthamiana leaves. Our analysis showed that the presence of this enzyme did not increase 

the production of fraxetin in comparison to a control infiltration performed with bacteria 

transformed with an empty vector (Figure 4). However, when we conducted a double 

infiltration leading to the overexpression of S8H and F6’H in tobacco leaves, we detected a 

significantly higher level of fraxetin in comparison to leaves transiently expressing S8H alone 

(p = 0.01) or leaves infiltrated with control (the empty vector, p = 0.07) (Figure 4). This result 

is consistent with an increase of the scopoletin pool that occurs due to the F6’H activity, 

which can be further transformed into fraxetin and confirms that At3g12900 functions as a 

scopoletin 8-hydroxylase. 

 

 

Characterization of independent s8h mutant alleles grown in Fe-depleted hydroponics 

To get an insight into the physiological role of S8H, we identified two independent mutant 

lines with non-functional S8H dioxygenase (s8h-1 and s8h-2) and investigated their behaviour 

in various types of culture. Since the literature data reported that fraxetin accumulation is 

induced under Fe deficiency, we investigated their behaviour in controlled Fe-depleted 

hydroponic solution. Plants were grown in a control hydroponic solution (40 µM Fe
2+

) for 

three weeks and subsequently were transferred to Fe-depleted solution (0 µM Fe
2+

) and 

cultured for additional three weeks. In Fe-depleted solutions both mutant lines were clearly 

paler than Col-0 control plants (Figure 5A). The mutant phenotype was linked with lower 

chlorophyll a+b content and chlorophyll a/b ratio (Figure 5B). The targeted metabolite 

profiling of methanolic extracts from the plant roots grown in hydroponic systems showed a 

highly significant increase in scopolin (P < 0.01) and scopoletin (P < 0.01) concentration in 

roots grown in Fe-depleted conditions for both mutant lines and a significant increase of 

umbelliferon accumulation in s8h-1 compared with Col-0 plants (Figure 5C).  
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Biochemical and ionomic characterization of plants cultivated in liquid cultures with 

various Fe content 

Since coumarins are mostly stored in roots, all tested genotypes were cultivated in vitro in 

liquid cultures in order to obtain enough root biomass for trace elements analysis, and media 

for root exudates extraction and metabolic profiling. After three weeks of growth, no visible 

phenotypic differences among WT and mutant plants could be highlighted: all genotypes 

grown in Fe-deficient medium (10 µM Fe
2+

) were paler and plants grown in Fe-depleted 

solution (0 µM Fe
2+

) were chlorotic (Figure S8). Chlorophyll content was slightly higher in 

both mutant lines in all media tested, while chlorophyll a/b ratio was significantly higher in 

Col-0 plants in control media and slightly higher in Fe-deficient and Fe-depleted media 

(Figure S9). However, the targeted metabolite profiling of root extracts and root exudates 

showed that under Fe-depleted conditions both mutant lines accumulated lower levels of 

various coumarins (scopoletin, scopolin, umbelliferone, skimmin) (Figure 6A), but secreted 

significantly higher amounts of scopolin in comparison to WT plants (Figure 6B). 

 

The trace element analysis of plants grown in liquid cultures media with various Fe levels 

indicated that the Fe content of both mutant lines (s8h-1 and s8h-2), grown in Fe-depleted 

medium (0 µM Fe
2+

), were significantly lower (P < 0.05) in comparison to the corresponding 

control (Col-0) (Figure 7). The concentration of a range of other microelements heavy metals 

(Mn, Zn, Cu, Co, Cd) was also significantly modified in the s8h mutants compared to control 

plants (P < 0.05) grown in Fe-depleted medium (Figure 7).  

 

As phosphate (Pi) and Fe deficiency interact with respect to Fe-induced coumarin secretion 

(Ziegler et al., 2016), and our soil experiments found that Col-0 and s8h-1 phenotypes were 

dependent on the P to Fe ratio (Figure S10, Table S6), another observation from the trace 

elements analysis is the lower levels of P content in both mutants (significantly lower in s8h-1 

line, P < 0.05), in comparison to Col-0 plants under Fe-depleted (0 µM Fe
2+

) conditions 

(Figure S11A). Plants grown in Fe-deficient (10 µM Fe
2+

) and Fe-optimal (50 µM Fe
2+

) 

media did not have changes in trace elements content (Figure S11ABC), with  exception that 

there was significantly higher Mo content in s8h mutants grown in Fe-deficient medium 

(Figure S11C). 
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Phenotyping of s8h mutants grown on MS plates and in hydroponic solutions with various 

concentrations of Fe and other microelements 

The impact of trace elements on Arabidopsis growth was further investigated by cultivating 

the s8h mutants and control plants on plates and hydroponic cultures characterized by 

different Fe concentrations and other microelements content. To observe the growth of both 

rosettes and roots, the MS plates were placed in a vertical and horizontal position. The growth 

of all genotypes was better on 0.25 MS medium than on the corresponding plates with 0.5 

MS, irrespective of the concentration of Fe ions (Figure S12). These differences were 

particularly striking after three weeks of cultivation. When grown on 0.25 MS Fe-deficient 

(10 µM Fe
2+

) medium, the s8h mutants showed a strong reduction in fresh weight (Figure 

S13A), becoming much paler, and had shorter and less lateral roots when compared to Col-0 

plants (Figure 8A). On 0.5 MS Fe-deficient medium both genotypes displayed a significant 

reduction in shoots and roots growth, but s8h mutants showed a smaller rosettes size than Col-

0 plants (Figure 8B). Under both Fe-depleted conditions (0 µM Fe
2+

), mutant lines and Col-0 

plants showed significantly smaller and chlorotic shoots while roots were greatly shorter 

(Figure 8AB). However, the wild type plants grew slightly better. The shoots of s8h mutants 

grown on 0.25 MS Fe-optimal (50 µM Fe
2+

) medium were clearly larger in comparison to the 

WT plants, which was not the case on 0.5 MS medium with optimal Fe content (Figure 8AB). 

 

Plants grown on Fe-deficient plates (10 µM Fe2+) under UV light showed that both s8h mutant lines 

secreted to media an increased level of fluorescent compound (Figure S14A), which might be related 

to significantly higher amounts of scopoletin detected in s8h Fe-deficient liquid culture solution 

(Figure 6B). This difference in fluorescence was not observed  in the control conditions (50 µM Fe2+), 

where mutant plants seemed to accumulate slightly more fluorescent compounds in roots compared 

to WT plants (Figure S14B). 

 

Similarly to plants grown in vitro, also plants cultured in hydroponics showed phenotypic 

variation in plant responses, which was dependent not only on Fe but also on concentrations 

of other micronutrients (two types of media with different micronutrient concentrations were 

used, see Table S3 for details). As can be seen on Figure S15C, both s8h mutants were paler 

than Col-0 plants when grown in 1xHeeg Fe-depleted (0 µM Fe
2+

) solution, which contains 
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10-times less microelements (Table S3). This phenotype was associated with lower amounts 

of chlorophylls. Both mutant lines, under Fe-deficient (10 µM Fe
2+

) conditions, were much 

larger when compared to WT plants with greatly increased fresh weight (Figure S15B). 

Surprisingly, when grown with optimal Fe (40 µM Fe
2+

), but lower amounts of other 

micronutrients (Table S3), all genotypes were significantly smaller but did not show any 

chlorosis symptoms or changes in chlorophyll content (Figure S15A). In contrast, when plants 

were cultivated in 10xHeeg solution, characterised by a higher micronutrient concentrations 

(Table S3), there were no visible differences among s8h mutants and WT plants when grown 

in presence of different Fe level (Figure S16). Under optimal and Fe-deficient conditions, all 

plants display a WT-like phenotype with normal pigmentation, but in solution without Fe all 

plants were smaller and chlorotic. In the above described hydroponic experiments, both types 

of solutions (1xHeeg and 10xHeeg) were fully exchanged weekly. 

 

There appears to be a crucial role of root-secreted coumarins for the acquisition of Fe (Tsai and 

Schmidt, 2017). Therefore, the above hydroponic culture was repeated without changing nutrient 

solution weekly. Instead, root chambers were refilled by the addition of a fresh medium to keep the 

similar volume of solution in each culture constant, and to retain potentially secreted coumarins. 

When grown in solution with lower micronutrients content (1xHeeg), under Fe-depleted conditions 

(0 µM Fe2+) both s8h mutants became chlorotic (Figure S17C), as previously observed (Figure S15C). 

But the growth of all genotypes was not affected in optimal solution and under Fe-deficiency (40 and 

10 µM Fe2+, respectively) (Figure S17AB), which could be due to a higher coumarin accumulation in 

solutions that were not fully changed. Similarly, to previously conducted hydroponic experiments, all 

plants grown in 10xHeeg solution under Fe-deficient and optimal conditions did not show any sign of 

chlorosis or growth retardation (Figure S18AB). However, under Fe-depleted conditions all genotypes 

were only slightly smaller when compared to optimal conditions and had normally pigmented leaves 

with no changes in chlorophyll content (Figure S18C). Only, shoots of mutant lines seemed to be 

slightly brighter.  

 

Discussion 

In the Arabidopsis genome there are more than 100 genes encoding enzymes sharing 

homologies with dioxygenases. The 2OGD is the second largest enzyme family in plants 

whose members are involved in various oxygenation/hydroxylation reactions (Kawai et al., 
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2014), including biosynthesis of coumarins that are important compounds contributing to the 

adaptation of plants to biotic and abiotic stresses (Kai et al., 2008; Vialart et al., 2012; 

Matsumoto et al., 2012; Rodriguez-Celma et al., 2013a). Among the most common stress 

factors leading to plant growth disorders and chlorosis are micronutrients deficiency or excess 

that can result in various physiological disorders (Marschner, 2012). Maintaining the nutrient 

homeostasis in cells is crucial for the proper functioning of plants and the mechanisms 

governing minerals uptake and transport must be strictly controlled.  

 

Plants use different strategies to compensate Fe limitation. Recently, it was shown that one of 

the Arabidopsis Fe(II)- and 2OG-dependent dioxygenase, the scopoletin synthase F6’H1 (Kai 

et al., 2008), is required for the biosynthesis of the Fe(III)-chelating coumarin esculetin that is 

released into the rhizosphere as part of the Fe uptake by Strategy I plants (Schmid et al., 

2014). 

 

Here, we have conducted the analysis of a strongly Fe-responsive gene At3g12900 of 

previously unknown biological function, which shares high homologies with the Fe(II)- and 

2OG-dependent dioxygenase family, to possibly reveal its contribution to Fe homeostasis in 

plants. The At3g12900 gene was selected based on its high homology to earlier described 

F6’H1 dioxygenase which was proven to play a crucial role in Fe acquisition under alkaline 

soil conditions (Schmid et al., 2014), and the literature data on plant responses to Fe 

deficiency at the transcriptome and proteome level (Lan et al., 2011; Rodriguez-Celma et al., 

2013b; Fourcroy et al., 2014; Schmidt et al., 2014). Similar to F6’H1, the protein encoded by 

At3g12900 accumulates several folds in Fe-deficient roots in comparison to Fe-sufficient ones 

(Lan et al., 2011). By analysing large microarray datasets both genes (At3g12900 and 

At3g13610 encoding F6’H1) were found to be positively correlated with genes actively 

involved in Fe deficiency response (Vigani et al., 2013) such as IRT1, FRO2, CYP82C4 

(Murgia et al., 2011), Ferroportin/Iron-Regulated (IREG2) (Morrissey et al., 2009) and 

encoding metal tolerance protein (MTP3; Arrivault et al., 2006). Moreover, according to the 

expression data present at TAIR the At3g12900 is expressed specifically in roots. The root 

tissue is the site of coumarin accumulation induced in response to various environmental 

stresses including Fe limitation (Schmid et al., 2014).  
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We determined the substrate specificity of enzyme encoded by At3g12900 to test its possible 

involvement in coumarin biosynthesis as an important part of the Fe uptake strategy in 

Arabidopsis. An in vitro enzymatic activity assay revealed that this enzyme is involved in the 

conversion of scopoletin into fraxetin via hydroxylation at the C8-position and was named 

S8H. The Michaelis constant (Km= 11 µM) determined in our in vitro experiments was in the 

average similar to those reported for the biosynthetic enzymes of specialized metabolism (Kai 

et al., 2008; Vialart et al., 2012). These results taken together suggest that the hydroxylation 

of scopoletin (and as an effect the synthesis of fraxetin) is the main activity of the S8H 

enzyme. The experiments performed with in vitro-produced enzymes also made evidence that 

the S8H activity was dependent on the concentration of Fe
2+

.  

 

Transient expression of the protein in N. benthamiana plants and a subsequent metabolic 

analysis done on the infiltrated leaves further confirmed the results of in vitro assay. A 

simultaneous transformation of S8H and F6’H2 heterologous genes in tobacco leaves resulted 

in a significantly higher accumulation of fraxetin; this concentration was intermediate when 

F6’H2 alone was expressed and much lower when empty vector or S8H alone were expressed. 

The latter one could be explained by the fact that tobacco plants do not synthesize scopoletin 

in a constitutive way but synthetize fraxetin. An overproduction of F6’H2 therefore induce the 

synthesis of scopoletin from feruloyl-CoA, which is naturally present in tobacco leaves (Kai 

et al., 2008), and provide this way the substrate for the reaction catalysed by S8H resulting in 

significantly higher content of fraxetin. 

 

To better understand the link between Fe-homeostasis in plants and the biosynthesis of 

fraxetin, and consequently to show that the in vitro enzyme activity of S8H is relevant in vivo, 

we performed a detailed phenotypic characterization of Col-0 plants and two independent s8h 

mutant lines grown under different Fe regimes using various types of culture. Plants were 

grown in hydroponic solution, soil mixes, in vitro liquid cultures and on MS plates with 

various Fe and other micronutrients availability. Our results clearly showed that the s8h plants 

carrying mutated S8H alleles are strongly affected by Fe-deficient conditions. Targeted 

metabolite profiling of s8h mutants demonstrated that coumarin profiles are significantly 

modified in mutant roots grown in Fe-depleted conditions. We detected higher concentrations 

of scopoletin in exudates from s8h mutant roots grown in liquid cultures. It was associated 
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with lower levels of various coumarins and lower Fe content in mutants roots as compared to 

the wild-type plants. The s8h rosettes grown in 1xHeeg Fe-depleted hydroponic solutions 

were clearly paler than Col-0 plants. It was associated with striking changes in metabolite 

profiles of coumarins in mutant roots. In comparison to Col-0 plants, under this condition we 

detected a significantly higher accumulation of scopoletin and scopolin in s8h roots that can 

suggest the inhibition of scopoletin-hydroxylation-dependent synthesis of fraxetin in mutant 

tissues. Most likely, in vitro culturing conditions in a small volume of liquid solution favor 

increased secretion of exudates and therefore we observed lower levels of various coumarins 

in s8h roots grown in liquid cultures linked with a significantly higher scopoletin content in 

mutant roots exudates. The phenotypic differences between genotypes were also apparent on 

MS plates containing Fe-deficient medium, on which the s8h mutants showed chlorosis, 

significant growth retardation and secreted an increased level of fluorescent compounds 

compared to WT plants. 

 

Taking into account the results of soil experiments in which plants were cultured in soil 

mixtures with various chemical composition and the fact that s8h-1 mutants were larger than 

Col-0 grown in soil mix characterized by a relatively low level of P and high level of Fe, it 

will be also interesting to test the growth and metabolic profiles of roots and root exudes of 

s8h mutants grown in hydroponic solutions with various P availability. It is particularly 

interesting in the light of recent reports on the common and antagonistic regulatory pathways 

between phosphate (Pi) and Fe deficiency-induced coumarin secretion (Ziegler et al., 2016).  

 

Another aspect for further investigation is linked to the ICP-MS results indicating that, 

additional to Fe, a range of other metals (Mn, Zn, Cu, Co, Cd) were significantly decreased in 

the s8h mutants. This is also link to the phenotypic variation in plant growth that we observed 

on MS plates and in hydroponic cultures, which was dependent not only on Fe but also on 

other micronutrient contents. It could be explained by the well-known phenomenon of 

interdependence of individual micronutrients from each other (Ihnatowicz et al. 2014), and 

the fact that various metals interfere with Fe-deficiency responses (Leskova et al. 2017). 

Nevertheless, we proved that to get a broad overview of plant responses to nutrient 

deficiencies and to better understand the physiological role of involved genes/enzymes one 
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need to consider using various types of cultures, solution and media in experimental 

procedure. 

 

Amongst the numerous targeted metabolite profiling experiments conducted in this study, we clearly 

and repetitively obtained results showing significantly changed coumarin profiles in both s8h mutant 

lines. We observed a significantly higher content of scopoletin in the root tissue in hydroponic 

experiments and in the root exudates in liquid cultures. Scopoletin is a substrate for the reaction 

catalysed by S8H. The lack of scopoletin 8-hydroxylase in the s8h mutant background could lead to 

higher levels of scopoletin and its corresponding glycoside scopolin.  

 

At the moment, we have no explanation for the fact that only small amounts of fraxetin were 

detected in some of the Col-0 samples under Fe-deficiency conditions (data not shown). It should 

also be mentioned that unexpectedly, in one experimental replicate, we detected relatively high 

amounts of fraxin and a low level of fraxetin in s8h-1 mutant background, as well as low amounts of 

fraxin in some other Col-0 and s8h replicates. It cannot be excluded that the above described queries 

could be explained by the presence of another enzyme involved in fraxetin biosynthesis or 

alternative metabolic pathway being induced in s8h mutant background. The synthetized fraxetin in 

Col-0 plants could also be further demethylated to 6,7,8-trihydroxycoumarin with beneficial effect 

for plants under Fe-deficiency or alternatively fraxetin could be directly involved in increasing Fe 

availability. It cannot be excluded taking into account a catechol-type structure of fraxetin. This 

needs to be further investigated. As presented by Schmid et al. (2014), Fe-deficient chlorotic 

phenotype of f6’h1 seedlings grown under low Fe availability could be reversed by exogenous 

application of esculetin, esculin and scopoletin. In parallel, the result of in vitro assay showed that 

only esculetin was able to chelate and mobilize Fe3+ (Schmid et al., 2014). This suggests that 

compounds bearing an ortho-catechol moiety, such as esculetin and fraxetin, may be involved in 

coumarin secretion for Fe acquisition. The beneficial effect of exogenous application of scopoletin on 

the reversion of f6'h1 chlorotic phenotype demonstrated by Schmid et al. (2014), could be due to the 

activity of S8H enzyme catalyzing hydroxylation of scopoletin leading to fraxetin formation. Whatever 

mechanisms underlie such plant responses, given the results of in vitro enzyme activity and 

significant changes in metabolite profiles of coumarin metabolism in s8h mutants grown in Fe-
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depleted condition, it seems evident that the At3g12900 oxidoreductase is scopoletin 8-hydroxylase 

involved in fraxetin biosynthesis. 

 

The presented results indicate that At3g12900 is an important candidate for having a key role 

in Fe acquisition by plants. Fraxetin together with other root-released phenolic compounds, 

mainly esculetin deriving from scopoletin and scopolin, have been suggested to be Fe 

chelators or Fe uptake facilitators in Arabidopsis (Schmid et al., 2014; Fourcroy et al., 2014; 

Schmidt et al., 2014; Brumbarova et al., 2015) and that esculetin and fraxetin or fraxetin 

derived compounds are possibly involved in the transport of Fe ions into the plant cell under 

Fe deficiency. The precise physiological function of the phenolic compounds synthesized by 

plants under Fe deficiency stress and the possible mechanism underlying plant responses to Fe 

limitation under calcareous conditions remains unknown (Schmid et al., 2014). Elucidating 

the biological role of the scopoletin 8-hydroxylase involved in coumarin biosynthesis is a 

prerequisite to the understanding of fraxetin function in Fe acquisition. 
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FIGURE LEGENDS 

Figure 1. Nucleic sequence based tree. The phylogenetic analysis was performed on available nucleic 

sequences of genes encoding 2-oxoglutarate (2OG)- and ferrous iron Fe(II)-dependent dioxygenase 

(2OGD) from Arabidopsis genome. The phylogenetic tree was done using the MEGA 6 software. Black 

dots (●) indicate genes (At3g13610 and At1g55290) encoding enzymes involved in scopoletin 

biosynthesis (F6’H1 and F6’H2 respectively), and their closest homologue based on the nucleic 

sequences - a gene (At3g12900) encoding a dioxygenase of unknown biological function 

(characterized in this study as S8H). Black triangle (▲) indicate gene (At4g22880) encoding 

anthocyanidin synthase (ANS) enzyme. Nucleic sequences downloaded from TAIR 

(http://arabidopsis.org/) were selected based on the presence of sequences coding for Fe (His-X-Asp-

X-His) and 2OG (Arg-X-Ser) binding motifs (Wilmouth et al. 2002). 
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Figure 2. In vitro functional characterization of the S8H enzyme. (A) The chromatograms 

in blue and black are the two negative control reactions. Blue show the reaction carried out 

without the addition of iron, and black without the addition of oxoglutarate. The 

chromatogram in red shows the result of S8H enzyme incubation with scopoletin and enzyme 

cofactors – Fe(II) and 2OG. (B) MS fragmentation of the additional peak from the 

chromatogram shown in red in point A. (C) UV absorbance spectrum of the additional peak 

from the chromatogram indicated in red. (D) MS fragmentation of fraxetin standard. (E) UV 

absorbance spectrum of fraxetin standard. 

 

Figure 3. Last step of fraxetin biosynthesis in Arabidopsis thaliana catalyzed by scopoletin 8-

hydroxylase (S8H). The Fe(II)- and 2-oxoglutarate-dependent dioxygenase (F6’H) catalyses the ortho-

hydroxylation of feruloyl CoA before the lactone ring formation of scopoletin. Subsequently, S8H 

catalyses the hydroxylation at the position C8 of scopoletin leading to fraxetin production. 

 

Figure 4. Fraxetin content in N. benthamiana leaves. Transient expression was carried out using A. 

tumefaciens with the pBIN empty vector (control), pBIN:S8H, pBIN:F6’H2 and simultaneously with 

vectors encoding F6'H2 and S8H. Fraxetin content was quantified with UHPLC. (*) p < 0.05. 

 

Figure 5. Phenotypic characterization of 6-weeks-old Col-0 plants and two s8h T-DNA mutant lines 

(s8h-1 and s8h-2) grown in Fe-depleted hydroponic solution (0 µM Fe2+). After three weeks of 

growth in optimal hydroponic solution (40 µM Fe2+) plants were transferred to (A) a freshly made Fe-

depleted solutions and cultured until the chlorotic phenotype was clearly visible. Hydroponic 

solutions were fully changed once per week. (B) Chlorophyll concentration and ratio of WT and 

mutant plants. (C) Relative levels of scopoletin, scopolin and umbelliferon accumulated in the plant 

roots. Metabolite profiling of coumarins were done by UHPLC. The results of one representative 

experimental replicate are presented. Error bars represent the SD from six biological replicates. (*) p 

< 0.05, (**) p < 0.01. 
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scopoletin, scopolin, umbelliferone and skimmin (A) in the methanol root extracts (B) and root 

exudates of s8h mutants and Col-0 plants. Metabolite profiling of coumarins were done by UHPLC. 

Error bars represent the SD from three measurements. (*) p < 0.05, (**) p < 0.01. 
 

Figure 7. Microelements heavy metals content of Col-0 plants and s8h mutant roots grown in vitro 

for three weeks in Fe-depleted (0 µM Fe2+) 0.25 MS liquid culture. Microelement concentrations 

shown in ppm (mg kg−1) were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-

MS). The results of one representative experimental replicate are presented. Error bars represent the 

SD from five biological replicates. Values that are not significantly different are indicated by the same 

letters. In all tests p-value < 0.05 was used. 

 

Figure 8. Phenotypic appearance of three weeks old Col-0 and s8h-1 plants grown on (A) 0.25 MS 

and (B) 0.5 MS media. Plants were grown Murashige and Skoog’s (MS) media with various Fe 

availability (0-50 µM Fe2+) in plant growth chambers under a photoperiod of 16 h light (~5000 lux) at 

22 °C and 8 h dark at 20 °C. Due to the limited space, only s8h-1 line is shown, a second mutant allele 

(s8h-2) showed a very similar respond. 

 

 

Figure 6. Biochemical characterization of Arabidopsis thaliana s8h mutants and Col-0 plants grown 

in vitro in 0.25 MS liquid cultures with various Fe content (0, 10 and 50 µM Fe2+). Relative levels of 
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Figure 1. Nucleic sequence based tree. The phylogenetic analysis was performed on 

available nucleic sequences of genes encoding 2-oxoglutarate (2OG)- and ferrous iron Fe(II)-

dependent dioxygenase (2OGD) from Arabidopsis genome. The phylogenetic tree was done 

using the MEGA 6 software. Black dots (●) indicate genes (At3g13610 and At1g55290) 

encoding enzymes involved in scopoletin biosynthesis (F6’H1 and F6’H2 respectively), and 

their closest homologue based on the nucleic sequences - a gene (At3g12900) encoding a 

dioxygenase of unknown biological function (characterized in this study as S8H). Black 

triangle (▲) indicate gene (At4g22880) encoding anthocyanidin synthase (ANS) enzyme. 

Nucleic sequences downloaded from TAIR (http://arabidopsis.org/) were selected based on 
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the presence of sequences coding for Fe (His-X-Asp-X-His) and 2OG (Arg-X-Ser) binding 

motifs (Wilmouth et al. 2002). 

 

 

 

 

 

Figure 2. In vitro functional characterization of the S8H enzyme. (A) The chromatograms 

in blue and black are the two negative control reactions. Blue show the reaction carried out 

without the addition of iron, and black without the addition of oxoglutarate. The 

chromatogram in red shows the result of S8H enzyme incubation with scopoletin and enzyme 

cofactors – Fe(II) and 2OG. (B) MS fragmentation of the additional peak from the 

chromatogram shown in red in point A. (C) UV absorbance spectrum of the additional peak 

Downloaded from https://academic.oup.com/jxb/advance-article-abstract/doi/10.1093/jxb/ery005/4816228
by guest
on 19 January 2018



Acc
ep

te
d 

M
an

us
cr

ipt

 

 

 

 

32 

from the chromatogram indicated in red. (D) MS fragmentation of fraxetin standard. (E) UV 

absorbance spectrum of fraxetin standard. 

 

 

 

 

 

 

 

 

 

Figure 3. Last step of fraxetin biosynthesis in Arabidopsis thaliana catalyzed by scopoletin 8-
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hydroxylase (S8H). The Fe(II)- and 2-oxoglutarate-dependent dioxygenase (F6’H) catalyses the ortho-

hydroxylation of feruloyl CoA before the lactone ring formation of scopoletin. Subsequently, S8H 

catalyses the hydroxylation at the position C8 of scopoletin leading to fraxetin production. 
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Figure 4. Fraxetin content in N. benthamiana leaves. Transient expression was carried out using A. 

tumefaciens with the pBIN empty vector (control), pBIN:S8H, pBIN:F6’H2 and simultaneously with 

vectors encoding F6'H2 and S8H. Fraxetin content was quantified with UHPLC. (*) p < 0.05. 
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Figure 5. Phenotypic characterization of 6-weeks-old Col-0 plants and two s8h T-DNA mutant lines 

(s8h-1 and s8h-2) grown in Fe-depleted hydroponic solution (0 µM Fe2+). After three weeks of 

growth in optimal hydroponic solution (40 µM Fe2+) plants were transferred to (A) a freshly made Fe-

depleted solutions and cultured until the chlorotic phenotype was clearly visible. Hydroponic 

solutions were fully changed once per week. (B) Chlorophyll concentration and ratio of WT and 

mutant plants. (C) Relative levels of scopoletin, scopolin and umbelliferon accumulated in the plant 

roots. Metabolite profiling of coumarins were done by UHPLC. The results of one representative 

experimental replicate are presented. Error bars represent the SD from six biological replicates. (*) p 

< 0.05, (**) p < 0.01. 
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Figure 6. Biochemical characterization of Arabidopsis thaliana s8h mutants and Col-0 plants grown 

in vitro in 0.25 MS liquid cultures with various Fe content (0, 10 and 50 µM Fe2+). Relative levels of 
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scopoletin, scopolin, umbelliferone and skimmin (A) in the methanol root extracts (B) and root 

exudates of s8h mutants and Col-0 plants. Metabolite profiling of coumarins were done by UHPLC. 

Error bars represent the SD from three measurements. (*) p < 0.05, (**) p < 0.01. 

 

 

 

 

 

 

 

 

 

Figure 7. Microelements heavy metals content of Col-0 plants and s8h mutant roots grown in vitro 

for three weeks in Fe-depleted (0 µM Fe2+) 0.25 MS liquid culture. Microelement concentrations 
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shown in ppm (mg kg−1) were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-

MS). The results of one representative experimental replicate are presented. Error bars represent the 

SD from five biological replicates. Values that are not significantly different are indicated by the same 

letters. In all tests p-value < 0.05 was used. 
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Figure 8. Phenotypic appearance of three weeks old Col-0 and s8h-1 plants grown on (A) 0.25 MS 

and (B) 0.5 MS media. Plants were grown Murashige and Skoog’s (MS) media with various Fe 

availability (0-50 µM Fe2+) in plant growth chambers under a photoperiod of 16 h light (~5000 lux) at 

22 °C and 8 h dark at 20 °C. Due to the limited space, only s8h-1 line is shown, a second mutant allele 

(s8h-2) showed a very similar respond. 
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