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Abstract: H∞/µ methods are commonly used in Airbus Defence and Space for the design and
validation of control solutions. Formulated in a worst-case paradigm, these methods necessarily
lead to overly conservative solutions since sized on the extreme cases. However, the acceptance
for relaxed control performances requires mastering the risk associated to the detected unlikely
events calling for probabilistic performances metrics in the validation process. A probabilistic
µ-analysis method is presented in this paper to exhaustively explore the uncertain parametric
domain while evaluating the cumulative probability density function of the performance index.
Recent µ-analysis tools implemented in the ONERA’s SMAC toolbox are coupled with a
dichotomic search algorithm in order to delimit the safe parametric domain while incrementing
the probability of success of criteria. The proposed algorithm is applied to a didactic second
order system to demonstrate the performances of the method.

Keywords: Probabilistic µ-analysis, randomly distributed parameters, Branch & Bound
algorithm.

1. INTRODUCTION

H∞/µ methods are the preferred design tools commonly
used in Airbus Defence and Space development programs
with many successfull applications (Falcoz et al. (2015);
Preda et al. (2015)). Main relevance of H∞ control meth-
ods relies on the Bode Sensitivity Integral Theorem (Ruth
et al. (2010)) which provides to the control engineers a
fundamental law of conservation as in Physics the conser-
vation of Energy or Momentum (Stein and Doyle (1991);
Doyle (1979)). It intuitively expresses the trade-off be-
tween quantities related to a generalized system perfor-
mance and stability robustness which is generalized by
the structured singular value µ introduced by Doyle et al.
(1982) and Safonov (1982). The fundamental picture of
the µ-paradigm is illustrated in Fig.1 for both the robust
stability and performance problem. M(s) is a stable real-
valued linear time-invariant model representing the nomi-
nal closed-loop system and ∆ is a block-diagonal operator
belonging to the structure∆ with B∆ = {∆ ∈ ∆ : σ(∆) <
1}. If only parametric uncertainties are considered, ∆ is
described by the following structure:

∆ := {diag{δ1In1 , ..., δnInn} : −1 ≤ δi ≤ 1} (1)

where δi are normalized real scalars (i.e |δi| < 1) repeated
if ni > 1. Then, giving the set of allowable ∆ = ∆(δ),
fundamental question in the µ-paradigm relies on the
existence of any nontrivial solutions in the loop equations
of systems presented in Fig.1. Specifically, assuming that
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the problem is normalized and well-posed, if µ∆ < 1
(i.e, evaluation of the function µ over the uncertainty
block ∆), stability and performance are guaranteed for
all values of the model uncertainty. If µ∆ > 1 then
there exists combinations for which the stability and
performance objectives are violated. µ-framework is a
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Fig. 1. Standard interconnections for robust stability (left)
and worst-case performance (right) analysis.

worst-case paradigm which generates hard bound from the
analysis (Khatri and Parrilo (1998)). The risk associated
to bad events is not quantified and systematically lead in
practice to a new controller tuning as long as µ∆ > 1.
Sized on unlikely worst-case combinations, it necessarily
results to overly robust control solutions at the expense of
the final control performances.

Probability-based approaches are then generally preferred
in the majority of industrial standards. The probability
density function of the performance index is experimen-
tally approximated based on Monte Carlo methods (Sten-
gel and Ryan (1991)). Then, if (Ω,F , Pr) is a probability
space, ∆(δ), with δ = [δ1, · · · , δn]T , relies on a random
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block diagonal matrix where δi : Ω → � are independent
randomly distributed variables with specific probability
density functions fi(δi). That is denoted δi ∼ fi in the
general case and, for instance: δi ∼ U [ai, bi] in the case
of a uniform distribution where ai and bi are the minimal
and the maximal values or δi ∼ N (mi, σi) in the case of
a normal distribution where mi and σi are the nominal
value and standard deviation of the ith parameter. Given
a performance index γ > 0, the analysis problem consists
in approximating the probability of success of the perfor-
mance index J(∆(δ)), i.e.

Pr(J(∆(δ)) ≤ γ) . (2)

In the case of the robust performance problem depicted in
Fig. 1:

J(∆(δ)) = ‖Fu(M,∆(δ))‖∞
where Fu(M,∆) is the upper linear fractional transforma-
tion of M and ∆.

Pr(J(∆(δ)) ≤ γ) is estimated based onN samples random
draws of the uncertain parameters δi, i = 1, ..., n according
to their respective probability density functions fi(δi). IfK
corresponds to the number of tests for which J(∆(δ)) ≤ γ,
immediately one can write the statistical estimation of
Pr (J(∆(δ)) ≤ γ), i.e.,

P̂r(J(∆(δ)) ≤ γ) =
K

N
(3)

However, when a fine quantification of rare events is
required, (i.e., located in the distribution tails), Monte
Carlo methods become intractable and the number of
draws is a priori fixed according to both the accuracy of
the statistical estimation ε ∈ (0, 1) and the confidence level
ϕ ∈ (0, 1) to guarantee that:

Pr

(∣∣∣Pr(J(∆(δ))) ≤ γ)− P̂r(J(∆(δ)) ≤ γ)
∣∣∣ ≤ ε

)
≥ 1− ϕ

(4)
Eq. 4 allows a priori to know how good the estimate

P̂r(J(∆(δ))) of Pr(J(∆(δ))) is when a finite number of
samples is employed. Such an assessment is obtained by
the Chernoff bound (Chernoff (1952)) if ε and ϕ are fixed
a priori, i.e.,

N ≥ 1

2ε2
log

2

ϕ
(5)

Chernoff’s condition means that if the number of employed

samples N satisfies Eq.5, then P̂r will be ε-close to Pr,
except for very unlikely events, that may happen with
probability smaller than ϕ. Efficient to evaluate quite likely
events, Monte Carlo methods becomes intractable for rare
events evaluation since the statistical estimation error
σ(P̂r) decreases asymptotically as O(N−1/2). Variance
reduction techniques (Fishman (2005)) like importance
sampling, Latin Hypercube or stratified sampling, among
others, are then commonly employed intending to speed
up the convergence properties with a limited numbers of
sampling. The scenario approach is introduced in Calafiore
and Campi (2006) for robust control design with a-priori
specified levels of probabilistic guarantee of robustness.

In contrast to stochastic methods, probabilistic µ-analysis
intends to save the deterministic and exhaustive explo-
ration of parametric space offered by the µ framework.
However, instead of computing the conservative worst-case
µ value, we are interested in the probabilistic distribution

of µ; given a probability distribution on the set of uncer-
tainties fi(δi) and a dichotomic search algorithm. Inspired
by works reported in Zhu et al. (1996); Zhu (2000); Balas
et al. (2012) and taking benefit from recent enhanced µ-
analysis tools (Roos et al. (2011)), this work investigates
probabilistic robust performances analysis method to pro-
vide to system engineers systematic validation methods
associated to probabilistic decision making metrics.

2. PROBABILISTIC µ-ANALYSIS

To introduce the probabilistic µ problem, let the analysis
problem be represented by the general interconnection
scheme of Fig. 1 where the uncertain parameter vector
δ is contained in the normalized hypercube:

C = {δ : −1 ≤ δi ≤ 1, i = 1, · · · , n}
with δi ∼ U [−1, 1]. The uncertainty block ∆ belongs to
structure ∆ as defined in Eq. (1). The definition of the
structured singular value is given by:

µ∆(M) =

(
min
∆∈∆

{σ(∆) : det(I −M∆) = 0}
)−1

(6)

where σ(A) denotes the largest singular value of A. Defi-
nition (6) characterizes the robust stability measure. More
generally, on can also define the robust performance mea-
sure by:

µ∆,γ(M) =

(
min
∆∈∆

{σ(∆) : ‖Fu(M,∆)‖∞ ≤ γ}
)−1

(7)

for a given performance level γ. Then, the robust stability
measure is a particular case of the robust performance
measure (γ = ∞):

µ∆(M) = µ∆,∞(M) .

It is well known that exact computation of µ∆,γ(M)
is NP hard. µ∆(M) is then approximated by an upper
bound (µ∆,γ(M)) and a lower bound (µ

∆,γ
(M)) using

polynomial-time algorithms (Young et al. (1995); Young
and Doyle (1997); Seiler et al. (2010)). µ∆,γ(M) provides
a guaranteed but conservative value of the robustness mar-
gin while µ

∆,γ
(M) is associated to the worst-case paramet-

ric configuration. This work only considers µ∆,γ(M) as
the performance index for the probabilistic µ problem and
recent development proposed by the authors of reference
(Roos et al. (2011)) are exploited to compute a guaranteed
upper bound of the µ function over the whole frequency
range (see (Roos et al. (2011)) for more details).

Considering a parametric domain C with a given uncer-
tainty structure ∆ and a given set of probability density
function fi for each parameters δi, the main concern of
the probabilistic µ-analysis consists in computing a lower
bound s∆,γ(M) of the probability of success s∆,γ(M),
i.e. the value of the cumulative distribution function over
the valid (or successful) parametric sub-domain V∆,γ(M),
defined by:

V∆,γ(M) = {δ ∈ C : ‖Fu(M,∆(δ))‖∞ ≤ γ} (8)

and

s∆,γ(M) = Pr (δ ∈ V∆,γ(M) | δi ∼ fi, ∀i) . (9)

One can also define the invalid parametric sub-domain
I∆,γ(M) such that: V∆,γ(M) ∪ I∆,γ(M) = C
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Fig. 2. Dichotomic parametric space exploration of the
probabilistic µ-analysis procedure.

Basically, the µ-analysis procedure consists in evaluating
µ∆,γ(M) over the entire parametric domain C associated
to the uncertainty structure ∆. In the normalized para-
metric space, 1

µ∆,γ(M) is a lower bound of the half-side of

the largest centered hypercube inside the valid parametric
sub-domain. If µ∆,γ(M) ≤ 1, this means that the probabil-
ity of success of the evaluated performance index is equal
to 1. If µ∆,γ(M) > 1, one can only conclude, assuming
that δi ∼ U [−1, 1] , ∀ i, that the probability of success is
greater than:

s∆,γ(M) =

(
1

µ∆,γ(M)

)n

. (10)

This lower bound is very conservative for two reasons:

• the valid parametric domain may be larger than the
hypercube identified by µ∆,γ(M),

• the assumption δi ∼ U [−1, 1] , ∀ i is very restrictive
from a practical point of view. Truncated normal dis-
tributions N[−1,1](0, σ) (see appendix A for more de-
tails) are more representative and commonly adopted
to express that the probability for δ to be around a
corner of C is lower than the probability to be around
the center of C.

However, if µ∆,γ(M) > 1, C can be divided into 2 hyper-
rectangles C1 and C2, associated to uncertainty structures
∆1 and ∆2, by cutting in the middle of the longest edge
of C. The µ upper bound µ∆k,γ

(M) is then successively
evaluated over each hyperrectangle Ck (associated to the
uncertainty structure ∆k). If µ∆k,γ

(M) < 1, then the
probability of the parameters to evolve in the current
hyperrectangle Ck is computed by the cumulative distri-
bution function (assuming stochastic independence of the
parameters δi):

Pr(Ck) = Pr
(
δ ∈ Ck(δk, δ

k
)
)
=

n∏

i=1

∫ δ
k

i

δk
i

fi(δi)dδi (11)

where Ck(δk, δ
k
) refers to the kth hyperrectangle delimited

by the un-normalized bounds δk and δ
k
satisfying:

−1 ≤ δki ≤ δ
k

i ≤ 1, ∀ i = 1, 2, ..., n .

The probabilistic µ procedure is then inherently recur-
sive and is implemented in a dichotomic algorithm for
automatic space exploration and classification (see Fig.

2 for illustration). It relies on successive evaluations of
Pr(Ck : µ∆k,γ

(M) ≤ 1) on a collection of hyperrectangles
such that Pr(Ck ∩ Cl) = 0, k �= l.

According to the definition of V∆,γ(M) and s∆,γ(M)
given in Eq. (8) and (9), if µ∆k,γ

(M) ≤ 1, then Ck ⊆
V∆,γ(M), consequently s∆,γ(M) ≥ Pr(Ck). Extending
this to include all hyperrectangles satisfying µ∆k,γ

(M) < 1
leads to:

s∆,γ(M) ≥ s∆,γ(M) =
∑

k: µ∆k,γ(M)<1

Pr (Ck) (12)

From a practical point of view, s∆,γ(M) is computed sim-
ply by testing the upper bound of the µ-function associated
with the kth hyperrectangle Ck. Then, a cumulative sum
on the probabilities of the associated hyperrectangles is
computed. Algorithm is stopped when the probability to
be inside the hyperrectangle to be explored is below a given
value β; i.e., when this hyperrectangle does not influence
significantly the final value of the cumulative distribution
s∆,γ(M). The probabilistic µ-analysis procedure is sum-
marized in the following pseudo-code:

Algorithm 1 Probabilistic µ

1: Problem data:
2: M(s), ∆, γ, δ, δ, fi(δi) (i = 1, · · · , n), β
3: Initialization:
4: c = 0, δk = δ, δ

k
= δ

5: procedure µprob

6: Fct: c ← µprob(M(s),∆, γ, δk, δ
k
, c, fi, β)

7: Compute: µ∆k,γ
(M)

8: if µ∆k,γ
(M) < 1 then

9: p(k) = Pr
(
δ ∈ Ck(δk, δ

k
)
)

10: c = c+ p(k)
11: else
12: Sub-division w.r.t. the longest edge:

13: Ck(δk, δ
k
) →

{
Ck1(δ

k1 , δ
k1
); Ck2(δ

k2 , δ
k2
)
}

14: if Pr(Ck1) > β then

15: Fct: c ← µprob(M(s),∆, γ, δk1 , δ
k1
, c, fi, β)

16: end if
17: if Pr(Ck2) > β then

18: Fct: c ← µprob(M(s),∆, γ, δk2 , δ
k2
, c, fi, β)

19: end if
20: end if
21: end procedure
22: s∆,γ(M) = c

Remark: Normalization operations required to compute
µ∆k,γ

(M) are not represented in this algorithm and are
summarized in appendix B.

3. REFERENCE VALIDATION CASE

To motivate subsequent developments, let us consider the
following second order systemG(s, q) affected by uncertain
parameters:

ẋ =

[
0 1

−a0 −a1

]
x+

[
0
1

]
u; y = [ 1 0 ]x (13)
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From a practical point of view, s∆,γ(M) is computed sim-
ply by testing the upper bound of the µ-function associated
with the kth hyperrectangle Ck. Then, a cumulative sum
on the probabilities of the associated hyperrectangles is
computed. Algorithm is stopped when the probability to
be inside the hyperrectangle to be explored is below a given
value β; i.e., when this hyperrectangle does not influence
significantly the final value of the cumulative distribution
s∆,γ(M). The probabilistic µ-analysis procedure is sum-
marized in the following pseudo-code:

Algorithm 1 Probabilistic µ

1: Problem data:
2: M(s), ∆, γ, δ, δ, fi(δi) (i = 1, · · · , n), β
3: Initialization:
4: c = 0, δk = δ, δ

k
= δ

5: procedure µprob

6: Fct: c ← µprob(M(s),∆, γ, δk, δ
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, c, fi, β)

7: Compute: µ∆k,γ
(M)

8: if µ∆k,γ
(M) < 1 then

9: p(k) = Pr
(
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k
)
)
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11: else
12: Sub-division w.r.t. the longest edge:

13: Ck(δk, δ
k
) →

{
Ck1(δ
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k1
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k2
)
}

14: if Pr(Ck1) > β then

15: Fct: c ← µprob(M(s),∆, γ, δk1 , δ
k1
, c, fi, β)

16: end if
17: if Pr(Ck2) > β then

18: Fct: c ← µprob(M(s),∆, γ, δk2 , δ
k2
, c, fi, β)

19: end if
20: end if
21: end procedure
22: s∆,γ(M) = c

Remark: Normalization operations required to compute
µ∆k,γ

(M) are not represented in this algorithm and are
summarized in appendix B.

3. REFERENCE VALIDATION CASE

To motivate subsequent developments, let us consider the
following second order systemG(s, q) affected by uncertain
parameters:

ẋ =

[
0 1

−a0 −a1

]
x+

[
0
1

]
u; y = [ 1 0 ]x (13)
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Fig. 3. Stability areas in the un-normalized parametric
space (q0, q1).

The real parameters a0 = a00 + q0 and a1 = a01 + q1 are
uncertain with the following nominal values : a00 = 1; a01 =
0.8 and the additive uncertainties q0 and q1 such that:
|q0| ≤ 2, |q1| ≤ 1. Suppose now that we are interesting
in evaluating the stability domain of system given by Eq.
(13). Application of the Routh’s theorem directly gives the
conditions for G(s, q) to be stable. Then, G(s, q) is stable
i.f.f q0 ∈] − 1;+∞[ and q1 ∈] − 0.8;+∞[. Unstable (red)
and stable (green) domains are depicted in Fig. 3.

The system of Eq. (13) can be easily written under
its equivalent (M(s),∆) standard representation (Fig. 1
right). Then, exact computation of µ∆(M) in the normal-
ized parametric space immediately leads to µ∆,∞(M) =
µ∆(M) = 2 which means that |qi| must be less than 0.5 q̄i
(i = 0, 1, q̄i being the upper bound of qi) to guarantee that
G(s, q) is stable. This guaranteed stability domain is rep-
resented in the un-normalized parametric space of Fig. 3
(white). Since the uncertain parameters are assumed to be
uniformly distributed, the lower bound of the probability
that G(s, q) is stable is 25% (Eq: (10)). Referring to Fig.
3, it is straightforward to see that Pr(G(s, q) is stable) =
67.5% highlighting the fact that the µ-analysis procedure
leads to overly pessimistic conclusions.

Suppose now that q0 ∼ N[−2,2](0, 2/3) and q1 ∼
N[−1,1](0, 1/3) and are independent, the joint probability
density function (see Fig. 4) reads:

fq0q1(q0, q1) = f(q0)f(q1)

where f(qi) refers to the truncated normal distribution
function N[ai,bi](mi, σi) of the i

th parameter and is defined
in appendix A. Exact computation of Pr (G(s, q) is stable)
on the truncated domain given by the analytic Routh’s
solution is given by the cumulative distribution function:

F (q0, q1) =

∫ 2

−1

∫ 1

−0.8

f(q0)f(q1)dq0dq1 = 92.79% (14)

Applying now algorithm 1 to this problem leads to:

Pr (G(s, q) ∈ Ds) = 92.52% (15)

Fig. 4. Joint probability density function of parameters q0
and q1.

Fig. 5. Stability domain Ds of G(s, q).

which is very close to the analytic solution. The stability
domain identified by the algorithm 1 is delimited by the
green boxes in Fig. 5.

Suppose now that we are interesting in evaluating the
probability of the system to be robustly stable while
satisfying the performance criteria ||G(s, q)||∞ < γ, ∀q0 ∈
[−2, 2], q1 ∈ [−1, 1] and γ =

√
2. A Monte Carlo

simulation based on 26,500 samples has been performed
to guarantee 1% of accuracy of the statistical estimation
of Pr(||G(s, q)||∞ <

√
2) with a confidence level of 1%.

The estimated probability resulting to the post-processing
of the experimental campaign is equal to 42.84% (see Fig.
6). In comparison, the probability given by the developed
algorithm leads to

s∆,γ(M) = 41.24%

which is a satisfactory lower bound of Pr(||G(s, q)||∞ <√
2). Fig 7 presents the convergence map of the dichotomic

search algorithm where the green boxes correspond to the
parametric hyperrectangles for which ||G(s, q)||∞ <

√
2

where the red ones correspond to ||G(s, q)||∞ ≥
√
2.

Clearly, this simple example highlights the capability of
the proposed algorithm to be used for probabilistic robust
performance analysis.
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Fig. 6. Estimated domain for which the system is stable
and ||Tyu||∞ <

√
2 based on 26,500 Monte Carlo runs.

Fig. 7. Domain for which the system is stable and
||Tyu||∞ <

√
2 - Algorithm 1 with β = 0.0001.

4. MODIFIED ALGORITHM

In fig. 7, one can notice that the exploration of the non-
valid domain involves very tiny hyperrectangles Ck as long
as they satisfy the condition Pr(Ck) > β. Although such
an algorithm can detect any disjoint valid sub-domain, it is
not efficient from a computational cost point of view. For
analysis problem characterized by a single connected valid
domain, another algorithm is proposed to stop the sub-
division of the current hyperrectangle Ck when it meets all
of the following conditions:

‖Fu(M(s),∆(ck))‖∞ > γ (16)

‖Fu(M(s),∆(ck−1))‖∞ > γ (17)

Pr(Ck−1)<α (18)

where ck is the current hyperrectangle center, Ck−1 is
the parent hyperrectangle of the current hyperrectangle
Ck, i.e. the one which the sub-division leads to Ck, ck−1

Fig. 8. Domain for which the system is stable and
||Tyu||∞ <

√
2 - Algorithm 2 with β = 0.00001 and

α = 0.25.

is the center of Ck−1 and α is a given real number. α
represents the size of the largest local valid sub-domain
(in the normalized parametric space) which can be missed
by this algorithm, named Algorithm 2.

The application of this algorithm on the previous robust
performance analysis leads a probability of success is at
least equal to 40.55%. Fig 8 presents the convergence map
obtained with Algorithm 2. In comparison with Fig. 7,
one can see that the parametric domain exploration is
focused on the boundary between the valid sub-domain
and the invalid sub-domain. The computational cost was
divided by a fector 10 at the price of a very low degradation
on the lower bound of the probability of success.

5. CONCLUSION

In this paper, a probabilistic µ-analysis procedure has
been studied with the perspective of enhancing industrial
validation process. The procedure is based on successive
evaluation of the µ function on sub regions of the paramet-
ric space selected by a dichotomic search algorithm. In this
work, µ upper bound is selected as the single performance
metric providing a lower bound of the cumulative distri-
bution of the evaluated performance metric, i.e, s∆,γ(M).
The µ lower bound (µ), and more particularly undecided
regions for which:

µ∆k,γ
(M) > 1 and µ

∆k,γ
(M) < 1 ,

have not been addressed and is currently under analysis.
Additionally, improvement of the algorithm convergence
properties exploiting the µ-sensitivity is under investiga-
tion and will be available in a next version. Finally, the
proposed solution has been applied on a simple second
order system for analytic validation. It is today under
implementation on a real flexible satellite benchmark with
many uncertainties to evaluate both the computational
load and the convergence properties of the solution.
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Additionally, improvement of the algorithm convergence
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Appendix A. TRUNCATED NORMAL
DISTRIBUTION

The truncated normal distribution for a real parameter δ
is denoted δ ∼ f(δ) = N[a,b](m,σ) (a < b) and is defined
by:

f(δ) = 0, ∀ δ < a,

f(δ) = 0, ∀ δ > b,

f(δ) =
1

Φ( b−m
σ )− Φ(a−m

σ )

1

σ
√
2π

e−
1
2 (

x−m
σ )

2

, ∀ a ≤ δ ≤ b,

with: Φ(x) = 1
σ
√
2π

∫ x

−∞ e−t2/2dt.

Such a cumulative distribution function can be easily com-
puted using the Matlab Statistics and Machine Learning
Toolbox.

Appendix B. NORMALIZATION OPERATION

To compute µ∆k,γ
(M), one can notice that the structure

∆k, associated to the hyperrectangle Ck(δk, δ
k
) is not

normalized. One can define the normalized parameters

δ̃k ∈ [−1, 1] by:

δ =
δk + δ

k

2
+

δ
k − δk

2
δ̃k .

Then µ∆k,γ
(M) = µ∆,γ(Mk) where the normalized µ-

problem (Mk(s),∆) is depicted in Fig. B.1.
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