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ABSTRACT

A two-dimensional class of mean-field models serving as a minimal frame to study long-range interaction in two space
dimensions is considered. In the case of an anisotropic mixed attractive-repulsive interaction, an initially spatially homogeneous
cold fluid is dynamically unstable and evolves towards a quasi-stationary state in which the less energetic particles get trapped
into clusters forming a Bravais lattice, mimicking a crystalline state. Superimposed to this, one observes in symplectic numerical
simulations a flux of slightly more energetic particles channeling through this crystalline background. The obtained system
combines the rigidity features of a solid, as particles from a displaced core are shown to snap back into place after a transient,
and the dynamical diffusive features of a liquid for the fraction of channeling and free particles. This combination of solid and
liquid properties is reminiscent of supersolidity, but observed here within classical mechanics. The quantum transposition of the
model may be experimentally reached using the latest ultracold atoms techniques to generate long-range interactions.

Introduction
The research domain of cold atoms and photonic systems is presently more than a hot subject, it is a breeding ground for new
physics, ranging from the most fundamental level to potential room-temperature striking applications1. At the fundamental level
lie the investigations on the intricate transitions between the quantum and classical behaviours, on the general understanding
of far from equilibrium systems and the vast amount of perspectives offered by the close mathematical analogy of the Gross-
Pitaevskii equation, also called nonlinear Schrödinger equation, with equations coming from other domains of physics, such as
general relativity2, hydrodynamics and long-range systems3.

The question about the existence and possible observations of superfluidity in crystalline structures has been the subject
of an intense scientific debate for decades4, 5, 6, 7. This phenomenon called supersolidity was theoretically conjectured as a
paradoxical state of matter of solid 4He in which some atoms might be able to move coherently through an otherwise ordered
solid. In a supersolid, some of the mass is delocalized and the remainder is localized. A Non-Classical Rotational Inertia
(NCRI), corresponding to the loss of a fraction of the momentum of inertia of a torsional oscillator filled by a (super)solid, was
proposed by Leggett7 as a signature of supersolidity that may be probed experimentally. Some NCRI has indeed been measured
in solid 4He by several experimental groups under different geometries and conditions8, 9, 10, 11, 12, yet indicating percentages of
decoupled mass (supersolid fraction) intriguingly spanning three orders of magnitude. And the coherent framework which could
explain all those experimental findings remains elusive13, 14, 15. Given the fact that Helium-4 does not afford an unambiguous
evidence of the supersolid phase, and that ideal crystals do not exhibit superfluid properties16, 17, the attention recently turned
to the field of ultracold atoms. This field offers not only clean and controlled experimental systems, but also allows to create
artificial interparticle potentials, which may not occur in ordinary condensed matter3, 18, 19. This rises the theoretical question
on which kind of body interaction potentials, if any, can lead to a supersolid phase18. It has been proposed20, based on a mean
field treatment, that a Bose condensate of particles interacting by an effective potential which is softened at short distances,
might support density modulation. In this frame, Cinti et al.18 had proposed the pair interaction between electrical dipoles in
the quantum regime with a soft-core potential for short distances. There are also some predictions that long-range interactions
can lead to a local blockade effect in ultracold atoms21, stabilizing the supersolid phase18, 20, 22.

The present study deals with the phenomenology of a self-consistent long-range, mean-field, N-body system of particles
in the low temperature limit, yet in the classical frame. The fact that the model is utterly devoid of quantum aspects may not
prevent it from being of some relevance to supersolidity. Indeed, one could argue on a general basis that the transition line



between the quantum and classical worlds remains partly unclear. It has been for instance very recently shown23 that strong
coupling in light-matter interaction with large amounts of particles, which was previously thought to be a quantum phenomenon,
could be explained classically. One may also recall that there have been attempts to describe the phenomenon of supersolidity
in the classical mechanical hydrodynamics16. There is, in any case, an interest in clarifying whether some features pertaining to
supersolidity may have classical counterparts.

In the model considered here, a set of a large number N of particles interacting through mean-field forces, having initially
zero temperature and zero total momentum and being initially homogeneously distributed in the two-dimensional space, will be
shown to evolve self-consistently to an out-of-equilibrium quasi-stationary state (QSS) featuring a space-modulated particle
density, defining a crystal, through which some subset of the most energetic particles flows so that the momentum of this
particle subset compensates the crystal momentum. The fact that this state is out-of-equilibrium relates to the well-known
ergodicity breaking features of mean-field collisionless (Vlasov) systems. The study of the scaling with N of the lifetimes of the
QSS in long-range systems has been an active research field (See e.g.24, 25, 26, 27, 28, 29, 30). The fact that these lifetimes diverge
with N means that those systems may practically never reach the Gibbs-Boltzmann thermodynamic equilibrium justifying their
treatment in the nonequilibrium context e.g. with effective macro-particle and collective modes low-dimensional models31,
core-halo descriptions32 or alternative, non-Gibbsian, thermostatistics33, 34.

The model used is the 2D-Hamiltonian Mean Field (HMF) model with mixed attractive and repulsive interactions. Such a
system could be reproduced in a cold atoms experiment using laser cooling and magnetic traps. In a previous work on the
2d-HMF35, we numerically demonstrated on microcanonical Monte Carlo simulations that, at minimal energy densities, the
system organizes in a Bravais lattice forming cores playing the role of the atoms in a crystal structure. In the present study, the
energy density of the system is not minimal yet the initial temperature is vanishingly small and we use molecular dynamics
simulations. As the system follows its natural evolution, it slightly warms up and organizes into a ’cold’ crystal structure that is
gone through by a coherent flux of the most energetic particles. After introducing the physical model, evidence is given of the
dual solid and liquid nature of the quasi-stationnary state.

The two-dimensional Hamiltonian mean-field model
Derivation
The 2d-Hamiltonian Mean Field (HMF) model was first proposed by Antoni and Torcini36, 37 as a two dimensional generalization
of the Hamiltonian Mean Field (HMF) model in the fully attractive case for the study of N-body self-gravitating systems. A
generic two-body potential in a two dimensional square box of side 2π with periodic boundary conditions can be Fourier
expanded as

V (x,y) = ∑
k=(kx,ky)

V̂ (k)eik·r. (1)

Retaining only the most long-range terms, with |k| = 1 and |k| =
√

2, in the expansion and requiring that the potential be
invariant under rotations of multiples of π/438 yields the following truncation of the potential in Eq. (1)

V (x,y) = a− c(cosx+ cosy)−d cosxcosy, (2)

where a is an arbitrary scaling constant, c and d are coupling constants, and due to the rotation invariance c is related to the
energy scaling and d is the only free parameter38.
Considering N particles interacting through the potential in Eq. (2) and setting 2c+d =−a, one gets the following Hamiltonian

H = K +V (3)

with

K =
N

∑
i=1

Ki =
N

∑
i=1

p2
ix + p2

iy

2
, (4)

and

V =
1

2N

N

∑
i, j=1
{c[2− cos(xi− x j)+ cos(yi− y j)]+d[1− cos(xi− x j)cos(yi− y j)]}. (5)

Here the pix and piy are the conjugate momenta to the space positions xi and yi. The 1/N prefactor corresponds to the Kac’s
prescription39. It recovers the extensivity of the pair potential and is equivalent to a time rescaling of the type t ′ = Nt. The first
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term in Eq. (5) is the potential of two uncoupled (one-dimensional) HMF models, while the second term couples the x and y
directions.
Defining the four self-consistent mean-field variables as

M1 = (〈cosx〉N ,〈sinx〉N) = M1(cosψ1,sinψ1), (6)
M2 = (〈cosy〉N ,〈siny〉N) = M2(cosψ2,sinψ2), (7)

P+ = (〈cos(x+ y)〉N ,〈sin(x+ y)〉N) = P+(cosψ+,sinψ+), (8)
P− = (〈cos(x− y)〉N ,〈sin(x− y)〉N) = P−(cosψ−,sinψ−), (9)

with M1 and M2 playing the role of the magnetization fields and P+ and P− of the polarization fields and making use of the
notation 〈·〉N for the average over the N particles, the Hamiltonian in Eqs. (3, 4, 5) simply reads

H = K +N
c
2
(2−M1

2−M2
2)+N

d
4
(2−P+2−P−2). (10)

The dynamics of any single particle i can be easily shown to obey the equations of motion

ẍi = cF1,i +
d
2
(F+,i +F−,i) , (11)

ÿi = cF2,i +
d
2
(F+,i−F−,i) , (12)

using the notations

F1,i = −M1 sin(xi−ψ1), (13)
F2,i = −M2 sin(yi−ψ1), (14)
F+,i = −P+ sin(xi + yi−ψ+), (15)
F−,i = −P− sin(xi− yi−ψ−). (16)

At any time t, the equations (11) derive then from the following one-particle Hamiltonian, that is defined up to a constant of
integration C,

h(pi,ri, t) =
p2

ix + p2
iy

2
+ c{2−M1(t)cos[xi−ψ1(t)]−M2(t)cos[yi−ψ2(t)]}

+
d
2
{2−P+(t)cos[xi + yi−ψ+(t)]−P−(t)cos[xi− yi−ψ−(t)]}+C. (17)

This constant can be fixed by using the conservation of the total energy yielding

N

∑
i=1

h(pi,ri, t) =
N

∑
i=1

h(pi,ri,0)≡U0. (18)

There is another constant of motion in this system: the total momentum

ΠΠΠ =
N

∑
i=1

pi. (19)

In the numerical simulations, this is taken to be identically zero.

Equilibrium and out-of-equilibrium emergence of a Bravais lattice structure
The phase space trajectories of a Hamiltonian system such as Eq. (10) are constrained on a constant energy surface in phase
space. Consequently, the time averages computed from the numerical solutions of the equations of motion are expected
to converge to microcanonical ensemble averages, so that the microcanonical ensemble is the natural ensemble to derive
equilibrium statistical mechanics.

In a previous work35, we studied the mixed case with attractive polarization mean-fields and repulsive magnetization
mean-fields by choosing c =−1 and d = 1. Due to the invariance of the Hamiltonian under rotations by multiples of π/4, a
simple interchange in the ”charge” of the fields would provide the same results. The equilibrium statistical mechanics studies
led to the following results obtained in the microcanonical ensemble: along the repulsive direction, the system behaves as the
antiferromagnetic-like HMF model, whereas along the attractive directions, it behaves as the ferromagnetic-like HMF model,
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except that for the low energy phase, it exhibits a bicluster, instead of a single cluster structure. Due to the periodicity of the
potential, one can increase the space period length by a multiple of 2π , and turn the bicluster into a periodic structure which can
be regarded as a Bravais-like lattice. This space ordering into a Bravais lattice structure is not only present in the equilibrium
states but also in the quasi-stationary states (QSS). Indeed, since the model (10) is long-range, its dynamics, computed here
using a fourth-order symplectic scheme, exhibits ergodicity breaking features. As already observed, e.g. in the HMF model,
after an initial phase of violent relaxation, the system settles in an out-of-equilibrium quasi-steady state, the lifetime of which
diverges with N. Figure 1 displays the typical Bravais lattice structure emerging in the QSS phase starting from cold and space
homogeneous initial conditions. Contrarily to Monte Carlo simulations35 that do not capture the real dynamics of the system, in
molecular dynamical simulations one observes that some particles are hopping from one cluster to the others so that there is a
flux of particles hopping from one cluster to another, the amount of the flux depending on the system energy.
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Figure 1. (left) Periodic Bravais-like structure in the mixed attractive/repulsive 2D-HMF model. A flux of particles is hopping
from one core to another for the energy density H/N close to −0.5. The parameters were fixed to c =−1 and d = 1 in Eq. (5).
(right) Space distribution of the particle density in an elementary [0 : 2π]× [0 : 2π] pattern.

We shall now report the results on the formation of the Bravais lattice structure and QSS’s evolution and characteristics in
the mixed attractive/repulsive 2D-HMF model.

Dynamical features of the attractive/repulsive 2D-HMF model in the low-temperature regime
Initial conditions
Our previous results on this system35 showed that the homogeneous distribution of a cold ensemble of particles is linearly
unstable in the attractive directions and linearly stable in the repulsive directions. The resulting linear instability triggers the
so-called violent relaxation process, according to Lynden-Bell’s wording40, 41, 42. The initial distribution functions considered in
the present analysis are the following water-bag distribution functions

f0(r,p) =
1

(4πn∆p)2 [Θ(x)−Θ(x−2nπ)][Θ(y)−Θ(y−2nπ)]Θ(∆p−|px|)Θ(∆p−|py|), (20)

where r ≡ (x,y), p ≡ (px, py) and Θ is the Heaviside unitary step function. Inasmuch as the mean square momentum for
distribution (20) is given by

〈p2〉t=0 =
∫

dpdrp2 f0(r,p) =
2(∆p)2

3
, (21)

the distribution is considered to be an ensemble of cold particles if ∆p is chosen to be sufficiently small. The total energy is
given by

U = N
〈p2〉

2
+

N
2

[
−1+(M2

1 +M2
2)−

1
2
(P2

++P2
−)

]
. (22)

In the present Hamiltonian system, the energy is conserved and equal to

U0 = N
[
(∆p)2

3
− 1

2

]
, (23)
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Figure 2. Snapshots taken at different successive times of the positions of the N = 25000 particles in the real space during the
quasi-stationary state. The z-axis represents the particle energy computed by the relation in Eq. (17) and defines the particle
color. The low energy particles (LEP) plotted in blue remain trapped in the potential cores, the intermediate energy particles
(IEP) may hop from one core to another and the few ’high’ energy particles (HEP) plotted in yellow and red can move freely
throughout the system. The bottom plots are projections on a horizontal plane.

that is its value at time t = 0. For future reference we set ∆p = 10−6 in this work.
The equations of motion in Eq. (11) were integrated using a fourth-order symplectic integrator43. This ensures that the

relative error in energy remains of the order ∆U/U = O(10−12) in the numerical results presented here.

Characteristics of the quasi-stationary states
Figure 2 shows some results of molecular dynamics symplectic simulations obtained using N = 25000 particles and n = 1 when
the quasi-stationary state (QSS) has been reached. The four panels are snapshots of the real space distributions during the QSS
phase. The early time behaviour of the moduli of the mean-fields are represented on Fig. 3. In the QSS regime, the values of the
magnetization mean-fields are M1 'M2 ' 0.0035, whereas the polarization mean-fields are P+ ' P− ' 0.6. These values are
consistent with the results presented in the Figure 8 of Ref. 35. The latter shows the linearly unstable and subsequent saturation
stages of the time evolution of the moduli of the mean-fields. Because of the symmetry in x and y in the expression of the
Hamiltonian (10) and of the spatial homogeneity, and therefore invariance, in x and y of the initial conditions, the mean-fields
are approximately equal in the N � 1 limit, namely (P+ ≈ P− = P± and M1 ≈M2 = M). In the three-dimensional plots of
Figure 2, each of the N = 25000 particles is represented by a dot as the function of its positions in the 2D [0 : 2π]× [0 : 2π] cell
and of its energy, the color of the dot depending on the particle energy. The bottom plots are projections on the horizontal plane
that help to visualize the location of the cores, namely the instantaneous location of the crystalline structure. Indeed the cold
mixed attractive/repulsive 2D-HMF model is a many-body system in which the lowest energy is a state of modulated density:
this low-energy fraction of particles defines a crystal in the sense of Landau44.

Figure 4 shows the energy distribution of particles at two different stages, in the QSS regime and later in the thermalization
stage. The energy distributions were obtained from averaging over the data obtained at 40 equidistant instants within a time
range of 80 time units about the times t = 2000 and t = 104.
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Figure 3. Time behaviour of the mean-fields moduli for the same parameters as in Fig. 2 in linear-log scale. The mean values
for mean fields are M = 0.0035 and P± = 0.6.

Considering the particle energy distribution in the QSS regime (about t = 2000), it is possible to distinguish three types
of particles: i) low energy particles (LEP), appearing in blue on Fig. 2, constituting the majority of the system particles and
forming the bulk of the energy distribution function, which stay trapped in the cores of the bicluster structure; ii) a second peak
around ε =−.3 reveals a second class of particles constituted by intermediate energy particles (IEP), these particles can hop
from one core to another, being still attached to the mean-fields potential, moving coherently in two well defined directions
(along the diagonals) and, finally, iii) a few high energy particles (HEP), appearing in red and yellow in the snapshots of Figure
2, that can move freely in space.

t=2000 t=10000

-1.0 -0.5 0.5 1.0
ε

0.5

1.0

1.5

f(ε)

Figure 4. Two histograms representing the energy distribution of particles computed from a symplectic integration with
N = 2.5×104 particles. The energy distributions have been obtained from averaging over the data obtained in 40 equidistant
instants in a time range of 80 time units about the times t = 2000 and t = 104.

Potential topology

It is useful to figure out the behaviour of the potential energy associated to the one-particle Hamiltonian (17). This is represented
in Fig. 5 in the limit case of the Vlasov limit N → ∞ inducing M1 = M2 = 0 and for P+ = P− = 0.6. For comparison, the
potential associated to the fully attractive 2D-HMF model for the same energy density is also represented on the right plot. The
bottom plots represent the corresponding force vector fields −∇∇∇V . The classification of the particles becomes then clear. The
particles forming the crystal (LEP) are trapped in the potential wells below the relative extrema of the potential, the free (HEP)
particles have their energies larger than that of the absolute extrema of the potential energy and the remaining (IEP) particles
are chanelling particles evolving along the diagonals.
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Figure 5. Potential V (x,y) for (left) the mixed attractive/repulsive 2D-HMF model, (right) the fully attractive 2D-HMF model.
The bottom horizontal plots represent the force vector fields −∇∇∇V .

Deviation from thermodynamic equilibrium
Let us now quantify the deviation from thermodynamic equilibrium of the QSS state. A simple way to check whether the
system has already reached or is going toward the thermodynamic equilibrium is to compute the reduced kurtosis, k, defined as

k ≡ 〈(p−〈p〉)4〉
〈(p−〈p〉)2〉

−3. (24)

This is the fourth standardized moment minus 3. For a Gaussian distribution, which characterizes the Maxwell-Boltzmann
equilibrium, one has k = 0. The graph in Figure 6 plots the evolution of the reduced kurtosis as a function of the time divided
by the number, N, of particles. It indicates that the thermalization timescale is proportional to N. From this follows, using a
proof by contradiction, that the lifetimes of the QSS are, at most, diverging as N. Such a scaling would be corroborated by the
results of Chavannis45.

Figure 6. Reduced kurtosis for different system sizes with N=500, 1000 and 10000 particles. The horizontal axis is the time t
divided by N in logarithmic scale. We notice that, as the time increases, k approaches and eventually fluctuates about 0.
Fluctuations are reduced for larger N values. In the t/N reduced variable, the three curves go to zero simultaneously signaling
that the time to reach the thermal equilibrium diverges like N.

These are derived from kinetic equations for bidimensional long-range interacting systems and indicate a lifetime for QSSs
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that scales linearly with N. This scaling with N is also obtained from a stochastic modeling of the thermalization process
involving the disintegration of coherent structures sustaining out-of-equilibrium quasistationary states in the one-dimensional
attractive HMF model27.

Combination of solid and liquid-like features
Heterogeneous diffusive properties
The fact that the QSS combines solid and liquid-like features is first evidenced by the heterogeneity of its diffusion properties.
Figure 7 presents the computation of the mean square displacement (MSD) for each kind of particles during the QSS regime.
The MSD plotted in Figure 7 is defined as

MSD(t) =
1
N

N

∑
i=1
{[xi(t)− xi(t0)]2 +[yi(t)− yi(t0)]2}

≡ 〈|r(t)− r(t0)|2〉N , (25)

where the brackets 〈·〉N stands for the average over N particles. The results shown were obtained for t0 = 2500, n = 10 and for
a total number of 104 particles. The choice for t0 = 2500 was in order to ensure that the system had already gone into the QSS
regime and formed the periodic structure.

The time evolution of the MSD for the core particles shows that they have a vitreous profile, characterized by time intervals
with almost no diffusion. This can be interpreted as the Bravais-like lattice having a high viscosity. Meanwhile, the diffusion
profile in Figure 7 and the snapshots of the QSS shown in Figure 2 show the movement of the cores without changes in the
periodic array of the Bravais-like lattice. This global movement of the crystal structure results from the requirement of total
momentum conservation so that the heavy cores move slowly in order to counterbalance the rapid movement of the few flux
particles.

Figure 7. Time evolution of mean square displacement (MSD) in real space for t0 = 2500, N = 104 particles and n = 10. The
graph shows the diffusion regime for the three types of particles: in black the LEP, in red the IEP, and in green the HEP. The
IEP, which are the particles that form the flux between the cores, diffuse in the same way as the free particles, even if the IEP
are trapped to the potential.

Conversely, the IEP, which are the particles that support the flux between the cores, and the free particles (HEP) present
almost the same profile for diffusion, markedly different from that of the particles (LEP) forming the cores. The diffusion
regime for IEP and HEP appears first as diffusive then as sub-diffusive at large time. The latter behaviour is however an
artefact due to the fact that the system is confined into a finite square box of sides 2nπ by 2nπ , in such a way that there exists a
maximum value that the mean square displacement can reach. Figure 7 also shows that the flux particles, even trapped to the
mean-field potential of the cores, diffuse in a way independent from the vitreous diffusion of the cores. Figure 7 reveals an
heterogeneous diffusive behaviour: particles forming the cores of the crystal structure have a glassy behaviour whereas the rest
of the particles diffuses normally as in a normal fluid.

Moreover, for the initial conditions under consideration, namely space-homogeneous with vanishing temperature and total
momentum, the collective momentum of these diffusive particles flowing through the crystal-like structure is the opposite of the
drifting momentum of the clustered particles, namely −PCore(t). The time behaviour of the core total momentum vector has

8/11



Figure 8. Instantaneous total momentum PCore of the particles trapped in the self-consistent potential wells as a function of
time for N = 25000 particles (same parameters as in Fig. 2). The fraction of trapped particles forming the crystal-like structure
remains equal to about 70% during the whole QSS stage for the initial conditions (20) considered in the present study.

been plotted in Figure 8. This means that, in the reference frame of the crystal, the particles forming the liquid-like phase have
a nonzero mass flow.

Response to external perturbations
Finally, in order to test the solid character of the QSS, we studied the response of the QSS to external perturbations. A core was
displaced at some given time as represented in the left plot of Figure 9. As visible from the central plot displaying the time
behaviors of the magnetization mean-fields, particles from the displaced core snap back into place after a transient oscillatory
stage. Indeed, in the case of Figure 9, all the LEP particles from the left bottom core are displaced at some given time to the
right along x. This produces an increase of M1. The core then starts to oscillate along x, yet with a decreasing amplitude,
about its original position that it recovers at time t ' 500 which is captured by the damped oscillatory behaviour of M1. This
phenomenology is a solid feature in contrast to a fluid that would be permanently displaced.
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Figure 9. (left) Density plot in the (x,y) space at the time of the perturbation: the left core is displaced along the x-axis by
∆x = 0.8; The resulting time behaviours of the mean-fields (center) M1(t), M2(t) and (right) P+(t) and P−(t).

Final Remarks
The results presented here indicate that, in the N → ∞ (Vlasov) limit, the mixed attractive/repulsive 2d-HMF in the low-
temperature regime remains frozen in the QSS having a periodic Bravais-like structure with a flux of particles with non-zero
mass flow between the cores. The quantum transposition of this model would be interesting to investigate, possibly using the
latest sophisticated cold atoms techniques46 to generate long-range interactions. This may allow the observation of superfluidity.
Compared with the traditional egg-crate 2D potential represented in the right part of Figure 5, the potential resulting from the
mixed attractive-repulsive interaction, possesses two barriers in the potential well, one for the confinement of particles forming
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the crystal-like structure and one for the IEP fluid-like particles. This offers more freedom to control and access delocalization
(or not).
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