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Abstract 

The contribution of subsidence to relative sea-level rise in the Ganges-Brahmaputra delta 

(GBD) is largely unknown and may considerably enhance exposure of the Bengal basin 

populations to sea level rise and storm surges. This paper focuses on estimating the present-

day subsidence induced by Holocene sediment in the Bengal basin and by oceanic loading 

due to eustatic sea level rise over the past 18 kyr. Using a viscoelastic Earth model and 

sediment deposition history based on in-situ measurements, results suggest that massive 

sediment influx initiated in the early Holocene under a strengthened South Asian monsoon 

may have contributed significantly to the present-day subsidence of the GBD. We estimate 

that the Holocene loading generates up to 1.6 mm/yr of the present-day subsidence along the 

GBD coast, depending on the rheological model of the Earth. This rate is close to the 20th 

century global mean sea level rise (1.1-1.7 mm/yr). Thus, past climate change, by way of 

enhanced sedimentation, is impacting vulnerability of the GBD populations. 
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Key Points : 

 Holocene sediment/ocean loads generate up to 1.6 mm/yr of the present-day subsidence in the 

Ganges-Brahmaputra delta 

 Highest subsidence rates occur at the Bengal coast and the subaqueous delta 

 Past climate affects present-day vulnerability of the Bengal basin populations 
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1.  Introduction  

The densely populated Ganges-Brahmaputra delta (GBD) is among the most exposed low-

lying regions (Fig.1) of the world where the future sea level rise has the potential to induce 

large land loss and put millions of people at risk [Nicholls, 2011; IPCC AR5, 2013]. Like in 

the majority of large deltas [Syvitski et al., 2009], subsidence contributes to relative sea level 

rise along the GBD coast and results in faster rates than those driven solely by climate-

induced global sea level [Ostanciaux et al., 2012; Pethick and Orford, 2013; Brammer, 2014; 

Woppelmann and Marcos, 2016]. In the GBD, the trends in coastal tide gauge records are 

typically about 4-6 mm/yr [Brown and Nichols, 2015]. By this way, the GBD subsidence 

increases the exposure of the Bengal basin populations to flooding and erosion [Ericson et al., 

2006] and the practical need for a regional climate adaptation strategy calls for measuring, 

understanding and predicting the delta subsidence as a contributor to rates of local sea level 

rise. 

The limited studies to date suggest great variability in the rates of subsidence throughout the 

GBD, although these results are determined by methods that consider a variety of spatial and 

temporal scales. Using Interferometric Synthetic Aperture Radar (InSAR) and GNSS (Global 

Navigation Satellite System) techniques, Higgins et al. [2014] and Steckler et al. [2012] 

detected present-day subsidence rates varying between 0 and 18 mm/yr in different areas of 

the GBD. The expected spatial and temporal variability of land subsidence rates results from 

interaction of numerous natural processes that may also be enhanced by human activities 

[Syvitski et al., 2009]. These natural processes include Earth deformation induced by 

sediment/water loading, sediment compaction and tectonic movements as  the Bengal basin is 

situated in an area of strong deformation and faulting related to the subduction/collision of 

the Indian plate with the Burma arc [Alam et al., 2003; Steckler et al., 2008, 2016].  

 A particular feature of the GBD is that sediment supply, dispersion and deposition are 

mainly driven by runoff from the South Asian monsoon [Goodbred, 2003]. Present-day 

annual average of the cumulative runoff in the GBD is about 1100 mm/yr [Milliman and 

Farnsworth, 2013]  (ranking it among the five largest world rivers) and, following the 

monsoon, the runoff experiences large seasonal variations. The enormous mass of water 

discharged by the rivers during the summer monsoon induces more than 5 cm of seasonal 

elastic flexure of the GBD [Steckler et al., 2010, Chanard et al., 2014]. While this seasonal 

water loading and unloading  induce mostly elastic response of the Earth, continuously 
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deposited sediments generate  a significant viscous deformation of the Earth’s mantle 

[Haskell, 1935]. The climate changes regulating the monsoons strength are thus imprinted in 

the variability of sediment loading on the Bengal basin. Currently, the GBD transports about 

~1.1 Gt/yr (1Gt = 109t) of sediments corresponding to annually average sediment yield of 

about 500 t/km2/yr [Milliman and Syvitski, 1992]. The huge amount of sediment drained by 

the GBD places it, together with Huanghe (Yellow) and the Amazon river, among the three 

world largest sediment-carrying rivers [Milliman and Farnsworth, 2013]. The sediments were 

stored over the past 7 kyr, in approximately equal parts, on the subaerial delta, subaqueous 

delta and canyon-fan system of the Bay of Bengal.  During the Early Holocene, ca. 11 – 7 kyr 

B.P., the sediment discharge was greater by a factor of 2.3, at least, due to the strengthened 

South Asian monsoon at that time and an abundance of stored hillslope and valley sediment 

in the Himalaya [Goodbred and Kuehl, 2000a; Goodbred, 2003]. The purpose of this paper is 

to quantify the contribution of the Holocene sediment/water loading to the present-day land 

subsidence in the GBD region. To address these issues we model the Earth’s deformation, for 

a range of plausible lithosphere-mantle structures, induced by (1) the recent and Holocene 

deposition of sediments in the Bengal basin and on the deep-sea Bengal fan and (2) water 

loading due to eustatic sea level rise in the Bay of Bengal since 18 kyr B.P.  

2.  Model 

We consider the Earth as a Maxwell viscoelastic, spherically symmetric, self-gravitating, 

incompressible planet with density and elastic parameters of the Preliminary Reference Earth 

Model PREM [Dziewonski and Anderson, 1981]. The Earth’s deformation is computed by 

the TABOO software [Spada, 2003] that has been extensively used and benchmarked in post-

glacial rebound modeling [Spada et al., 2011]. TABOO was designed for solving equations of 

linear viscoelasticity in a spherically symmetric planet with a given number of layers of 

different viscosity and elastic parameters.  

2.1. Loading history 

The surface loads are represented in the model by a set of spherical disks of angular radius 

0.25° (≈28 km) [James and Ivins, 1998]. The thickness of each disk varies according to 

history of sediment storage and sea level changes at a given site.  It is difficult to construct an 

ocean loading model specific to the Bay of Bengal as there are no published curves of 

Holocene relative sea changes for this region. We employed the eustatic sea level curve of 

Lambeck et al. [2014] to construct a model of ocean loading in the Bay of Bengal over the 
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past 18 kyr. Milne and Mitrovica (2008) demonstrated large regional deviations of sea level 

from the globally averaged eustatic value. Particularly in the Bay of Bengal, the sea level was 

predicted to stand by about 15 m below the eustatic value at 21 kyr B.P. and by 5 m at 6 kyr 

B.P. [Milne and Mitrovica, 2008]. Thus, the regional sea level departures should have 

increased the subsidence in the Bay of Bengal but in seeking for minimum subsidence 

estimate we do not take this effect into account (Supplementary Material provides some 

estimates of the impact of regional departures in the Holocene sea level on the subsidence of 

the Bay of Bengal). 

History of sediment deposition in the model is displayed in Fig. 2a. The higher sedimentation 

rates on the upper fan at 15 kyr B.P. correspond to growing sediment discharge and 

precipitation after the arid period   in the South Asia climate [Duplessy et al., 1982; Gasse et 

al., 1991; Kudrass et al., 2001]. During 15-11 kyr B.P., most of the Bengal basin remained 

exposed and the lowstand river valleys were connected to the Swatch of No Ground canyon 

system, leading to sediments largely bypassing the delta and the shelf and being exported to 

the Bengal fan [Kuehl et al., 2005]. We assume that variations in thickness of sediments 

accumulated on the upper fan are similar to variations in radiocarbon-dated sequences 

measured in situ by Weber et al. [1997] in sediment cores. At about 11.9 kyr B.P. 

corresponding, in the model, to the end of the Younger Dryas, the sediment storage on the 

upper fan is set to the current rate of 0.3 Gt/yr (Fig.2a). At that time, rapidly increasing 

Holocene sea level and flooding of the Bengal basin trapped river sediment in the GBD, 

sustaining rapid long-term sedimentation rates of 1 cm/yr or more [Goodbred and Kuehl, 

1999, 2000b]. Sediment deposition across the upper fan is supposed to be spatially uniform at 

the scale of thousands of years as suggested by high-resolution multichannel seismic surveys 

[France-Lanord et al., 2000; Schwenk et al., 2003]. We thus neglect a thickening of sediment 

cover in the channel-levee system of the Swatch of No Ground canyon [Hübscher and Spieβ, 

2005] and thinning of the Holocene sediment layer at the continental slope [Contreras-

Rosales et al., 2014], because in terms of loading impact, these features represent localized 

mass anomalies that barely affect delta subsidence [Wolstencroft et al., 2014]. A total 

thickness of 10 m of sediment accumulated on the upper fan is used in the model which is in 

agreement with the observed Holocene cores heights [Weber et al., 1997; Hein et al., 2017]. 

This value is likely an overestimate of the spatially averaged thickness of the Holocene 

sediment on the upper fan [Contreras-Rosales et al., 2014] but the lack of data does not allow 

constraining it with more accuracy. Nevertheless, as the recent analysis by Palemenghi et al. 
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[2011] suggests a smaller portion of sediment transported to the fan than used in this study, 

we have run the model also with much slower sediment accumulation rates on the upper fan 

(section 4S in Supplementary Material) in order to evaluate the impact of  the upper fan 

sediment loading on the GBD vertical movement.   

On the subaqueous delta and flood plain of the Bengal basin, the history of sedimentation was 

constructed from the isopach map (Fig.2b) and sediment storage rates (Fig.2a) established by 

Goodbred and Kuehl [2000a] from borehole data (see Supplementary Material for more 

details). Rate of sediment accumulation on the flood plain in the Early Holocene, over 11-7 

kyr B.P., is set to 2.3 Gt/yr. From 7 kyr B.P up to present it equals 0.35 Gt/yr [Goodbred and 

Kuehl, 2000a]. The subaqueous delta begins to form in the model at 7 kyr B.P. (Fig.2a) with 

a constant sediment deposition rate of 0.35 Gt/yr [Kuehl et al. 1997]. Time-histories of 

sediment storage on the flood plain and subaqueous delta (Fig.2a) were rescaled before 

setting them as disks’ thicknesses to ensure that (1) the present-day net sediment thickness of 

every disk corresponds to that on the observation-based isopach map by Goodbred and Kuehl 

[2000a] and (2) the net volume of sediments stored within the Bengal Basin is partitioned as 

evaluated by Goodbred and Kuehl [2000a], namely: 5×1012 m3 of sediments being 

sequestered during the 11-7 kyr B.P period and 3.5×1012 m3 since then. In order to convert 

sediment volume to mass, we followed Goodbred and Kuehl [2000a] and used bulk density 

values of 1.5×103 kg/m3 and 1.8×103 kg/m3 for the post-7 kyr and older sediments, 

respectively, in agreement with Japan International Cooperation Agency [1976], Weber et al. 

[2005] and Brammer [2012]. On the flooded or submarine disks, when deposited sediments 

displace water, we use the difference in density between sediments and water to compute 

additional load.  

 

 

2.2 The lithosphere and mantle structure 

There are a lot of uncertainties on lithosphere-mantle structure and viscosity beneath the 

Bengal Basin [Alam et al., 2003] . Confined between the stable Indian craton in the west and 

the tectonically active Burma thrust fold belt in the east, the GBD is flanked by the Indian 

Ocean in the south and the Himalayas in the north. This tectonically complex environment 

probably generates strong lateral rheology contrasts underneath the Bengal Basin that cannot 
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be  constrained without using much more subsidence data along with seismic and gravity 

observations [Gasperini, et al., 1990; Karpychev and Fleitout, 2000; Spada et al., 2006; 

Whitehouse, et al., 2006; Steffen et al., 2007]. The lateral viscosity variations may induce 

variations in subsidence rates for different regions in the GBD. However, Krien et al. [2016] 

showed that the order of magnitude of subsidence rates and the first-order basin scale 

deformation pattern in the GBD are correctly captured by laterally uniform models. Structural 

and mineralogical heterogeneities in the lower continental crust and the upper mantle can also 

result in much more complex deformation of the Bengal basin than that described by a single-

viscosity Maxwell rheology model [Ivins and Sammis, 1996; Han et al. 2006; Caron et al., 

2017]. However the lack of observational constraints on the Holocene deformation rates in 

the GBD does not allow distinguishing between complex viscosity structures. To estimate the 

plausible response of the GBD to the Holocene sediment and ocean loading we explore a set 

of laterally uniform lithosphere-mantle structures derived mostly from Glacial Isostatic 

Adjustment (GIA) models.    

Below we present the results for three depth-dependent mantle viscosities corresponding to a 

hard, intermediate and soft mantle with different lithospheric thicknesses. First, we consider a 

hard sub-cratonic structure by a 90-km thick lithosphere underlain by an upper mantle with 

viscosity of 0.5×1021 Pa×s and a lower mantle with viscosity of 2×1021 Pa×s (Fig.2c). This 

viscosity model is close to models VM2 and VM5a [Peltier, 2004; Peltier and Drummond, 

2008] which explain well the relative sea level histories in Fennoscandia [Peltier, 2004, 

Argus and Peltier, 2010], North America [Paulson et al., 2007] and the sea level response to 

sediment loading in the Indus River along the western side of the Indian craton [Ferrier et al., 

2015]. (Computations for a 90-km thick lithosphere and a more viscous mantle are presented 

in Supplementary Material).  Our intermediate model is composed of a thinner 50-km thick 

lithosphere, a softer upper mantle with viscosity of 1×1020 Pa×s and a lower mantle viscosity 

of 2×1021 Pa×s, the same as in the hard rheology Earth described above. The parameters of 

the intermediate model are in the 95%-confidence limits of the optimal global values assessed 

by Lambeck et al. [2014]. The Bengal Basin is considered as a remnant ocean basin 

[Ingersoll et al., 1995; Alam et al., 2003] squeezed between the Indian and Burma plates 

[Steckler et al., 2008].  By analyzing seismic receiver functions Mitra et al. [2005] detected 

the presence of oceanic crust in the North of the Bengal basin. Mall et al. [1999], also based 

on seismic observations, pointed to a rather weak mantle beneath the Bengal basin that they 

interpreted as a trace of a mantle plume originated in the Indian Ocean and having crossed the 

mantle below the Bengal basin before producing the Rajmahal Traps (Fig.1)  [Curray and 

Munasinghe, 1991; Muller et al., 1993]. In view of these considerations we tested a weak 

structure with a 40-km thick lithosphere underlain by an asthenosphere extending to the depth 

of 220 km. The viscosity of the asthenosphere is set to 3×1019 Pa×s and that of the underlying 

shallow upper mantle is 3×1020 Pa×s. Viscosity of the upper mantle below the 400 km depth 

is 5×1020 Pa×s and that of the lower mantle equals 2×1021 Pa×s. It is worth noting that the 
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viscosity profiles described above were chosen to cover a range of plausible responses of the 

Earth to the Holocene sediment/ocean loading of the Bengal basin. None of these lithosphere-

mantle structures should be preferred unless observations can validate the model. 3.  

Predicted Subsidence  

The sediment and ocean loading sequences applied over the past 18 kyr generate a basin-wide 

subsidence of the GBD (Fig.3) for all rheological structures presented above. Maximum rates 

are located on the subaqueous delta between Sundarbans and the submarine canyon “Swatch 

of No Ground”. Interestingly, Kuehl et al. [1989] and Michels et al. [2003] measured the 

highest current sediment accumulation rates (up to 5-20 cm/yr) in this part of the Bengal 

shelf. We suggest that the enhanced subsidence in this area contributed, on thousand-year 

time scale, to the intensified sedimentation in the upper reaches of the canyon [Kuehl et al., 

2005]. We propose that the location of maximum subsidence between the GBD coast and the 

subaqueous delta is due to partitioning of sediment/ocean load between the GBD flood plain, 

subaqueous delta and the fan of the Bay of Bengal. As expected, a thicker lithosphere results 

in a more widespread deformation and smaller amplitude of subsidence rates.  The Earth 

strength at shallow depths controls the amplitude of the subsidence [Ivins et al., 2007]. A 

weaker structure composed of thinner lithosphere and/or less viscous mantle enhances 

maximum of the present-day subsidence (Fig.3). For this reason, the highest rate of 

subsidence is obtained in the weak lithosphere-mantle model (Fig.3c): It reaches ~ 1.6 mm/yr 

versus 1.1 mm/yr for the hard rheology model (Fig.3a).  It is worth noting that sediment 

loading in our model is based on minimum estimates of sediment deposited in the Bengal 

Basin, as sediment cores in the lower delta plain extend only to 90 m and did not reach the 

lowstand surface or sediment deposits older than ~12 kyr  [Goodbred and Kuehl, 2000a]. 

Consequently, the modeled subsidence rates represent a minimum subsidence driven by 

Holocene sedimentation. As expected from Peltier [2004], we observed that the present-day 

subsidence rates are not very sensitive to magnitude of the lower mantle viscosity. This is due 

to relatively small horizontal dimensions of the Bengal basin (300-500 km) so that increasing 

the lower mantle viscosity by a factor of 10 modifies the Earth’s surface subsidence by ~ 0.1 

mm/yr. 

 The net subsidence predicted by our model (Fig.4) shows how much the Pleistocene-

Holocene boundary has subsided over the past 18 kyr, with one of mantle-lithosphere 

structures displayed in Fig.2c. The model with the weakest Earth structure (Fig.4c) provides 

the largest subsidence. With this model, the Bengal coast and the subaqueous delta were 

lowered by about 30-35 m since 18 kyr B.P. This implies that a large fraction of 
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accommodation for delta progradation was created by the Earth viscoelastic response to the 

GBD sediment/water loading [Watts, 2001; p. 150-165]. Notice also an impact of loading on 

steepening of the initial delta slope [Hutton et al., 2013] which is produced by the model with 

all lithosphere-mantle structures: The coast and subaqueous delta in Fig.4 subsided by about 

20-35 m vs. 5-10 m of net subsidence in the northern Bengal Basin. Fig.5 displays time-

varying subsidence curves and subsidence rates at several selected sites. The magnitude of 

subsidence differs from one site to another, but with all rheological structures, roughly half of 

load-induced accommodation space at each site was created during the period of the 

strengthened monsoon, between 11 and  7 kyr B.P. The remaining half of subsidence 

occurred during the late delta development from 7 kyr B.P. to present.  

It is of interest that before the flood plain sedimentation started at 11 kyr. B.P., the weak 

mantle model predicts an uplift at all sites (Fig.5). This uplift corresponds to a landward 

bulge generated by initial loading of the GBD by upper fan sediments and the eustatic sea 

level rise. Its amplitude varies spatially and is more than 1 m at Hatiya, Chittagong and 

Dhaka. The impact of this landward bulge on the delta development can be twofold as it 

reduces accommodation space but increases steeping of the delta slope [Watts, 2001, p.150-

165]. The fastest land subsidence in the GBD was generated by enhanced sedimentation on 

the flood plain between 11 and 7 kyr B.P (Fig.5) At that time, subsidence rates were about 3-

5 times larger than the present-day value depending on the site location and the rheological 

model of the Earth. In the current vertical land movement, the effect of the early Holocene 

monsoon has waned to a considerable extent but is still present. As demonstrated in Fig.5, the 

subsidence rates will change little in forthcoming hundreds of years due to the relatively slow 

Earth viscoelastic relaxation 

The model results should be compared with the subsidence measured over thousand-year 

time period [Wolstencroft et al., 2014] but these observations are scarce and depend on the 

eustatic sea level reconstruction in the Bay of Bengal.  Brown and Nicholls [2015] have 

estimated a median of reported Holocene subsidence rates to be 2 mm/yr with a standard 

deviation of about 5 mm/yr. There is, seemingly, a general agreement [Akter et al., 2015] that 

the Holocene subsidence rates are about 1-5 mm/yr on the flood plain with a tendency to 

increase towards the GBD margin [Umitsu, 1993; Stanley and Hait, 2000; Goodbred and 

Kuehl, 2000b; Allison and Kepple, 2001; Sincavage et al., 2017]. The subsidence rates 

predicted by our model are in the range of rates derived from these observations.  
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On the shelf, Hübscher and Spieβ [2005] have pointed to an apparent contradiction between 

the assumed subsidence rates of 2-4 mm/yr and the lowstand paleoshoreline depth of 120-130 

m measured by [Wiedicke et al., 1999] at 21°N / 90°E about 100 km south of the GBD coast.  

Such subsidence rate would have resulted, over a 20 kyr period, in a net subsidence of the 

Bengal shelf of 40-80 m. However, the present-day paleoshore depth is comparable with the 

estimated eustatic sea level stand at the time of Last Glacial Minimum (LGM) between -135 

m and  -130 m, suggesting a net shelf subsidence of only a few meters [Lambeck et al, 2014]. 

In the present study, our model predicts a net subsidence at the shoreline of Wiedicke et al. 

[1999] of 22 (Fig.4a) to 32 m (Fig.4c) when the thick lithosphere-hard mantle is replaced by a 

weaker rheological structure. This 20-30 m net subsidence indicates, perhaps, a regional 

departure of the Holocene sea level in the Bay of Bengal from the global average that is 

typical for the rapid sea level rise during the major phase of deglaciation over 16.5-7 kyr B.P. 

[Milne and Mitrovica, 2008; Lambeck et al., 2014]. Finally, our model does not account for 

late glacial unloading of the GBD margin due to erosion that might have led to uplift of the 

shelf prior to the Holocene flooding and sedimentation and explains the present-day depth of 

the paleoshore.  

4.  Conclusions 

We used published Holocene sediment storage history of Goodbred and Kuehl [2000a] and 

the eustatic sea level curve of Lambeck et al. [2014] to estimate present-day and cumulative 

loading-induced subsidence of the Bengal Bay and the GBD. Calculated rates differ 

depending on the values used for lithospheric thickness and viscosity of the upper mantle. 

Spatially, maximum subsidence occurs along the central GBD coast and adjacent subaqueous 

delta, where calculated subsidence rates vary from 1.1 mm/yr considering a cratonic-like 

mantle to 1.6 mm/yr using a thin lithosphere and weak upper mantle. Thus the impact of 

Holocene sedimentation is far from negligible, as it causes the Bengal coast to subside at a 

rate comparable to the global average rate of sea level rise during the last century (1.1-1.7 

mm/yr) [Church and White, 2011; Hay et al, 2015]. Subsidence rates have also varied 

through time, as riverine sediment supply and delta accumulation have varied with intensity 

of the South Asia monsoon and the rate of sea level rise.  Maximum rates occurred in the 

early Holocene, coincident with peak fluvial sediment discharge and rapid glacio-eustasy. 

This contribution of Holocene sedimentation to subsidence of the Bengal delta is inescapable 

in the sense that this subsidence will continue for the next hundreds/thousands years because 
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of the Earth’s “viscous memory”, even if the sedimentation is stopped. However, Holocene 

sedimentation is not the only driver of GBD subsidence. Recent measures of present-day 

subsidence yield local rates up to 10-20 mm/yr in some areas [Steckler et al., 2012; Higgins 

et al., 2014] notably in the densely populated city of Dhaka. Holocene sediment/water 

loading contributes relatively little to these hot spots of land subsidence in the GBD which 

are mostly due to groundwater extraction and sediment compaction [Higgins et al., 2014] 

similarly to other deltas [Teatini et al., 2011; Erban et al., 2014; Brain, 2016]. It is on the 

larger spatial scale where the sediment loading contribution to the GBD movement becomes 

pronounced. Often, the effects of sediment loading are not taken into account but this 

background contribution should not be neglected for closing the total subsidence budget in 

the deltas. The isolation and accurate partitioning of subsidence due to non-loading drivers 

induced by natural or anthropogenic processes which is needed for prediction of future 

subsidence [Jones et al., 2016] and elaboration of climate adaptation strategies must account 

for the large scale signal due to sediment/ocean loading. 
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Figure 1. (a) Topographic map of the Ganges-Brahmaputra delta and the Bay of Bengal. 

Position of Eocene shelf edge (dashed gray line) and a possible location of thrust front of the 

fold belt (black barbed line) are adapted from Steckler et al. (2008). Bathymetry data are 

from Krien et al. (2017). Green points indicate specific sites where subsidence will be 

displayed as a function of time. 
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Figure 2. (a) Time history of sediment storage (Gt/yr) on the GBD flood plain (brown), 

subaqueous delta (red) and the upper fan (green); blue line is the eustatic sea level curve from 

Lambeck et al. [2014]; (b) Thickness (m) of Holocene sediments in the GBD adapted from 

Goodbred and Kuehl [2000] (c) Viscosity profiles representing: hard mantle (green), 

intermediate viscosity (blue) and weak mantle structure (red)  
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Figure 3. Predicted present-day subsidence rates (mm/yr) with rheological structures shown 

in Fig.2c: (a) with thick lithosphere and hard mantle, (b) intermediate structure, (c) thin 

lithosphere and weak mantle viscosity. Abbreviations correspond to lithospheric thickness 

(LT) and viscosity (VISCO) of the underlying mantle: numbers are multiplies of 1021 Pa s, 

doublets correspond to viscosity of upper and lower mantle respectively, quadruplet (c) to 

viscosity of asthenosphere (between LT and the 220 km depth) , shallow upper mantle (220 - 

400 km), deeper upper mantle (400-670 km)  and lower mantle, respectively. 
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Figure 4. Net subsidence (m) since 18 000 B.P. predicted with different rheological 

structures: (a) thick lithosphere and hard mantle, (b) intermediate structure, (c) thin 

lithosphere and weak mantle viscosity. Abbreviations are the same as in Fig.3.   

  



 

© 2018 American Geophysical Union. All rights reserved. 

 

Figure 5. Vertical displacements (subsidence if <0) and displacement rates (mm/yr) 

computed at the specific sites marked in Fig.1: blue line – with thick lithosphere and hard 

mantle, green – intermediate structure, red – with thin lithosphere and weak mantle 

 


