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H ∞ /µ methods are commonly used in Airbus Defence and Space for the design and validation of control solutions. Formulated in a worst-case paradigm, these methods necessarily lead to overly conservative solutions since sized on the extreme cases. However, the acceptance for relaxed control performances requires mastering the risk associated to the detected unlikely events calling for probabilistic performances metrics in the validation process. A probabilistic µ-analysis method is presented in this paper to exhaustively explore the uncertain parametric domain while evaluating the cumulative probability density function of the performance index. Recent µ-analysis tools implemented in the ONERA's SMAC toolbox are coupled with a dichotomic search algorithm in order to delimit the safe parametric domain while incrementing the probability of success of criteria. The proposed algorithm is applied to a didactic second order system to demonstrate the performances of the method.

INTRODUCTION

H ∞ /µ methods are the preferred design tools commonly used in Airbus Defence and Space development programs with many successfull applications [START_REF] Falcoz | Systematic design methods of robust and structured controllers for satellites[END_REF]; [START_REF] Preda | Microvibration attenuation based on h/lpv theory for high stability space missions[END_REF]). Main relevance of H ∞ control methods relies on the Bode Sensitivity Integral Theorem [START_REF] Ruth | What's new is what's old: use of bode's integral theorem (circa 1945) to provide insight for 21st century spacecraft attitude control system design tuning[END_REF]) which provides to the control engineers a fundamental law of conservation as in Physics the conservation of Energy or Momentum [START_REF] Stein | Beyond singular values and loop shapes[END_REF]; [START_REF] Doyle | Robustness of multiloop linear feedback systems[END_REF]). It intuitively expresses the trade-off between quantities related to a generalized system performance and stability robustness which is generalized by the structured singular value µ introduced by [START_REF] Doyle | Analysis of feedback systems with structured uncertainties[END_REF] and [START_REF] Safonov | Stability margins of diagonally perturbed multivariable feedback systems[END_REF]. The fundamental picture of the µ-paradigm is illustrated in Fig. 1 for both the robust stability and performance problem. M (s) is a stable realvalued linear time-invariant model representing the nominal closed-loop system and ∆ is a block-diagonal operator belonging to the structure ∆ with B ∆ = {∆ ∈ ∆ : σ(∆) < 1}. If only parametric uncertainties are considered, ∆ is described by the following structure:

∆ := {diag{δ 1 I n1 , ..., δ n I nn } : -1 ≤ δ i ≤ 1}
(1) where δ i are normalized real scalars (i.e |δ i | < 1) repeated if n i > 1. Then, giving the set of allowable ∆ = ∆(δ), fundamental question in the µ-paradigm relies on the existence of any nontrivial solutions in the loop equations of systems presented in Fig. 1. Specifically, assuming that This work has been done in the scope of a CNES R&D activity cojointly funded by Airbus Defence and Space and CNES, Toulouse.

the problem is normalized and well-posed, if µ ∆ < 1 (i.e, evaluation of the function µ over the uncertainty block ∆), stability and performance are guaranteed for all values of the model uncertainty. If µ ∆ > 1 then there exists combinations for which the stability and performance objectives are violated. µ-framework is a ∆ M (s)

- ∆ M (s) - -
y u Fig. 1. Standard interconnections for robust stability (left) and worst-case performance (right) analysis.

worst-case paradigm which generates hard bound from the analysis [START_REF] Fishman | Guaranteed bounds for probabilistic µ[END_REF]). The risk associated to bad events is not quantified and systematically lead in practice to a new controller tuning as long as µ ∆ > 1.

Sized on unlikely worst-case combinations, it necessarily results to overly robust control solutions at the expense of the final control performances.

Probability-based approaches are then generally preferred in the majority of industrial standards. The probability density function of the performance index is experimentally approximated based on Monte Carlo methods [START_REF] Stengel | Stochastic robustness of linear time-invariant control systems[END_REF]). Then, if (Ω,
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)). Then, if (Ω, F, P r ) is a probability space, ∆(δ), with δ = [δ 1 , • • • , δ n ] T ,
∆ := {diag{δ 1 I n1 , ..., δ n I nn } : -1 ≤ δ i ≤ 1} ( 
δ i ∼ U [a i , b i ]
in the case of a uniform distribution where a i and b i are the minimal and the maximal values or δ i ∼ N (m i , σ i ) in the case of a normal distribution where m i and σ i are the nominal value and standard deviation of the i th parameter. Given a performance index γ > 0, the analysis problem consists in approximating the probability of success of the performance index J(∆(δ)), i.e. P r (J(∆(δ)) ≤ γ) .

(2) In the case of the robust performance problem depicted in Fig. 1:

J(∆(δ)) = F u (M, ∆(δ)
) ∞ where F u (M, ∆) is the upper linear fractional transformation of M and ∆.

P r(J(∆(δ)) ≤ γ) is estimated based on N samples random draws of the uncertain parameters δ i , i = 1, ..., n according to their respective probability density functions f i (δ i ). If K corresponds to the number of tests for which J(∆(δ)) ≤ γ, immediately one can write the statistical estimation of P r (J(∆(δ)) ≤ γ), i.e.,

P r (J(∆(δ)) ≤ γ) = K N (3)
However, when a fine quantification of rare events is required, (i.e., located in the distribution tails), Monte Carlo methods become intractable and the number of draws is a priori fixed according to both the accuracy of the statistical estimation ∈ (0, 1) and the confidence level ϕ ∈ (0, 1) to guarantee that:

P r P r(J(∆(δ))) ≤ γ) -P r (J(∆(δ)) ≤ γ) ≤ ≥ 1 -ϕ ( 4 
) Eq. 4 allows a priori to know how good the estimate P r (J(∆(δ))) of P r (J(∆(δ))) is when a finite number of samples is employed. Such an assessment is obtained by the Chernoff bound [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF]) if and ϕ are fixed a priori, i.e.,

N ≥ 1 2 2 log 2 ϕ (5)
Chernoff's condition means that if the number of employed samples N satisfies Eq.5, then P r will be -close to P r , except for very unlikely events, that may happen with probability smaller than ϕ. Efficient to evaluate quite likely events, Monte Carlo methods becomes intractable for rare events evaluation since the statistical estimation error σ( P r ) decreases asymptotically as O(N -1/2 ). Variance reduction techniques [START_REF] Fishman | Guaranteed bounds for probabilistic µ[END_REF]) like importance sampling, Latin Hypercube or stratified sampling, among others, are then commonly employed intending to speed up the convergence properties with a limited numbers of sampling. The scenario approach is introduced in Calafiore and Campi ( 2006) for robust control design with a-priori specified levels of probabilistic guarantee of robustness.

In contrast to stochastic methods, probabilistic µ-analysis intends to save the deterministic and exhaustive exploration of parametric space offered by the µ framework. However, instead of computing the conservative worst-case µ value, we are interested in the probabilistic distribution of µ; given a probability distribution on the set of uncertainties f i (δ i ) and a dichotomic search algorithm. Inspired by works reported in Zhu et al. (1996); Zhu (2000); [START_REF] Balas | Analysis of an uav flight control system using probabilistic µ[END_REF] and taking benefit from recent enhanced µanalysis tools [START_REF] Roos | A set of µ-analysis based tools to evaluate the robustness properties of high-dimensional uncertain systems[END_REF]), this work investigates probabilistic robust performances analysis method to provide to system engineers systematic validation methods associated to probabilistic decision making metrics.

PROBABILISTIC µ-ANALYSIS

To introduce the probabilistic µ problem, let the analysis problem be represented by the general interconnection scheme of Fig. 1 where the uncertain parameter vector δ is contained in the normalized hypercube:

C = {δ : -1 ≤ δ i ≤ 1, i = 1, • • • , n} with δ i ∼ U [-1, 1].
The uncertainty block ∆ belongs to structure ∆ as defined in Eq. ( 1). The definition of the structured singular value is given by:

µ ∆ (M ) = min ∆∈∆ {σ(∆) : det(I -M ∆) = 0} -1 (6)
where σ(A) denotes the largest singular value of A. Definition (6) characterizes the robust stability measure. More generally, on can also define the robust performance measure by:

µ ∆,γ (M ) = min ∆∈∆ {σ(∆) : F u (M, ∆) ∞ ≤ γ} -1 (7)
for a given performance level γ. Then, the robust stability measure is a particular case of the robust performance measure (γ = ∞):

µ ∆ (M ) = µ ∆,∞ (M ) .
It is well known that exact computation of µ ∆,γ (M ) is NP hard. µ ∆ (M ) is then approximated by an upper bound (µ ∆,γ (M )) and a lower bound (µ ∆,γ (M )) using polynomial-time algorithms [START_REF] Young | Computing bounds for the mixed µ problem[END_REF]; [START_REF] Young | A lower bound for the mixed µ problem[END_REF]; [START_REF] Seiler | A gainbased lower bound algorithm for real and mixed µ problems[END_REF]). µ ∆,γ (M ) provides a guaranteed but conservative value of the robustness margin while µ ∆,γ (M ) is associated to the worst-case parametric configuration. This work only considers µ ∆,γ (M ) as the performance index for the probabilistic µ problem and recent development proposed by the authors of reference [START_REF] Roos | A set of µ-analysis based tools to evaluate the robustness properties of high-dimensional uncertain systems[END_REF]) are exploited to compute a guaranteed upper bound of the µ function over the whole frequency range (see [START_REF] Roos | A set of µ-analysis based tools to evaluate the robustness properties of high-dimensional uncertain systems[END_REF]) for more details).

Considering a parametric domain C with a given uncertainty structure ∆ and a given set of probability density function f i for each parameters δ i , the main concern of the probabilistic µ-analysis consists in computing a lower bound s ∆,γ (M ) of the probability of success s ∆,γ (M ), i.e. the value of the cumulative distribution function over the valid (or successful) parametric sub-domain V ∆,γ (M ), defined by:

V ∆,γ (M ) = {δ ∈ C : F u (M, ∆(δ)) ∞ ≤ γ} (8) and s ∆,γ (M ) = P r (δ ∈ V ∆,γ (M ) | δ i ∼ f i , ∀i) .
(9) One can also define the invalid parametric sub-domain

I ∆,γ (M ) such that: V ∆,γ (M ) ∪ I ∆,γ (M ) = C
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∆ ∆ 1 ∆ 2 ∆ 11 ∆ 12 µ ∆,γ (M ) > 1 µ ∆2,γ (M ) < 1 µ ∆12,γ (M ) > 1 µ ∆1,γ (M ) > 1 ∆ 121 ∆ 122
Fig. 2. Dichotomic parametric space exploration of the probabilistic µ-analysis procedure.

Basically, the µ-analysis procedure consists in evaluating µ ∆,γ (M ) over the entire parametric domain C associated to the uncertainty structure ∆. In the normalized parametric space, M ) is a lower bound of the half-side of the largest centered hypercube inside the valid parametric sub-domain. If µ ∆,γ (M ) ≤ 1, this means that the probability of success of the evaluated performance index is equal to 1. If µ ∆,γ (M ) > 1, one can only conclude, assuming that δ i ∼ U [-1, 1] , ∀ i, that the probability of success is greater than:

1 µ ∆,γ ( 
s ∆,γ (M ) = 1 µ ∆,γ (M ) n . ( 10 
)
This lower bound is very conservative for two reasons:

• the valid parametric domain may be larger than the hypercube identified by µ ∆,γ (M ), • the assumption δ i ∼ U [-1, 1] , ∀ i is very restrictive from a practical point of view. Truncated normal distributions N [-1,1] (0, σ) (see appendix A for more details) are more representative and commonly adopted to express that the probability for δ to be around a corner of C is lower than the probability to be around the center of C.

However, if µ ∆,γ (M ) > 1, C can be divided into 2 hyperrectangles C 1 and C 2 , associated to uncertainty structures ∆ 1 and ∆ 2 , by cutting in the middle of the longest edge of C. The µ upper bound µ ∆ k ,γ (M ) is then successively evaluated over each hyperrectangle C k (associated to the uncertainty structure ∆ k ). If µ ∆ k ,γ (M ) < 1, then the probability of the parameters to evolve in the current hyperrectangle C k is computed by the cumulative distribution function (assuming stochastic independence of the parameters δ i ):

P r(C k ) = P r δ ∈ C k (δ k , δ k ) = n i=1 δ k i δ k i f i (δ i )dδ i (11)
where C k (δ k , δ k ) refers to the k th hyperrectangle delimited by the un-normalized bounds δ k and δ k satisfying:

-1 ≤ δ k i ≤ δ k i ≤ 1, ∀ i = 1, 2, ..., n .
The probabilistic µ procedure is then inherently recursive and is implemented in a dichotomic algorithm for automatic space exploration and classification (see Fig.

for illustration). It relies on successive evaluations of P r(C

k : µ ∆ k ,γ (M ) ≤ 1) on a collection of hyperrectangles such that P r(C k ∩ C l ) = 0, k = l.
According to the definition of V ∆,γ (M ) and s ∆,γ (M ) given in Eq. ( 8) and ( 9

), if µ ∆ k ,γ (M ) ≤ 1, then C k ⊆ V ∆,γ (M ), consequently s ∆,γ (M ) ≥ P r(C k ). Extending this to include all hyperrectangles satisfying µ ∆ k ,γ (M ) < 1 leads to: s ∆,γ (M ) ≥ s ∆,γ (M ) = k: µ ∆ k ,γ (M )<1 P r (C k ) (12) 
From a practical point of view, s ∆,γ (M ) is computed simply by testing the upper bound of the µ-function associated with the k th hyperrectangle C k . Then, a cumulative sum on the probabilities of the associated hyperrectangles is computed. Algorithm is stopped when the probability to be inside the hyperrectangle to be explored is below a given value β; i.e., when this hyperrectangle does not influence significantly the final value of the cumulative distribution s ∆,γ (M ). The probabilistic µ-analysis procedure is summarized in the following pseudo-code:

Algorithm 1 Probabilistic µ 1: Problem data: 2: M (s), ∆, γ, δ, δ, f i (δ i ) (i = 1, • • • , n), β 3: Initialization: 4: c = 0, δ k = δ, δ k = δ 5: procedure µ prob 6: Fct: c ← µ prob (M (s), ∆, γ, δ k , δ k , c, f i , β) 7: Compute: µ ∆ k ,γ (M ) 8: if µ ∆ k ,γ (M ) < 1 then 9: p(k) = P r δ ∈ C k (δ k , δ k ) 10: c = c + p(k) 11:
else 12:

Sub-division w.r.t. the longest edge:

13: C k (δ k , δ k ) → C k1 (δ k1 , δ k1 ); C k2 (δ k2 , δ k2 ) 14: if P r(C k1 ) > β then 15: Fct: c ← µ prob (M (s), ∆, γ, δ k1 , δ k1 , c, f i , β) 16: end if 17: if P r(C k2 ) > β then 18: Fct: c ← µ prob (M (s), ∆, γ, δ k2 , δ k2 , c, f i , β) 19: end if 20:
end if 21: end procedure 22: s ∆,γ (M ) = c Remark: Normalization operations required to compute µ ∆ k ,γ (M ) are not represented in this algorithm and are summarized in appendix B.

REFERENCE VALIDATION CASE

To motivate subsequent developments, let us consider the following second order system G(s, q) affected by uncertain parameters:

ẋ = 0 1 -a 0 -a 1 x + 0 1 u; y = [ 1 0 ] x ( 13 
)
Proceedings of the 20th IFAC World Congress Toulouse, France, July 9-14, 2017

Fig. 3. Stability areas in the un-normalized parametric space (q 0 , q 1 ).

The real parameters a 0 = a 0 0 + q 0 and a 1 = a 0 1 + q 1 are uncertain with the following nominal values : a 0 0 = 1; a 0 1 = 0.8 and the additive uncertainties q 0 and q 1 such that:

|q 0 | ≤ 2, |q 1 | ≤ 1.
Suppose now that we are interesting in evaluating the stability domain of system given by Eq. ( 13). Application of the Routh's theorem directly gives the conditions for G(s, q) to be stable. Then, G(s, q) is stable i.f.f q 0 ∈] -1; +∞[ and q 1 ∈] -0.8; +∞[. Unstable (red) and stable (green) domains are depicted in Fig. 3.

The system of Eq. ( 13) can be easily written under its equivalent (M (s), ∆) standard representation (Fig. 1 right). Then, exact computation of µ ∆ (M ) in the normalized parametric space immediately leads to µ ∆,∞ (M ) = µ ∆ (M ) = 2 which means that |q i | must be less than 0.5 qi (i = 0, 1, qi being the upper bound of q i ) to guarantee that G(s, q) is stable. This guaranteed stability domain is represented in the un-normalized parametric space of Fig. 3 (white). Since the uncertain parameters are assumed to be uniformly distributed, the lower bound of the probability that G(s, q) is stable is 25% (Eq: ( 10)). Referring to Fig. 3, it is straightforward to see that P r (G(s, q) is stable) = 67.5% highlighting the fact that the µ-analysis procedure leads to overly pessimistic conclusions.

Suppose now that q 0 ∼ N [-2,2] (0, 2/3) and q 1 ∼ N [-1,1] (0, 1/3) and are independent, the joint probability density function (see Fig. 4) reads:

f q0q1 (q 0 , q 1 ) = f (q 0 )f (q 1 )
where f (q i ) refers to the truncated normal distribution function N [ai,bi] (m i , σ i ) of the i th parameter and is defined in appendix A. Exact computation of P r (G(s, q) is stable) on the truncated domain given by the analytic Routh's solution is given by the cumulative distribution function:

F (q 0 , q 1 ) = 2 -1 1 -0.8
f (q 0 )f (q 1 )dq 0 dq 1 = 92.79% ( 14)

Applying now algorithm 1 to this problem leads to: which is very close to the analytic solution. The stability domain identified by the algorithm 1 is delimited by the green boxes in Fig. 5.

P r (G(s, q) ∈ D s ) = 92.52% ( 
Suppose now that we are interesting in evaluating the probability of the system to be robustly stable while satisfying the performance criteria

||G(s, q)|| ∞ < γ, ∀q 0 ∈ [-2, 2], q 1 ∈ [-1, 1] and γ = √ 2.
A Monte Carlo simulation based on 26,500 samples has been performed to guarantee 1% of accuracy of the statistical estimation of P r (||G(s, q)|| ∞ < √ 2) with a confidence level of 1%. The estimated probability resulting to the post-processing of the experimental campaign is equal to 42.84% (see Fig. 6). In comparison, the probability given by the developed algorithm leads to s ∆,γ (M ) = 41.24%

which is a satisfactory lower bound of P r (||G(s, q)|| ∞ < √ 2). Fig 7 presents the convergence map of the dichotomic search algorithm where the green boxes correspond to the parametric hyperrectangles for which ||G(s, q)|| ∞ < √ 2 where the red ones correspond to ||G(s, q)|| ∞ ≥ √ 2. Clearly, this simple example highlights the capability of the proposed algorithm to be used for probabilistic robust performance analysis. The application of this algorithm on the previous robust performance analysis leads a probability of success is at least equal to 40.55%. Fig 8 presents the convergence map obtained with Algorithm 2. In comparison with Fig. 7, one can see that the parametric domain exploration is focused on the boundary between the valid sub-domain and the invalid sub-domain. The computational cost was divided by a fector 10 at the price of a very low degradation on the lower bound of the probability of success.

CONCLUSION

In this paper, a probabilistic µ-analysis procedure has been studied with the perspective of enhancing industrial validation process. The procedure is based on successive evaluation of the µ function on sub regions of the parametric space selected by a dichotomic search algorithm. In this work, µ upper bound is selected as the single performance metric providing a lower bound of the cumulative distribution of the evaluated performance metric, i.e, s ∆,γ (M ). The µ lower bound (µ), and more particularly undecided regions for which: µ ∆ k ,γ (M ) > 1 and µ ∆ k ,γ (M ) < 1 , have not been addressed and is currently under analysis. Additionally, improvement of the algorithm convergence properties exploiting the µ-sensitivity is under investigation and will be available in a next version. Finally, the proposed solution has been applied on a simple second order system for analytic validation. It is today under implementation on a real flexible satellite benchmark with many uncertainties to evaluate both the computational load and the convergence properties of the solution.
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Appendix A. TRUNCATED NORMAL DISTRIBUTION

The truncated normal distribution for a real parameter δ

and is defined by:

x -∞ e -t 2 /2 dt. Such a cumulative distribution function can be easily computed using the Matlab Statistics and Machine Learning Toolbox.

Appendix B. NORMALIZATION OPERATION

To compute µ ∆ k ,γ (M ), one can notice that the structure Proceedings of the 20th IFAC World Congress Toulouse, France, July 9-14, 2017