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Abstract

Upper bounds on the permeability of random porous media are pre-
sented, which improve significantly on existing bounds. The derived
bounds rely on a variational formulation of the upscaling problem from a
viscous flow at the pore scale, described by Stokes equation, to a Darcy
formulation at the macroscopic scale. A systematic strategy to derive up-
per bounds based on trial force fields is proposed. Earlier results based
on uniform void or interface force fields are presented within this uni-
fied framework, together with a new proposal of surface force field and
a combination of them. The obtained bounds feature detailed statisti-
cal information on the pore morphology, including two- and three-point
correlation functions of the pore phase, the solid-fluid interface and its
local orientation. The required spatial correlation functions are explic-
itly derived for the Boolean model of spheres, in which the solid phase is
modelled as the union of penetrable spheres. Existing and new bounds
are evaluated for this model and compared to full field simulations on rep-
resentative volume elements. For the first time, bounds allow to retrieve
the correct order of magnitude of permeability for a wide range of poros-
ity and even improve on some estimates. However, none of the bounds
reproduces the non-analytic behaviour of the permeability-porosity curve
at low solid concentration.

Keywords— Random porous media ; Permeability ; Stokes flow ; Spatial
correlation functions ; Homogenisation

1 Introduction

This work is part of a long-term effort that aims at finding reliable estimates or
bounds on the permeability of porous media which rely solely on the description
of the morphology of the material at the pore scale. For other physical properties
of heterogeneous materials as the elastic modulii, the coefficient of diffusion or
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the electric conductivity, reliable upscaling tools are readily available such as
Eshelby based schemes as well as the bounds of Hashin and Shtrikman (1962);
Beran (1965); Ponte Castaneda and Willis (1995). For these latter physical
properties, the governing equations have the same structure at the microscale
and the macroscale. On the contrary, the present subject involves different
descriptions of the flow depending on the scale: Stokes equations at the pore
scale, but Darcy law at the macroscopic scale. Consequently, the strategies
classically devised for the upscaling of elasticity or diffusion fail in the present
case.

The problem of upscaling permeability from the description of the flow at
the pore scale has been addressed by several means. Brinkman (1949) has em-
pirically proposed an equation to bridge the Darcy and Stokes flow descriptions,
upon which he has built a self-consistent approximation of the permeability of
porous media made of spherical solid particles. Subsequent effective medium
approximations have focused on the permeability of random arrays of spheres
(Childress, 1972; Howells, 1974; Hinch, 1977; Kim and Russel, 1985) using a
hierarchy of integro-differential equations. Wilkinson (1985) proposed an iter-
ated dilute approximation based on Brinkman equation, instead of the early
self-consistent approximation of Brinkman. An alternative strategy to estimate
the permeability is to turn to particle-in-cell models (Happel, 1958; Kuwabara,
1959; Dassios et al, 1995; Boutin, 2000), which feature a simple morphologi-
cal pattern comprising a single solid particle surrounded by a bounded cell of
Newtonian fluid.

Additionally, following the pioneering work of Prager (1961), a series of rig-
orous upper bounds on the permeability of random media have been proposed,
see Weissberg and Prager (1970); Doi (1976); Berryman (1983); Berryman and
Milton (1985); Torquato and Beasley (1987); Rubinstein and Torquato (1989);
Beasley and Torquato (1989); Torquato and Lu (1990); Given and Stell (1990);
Willot et al (2016). The bounds are based on an energy definition of the per-
meability and choices of trial viscous stress fields.

As deplored by Given and Stell (1990), early authors had little reliable ele-
ments of comparison to assess the accuracy of the bounds. Following the devel-
opment of efficient simulation tools (see e.g. Wiegmann, 2007; Bignonnet and
Dormieux, 2014), full field simulation data on representative volume elements
of random media data are now available for some random pore morphologies
(Abdallah et al, 2015; Willot et al, 2016; Roding et al, 2017).

This paper introduces new upper bounds on the permeability of random me-
dia which improve on available ones. First, §2 provides background on statistical
measures of random porous media: the spatial correlation functions. Then, §3
presents the problem for upscaling the permeability of a porous media at the
macroscopic scale from Stokes flow at the microscopic scale. §4 introduces a
variational framework to systematically derive upper bounds on the permeabil-
ity, in which the spatial correlation function naturally arise from the choice of
trial force fields. The evaluation of the bounds is provided in §5 for a simple
model of granular porous media, the Boolean model of spheres. The accuracy
of the new bounds is discussed through a comparison with dedicated numerical



results and existing estimates.

2 Spatial correlation functions of random porous
media

To start with, statistical descriptors of the microstructure that will arise in the
bounds are presented. For a more general formalism, the reader is referred to
Torquato (1986, 2002).

2.1 Notations

A Representative Volume Element (RVE) Q of a porous medium comprises a
fluid phase (or void phase) in the domain €y and a solid phase in the domain
Q, such that Qf U Q; = Q. Within the framework of random media, Q7 and
Qs are random sets. The indicator function I, of the void phase is defined as:

Iv(z)z{l if z € Qf O

0 otherwise

where z denotes the position vector in the RVE. In the following developments,
the random field I, is assumed stationary and ergodic. The solid-fluid interface
is denoted I'. The indicator distribution of I' is the surface distribution I
defined such that for any field f:

Vi, /Q f(2)1.(z) V. = / f(2)ds. (2)

Some of the improved bounds on the permeability derived in §4 also involve
information on the local orientation of the unit normal n to the solid-fluid
interface I'. Denoting by ® the tensorial product, it will prove useful introduce
the following tensorial surface distribution I, such that:

vy, /Q F(2)I,(2)dV. = / f(2)n(2) @ n(2)dS. (3)

2.2 One-point correlation functions

The one-point correlation function of the void phase F,, is the probability that
a point z in the porous medium lies in the void phase:

Fy = (I(2)) = ¢ (4)

where (o) denotes the ensemble average over all possible realisations of the
random set. The assumptions of ergodicity and stationarity of I, imply that
F, is independent of the observation point z ; F, then corresponds to the
porosity ¢ = |Q¢|/|2| of a RVE of the porous medium. Similarly, the one-point



correlation function of the solid-fluid interface F corresponds to the specific
surface area s = |I'|/Q]:

Fy=(I(2)) = s (5)
The function Fy corresponds to the limiting case when A — 0 of 1/h times the
probability that a point z lies within a distance less than h/2 to the solid-fluid

interface. Note that in case of an isotropic medium, (I,(z)) = 51 where 1 is
the second order identity tensor.

2.3 n-point correlation functions

The following two-point correlation functions are classically defined (Doi, 1976;
Torquato, 2002):

Fu(r) = {I,(2)I,(z + 7))
Fyo(r) = (Is(2)Ly(z + 7)) = Fus(—7) (6)
Fss(r) = {I(2)Is(z + 7))

The two-point correlation function of the void phase F,, (r) — or covariogram of
the random set €2 — is the probability that two points separated by a prescribed
vector 7 both lie in the void phase. The function Fj,(r) is the limiting case
when h — 0 of 1/h times the probability that a point z lies within a distance
less than h/2 to the solid-fluid interface and z + = lies in the fluid phase. Fs4(r)
is the limiting case when h — 0 of 1/h? times the probability that two points z
and z + 7 both lie within a distance less than h/2 to the solid-fluid interface.

The definition of Fy4 involves the product of two surface distributions, which
results in a line distribution to be interpreted as follows. For two surfaces S
and Ss of €2, whose unit normals are respectively denoted 1 and ns and whose
indicator (surface) distributions are denoted I; and I, the product I1 15 is a
line distribution such that:

o, [nenereaw= [ e

51052 1— (’l’Ll "I’Lg)2

(7)

where the right hand side is a line integral over the intersection of S; and Sa,
which may diverge if the two surfaces are tangent. Accordingly, im0 Fss(r) =
+00.

In a similar fashion, new tensorial spatial correlation functions which convey
a statistical information on the orientation of the unit normal n to the solid-fluid
interface I' are defined:

Fou(r) = (I,(2)1y(z + 7)) = Fuo(—T)
Fos(r) = (Io(2)Is(z + 7)) = Fyo(—7) (8)
Foo(r) = Io(z) - I,(z+7))

A straightforward generalisation of these notations will be used for three-
point correlation functions:

Fuij(r,8) = (I,(2)1i(z + r)1;(2 + 5)) (9)



where the subscripts ¢ and j are chosen among {v, s, 0} and the dot product is
to be used between I, and I, whenever i = j = 0. Online Resource 1! provides
explicit expressions of the above correlation functions for a simple model of
random medium: the Boolean model of spheres.

3 Permeability homogenisation problem

3.1 Direct definition in the framework of periodic homog-
enization

The description of flow through porous media driven by a pressure gradient
depends on the scale of observation. At the microscopic scale — or scale of the
pores — the flow is that of an incompressible Newtonian fluid within the pore
space governed by Stokes equations:

V-oa=0 (Qf)
o=—-pl+uVv (Q

pl+p (2f) (10)
V-v=0 Q)
v=0 (I
where v denotes the fluid velocity, p the pressure, o the Cauchy stress tensor
and p the viscosity.

At the macroscopic scale — or scale of the structure — the flow is described
by Darcy’s law. Darcy’s law linearly relates the filtration velocity V', which is
the average of v over a RVE, to the macroscopic pressure gradient V P via the
permeability K:

V- V=0
(11)
V=-K VP

The upscaling of permeability from viscous flow through porous media has
been first investigated by Prager (1961). Ene and Sanchez-Palencia (1975) later
derived the permeability homogenisation problem from multiscale asymptotic
expansions of (10) (see also Rubinstein and Torquato, 1989; Boutin, 2000; Auri-
ault and Sanchez-Palencia, 1977; Auriault et al, 2005; Whitaker, 1986). Multi-
scale asymptotic expansion techniques rely on the scale separation principle: let
L and ¢ be the characteristic lengths of the macroscopic and microscopic scales
respectively, then € = £/L <« 1 is assumed. The fields, of the space variable x,
are decomposed as a series expansion of powers of € and functions of two space
variables: the fast variable z = x/¢ and the slow variable y = /L (Auriault,
2002). For example, the stress field is decomposed as:

o(x) =00y, z) +eo1(y, 2) (12)

and similarly for v and p. Using scaling arguments, Ene and Sanchez-Palencia
(1975); Boutin (2000) have shown that o and po depend only on the slow

LAppendix A of the present document.



variable y and represent the macroscopic trend: a macroscopic pressure gradi-
ent V, po(y) in the fluid phase and a macroscopic stress gradient V, oo(y) in
the solid phase (in the opposite direction, to counterbalance the fluid pressure
gradient).

In turn, oy and p; are microscopic stress and pressure fluctuations about the
macroscopic trends og and pg. These fluctuations are driven by the macroscopic
fluid pressure gradient V, po(y) which appears as a constant for the fast variable
z and will be denoted V P. The driving force V P is balanced by viscous forces
which arise from V3wvy:

V.- 01—-VP=0 Q)
o1 =—p11+ pVivg (€2y)
V.- -v9=0 () (13)
v9=0 )]
p1, g periodic (QrNoQ)

In the framework of periodic homogenisation, periodic boundary conditions on
vo and p; are considered to close the problem (13). Rubinstein and Torquato
(1989) instead imposed vanishing velocity and pressure fluctuation conditions
on 0N). The latter choice is however somehow inconsistent since, due to the
incompressibility of the flow, it implies that the average of the velocity over the
RVE and hence the permeability should also vanish (see also (15)).

The boundary value problem (13) constitutes the permeability upscaling
problem, on which the present work will focus. To simplify the notations, the
indices in o1, p1, vo and V, will be dropped in the remainder of the document
and z, scaling as a length, denotes the position vector in the RVE. Since the
problem (13) is linear, the velocity field can be expressed as a linear function of
the sole loading parameter VP:

v(z) = —k(z)-VP (14)

where the second order tensor k(z) is the so-called velocity concentration field.
Volume averaging of the velocity yields the macroscopic filtration velocity V =

U

V = —k-VP (15)
where the velocity field v is extended to zero in the solid phase and & =
ﬁ Jo, ® AV denotes the volume average of e over the RVE. Comparison of (15)

to (11) indicates that the average of the velocity concentration field k corre-
sponds to the permeability tensor K of the porous medium. The aim of the
present work is to derive rigorous upper bounds on K.

3.2 Variational formulation in the framework of periodic
homogenization

The construction of bounds on the permeability relies on a minimum energy
definition of the permeability. It will prove convenient to express it for fields



defined on the whole RVE (2 instead of the sole fluid phase. To do so, the velocity
field is extended to zero within the solid phase ; the set K of kinematically
admissible velocity fields is then:

;c_{v

The stress fluctuation field has also to be extended to the solid phase. Just
as the stress fluctuation in the fluid sees the macroscopic pressure gradient
VP =V, po(y) as a body force within the pore space, the stress fluctuation in
the solid sees the macroscopic stress divergence V-0 (y) as a body force within
the solid phase (Boutin, 2000). Hence the stress fluctuation is subjected to a
body force field f defined as follows. The restriction of f to {1y is f‘Qf =-VP.
Since the stress in the solid phase is indeterminate, the choice of f on €1 is
arbitrary provided that the overall equilibrium of the RVE is ensured. Hence,

the volume average of f over {2 must vanish to ensure that the stress fluctuation
field is self-balanced. The set of admissible force fields f is thus:

F(VP)={f|f(z)=-VPifzeQs, f=0}, (17)

1
periodic (09) (16)

continuous,V-v =0 () }

This could also be seen as the fact that the divergence of the macroscopic stress
in the solid phase counterbalances the gradient of the macroscopic pressure in
the fluid phase. To sum up, the set S(V P) of stress fluctuation fields statically
admissible with the macroscopic pressure gradient V P is defined as:

S(VP) = {0' (18)

o - n anti-periodic (092)
Ife F(VP), V-o+ f(z)=0 (Q)

The condition f = 0 has generally been omitted by previous investigators seek-
ing bounds on the permeability. As will be seen later in §4.4, it provides a
physical insight to choices of trial fields. With these notations, the permeability
homogenisation problem (10) amounts to:

find vek, o € S(VP) suchthat K:o=2uVv (Qf) (19)

where K is the fourth order projection tensor on the space of second order
deviatoric tensors operating as K: o = o — tr(o) 1 /3.

The variational formulation of the permeability homogenisation problem (19)
is based on Hill’s lemma:

Vv € K, Vo € S(VP) I,o:Vsv=—-VP.o (20)

which is a direct consequence of the divergence theorem and the definitions of
K and S(VP). Let (v,0) be the couple solution to problem (19). Then any
stress field o/ € S(V P) decomposes in ¢’ = o + 0o where do = ¢’ — o € §(0)
by linearity. Multiple application of (20) yields Vo' € S(V P):

I, - 1
o' :K:o'=1,0:Vsv+— 1,60 :K:6c0+21,00 : Vv (21)
2p —— 2

=VP.K-VP >0 =0



The energy definition of the permeability K then follows:

I,
VP.-.K-VP= inf —0o:K:o’ (22)
o'eS(VP) 21

3.3 Stochastic definition of the permeability in the frame-
work of statistically homogeneous ergodic media

In the framework of statistically homogeneous periodic media, the permeability
definitions presented in the previous sections hold for any realisation w of a
RVE of a rigid porous media. Further, due to the formal analogy between
periodic media and statistically homogeneous ergodic media (Sab, 1994), the
stochastic definition of the permeability proposed by Rubinstein and Torquato
(1989) actually amounts to replacing the volume averages ® over the RVE in (15),
(20), (21) and (22) by ensemble averages (o) over all possible realisations of the
random media at an arbitrary point z. In further developments, these two
frameworks will be interchanged whenever convenient.

4 Upper bounds on the permeability

4.1 A general method to derive upper bounds based on
force fields

In this section, the variational principle (22) is applied to trial fields constructed
using the Green operators. The idea is closely related to the polarisation tech-
niques which are used in linear elasticity and lead to the Hashin and Shtrikman
(1962) and Beran (1965) bounds. To construct trial fields for the initial het-
erogeneous homogenisation problem (19), an auxiliary problem is considered in
which all the domain  is filled with a uniform Newtonian fluid of viscosity .
The heterogeneity and the no-slip condition are dropped and will have to be
accounted for by an appropriate choice of the force field applied to the homo-
geneous fluid. The boundary conditions on 0f) are kept similar to those on the
initial problem. The auxiliary problem is thus defined as follows:

V-o'+f=0 (Q)
o' =—p'1+2uVv" (Q)
V-v'=0 (Q) (23)

v’ and p’ periodic (09)

where f is an arbitrary volume force field whose choice will have to be optimised.
The force field f which allows to retrieve the solution to the initial problem (19)
is the Lagrange multiplier of the no-slip boundary condition. The motivation
to consider such auxiliary problem is that the velocity field solution to the
problem (23) is formally known as:

v'(z) = 5 G(z—y)- f(y)dV, (24)



where G is by definition the Green function of the incompressible fluid of vis-
cosity p on the domain §2 with periodic boundary conditions. Consequently,
the strain rate field solution to the auxiliary problem (23) is given by:

Vou'(z) = /Q G(z—y) fly)dV, (25)

where G;ji, = %(Gikﬁj + Gji,i) will be referred to as the third order Green
operator.

Provided that the volume force field f is chosen in the set F(V P) of ad-
missible force fields (17), the trial stress field o solution to the auxiliary prob-
lem (23) is by construction an admissible field for the initial problem (19), i.e.
o’ € §(V P). The variational principle (22) then implies Vf € F(V P):

2u ' o)
vPiP <[] 1) —a)- 1@ (G- v)- fw) aviav,av.

(26)
A weaker but simpler bound can be obtained by successive use of I,(z) < 1,
Green’s formula to the couple (¢/, Vv') and (24):

1
VP.K~VP§@/Qf(z)-G(z—y)-f(y)d%de (27)

Equality can be met in (26) and (27): consider the solution o to the flow problem
in the fluid phase (unique), and extend it to zero velocity and stress in the solid
phase. This solution can be readily retrieved from the Green operator applied
to the force field f°** defined as —V P in Qy, 0 in Q4 and a surface distribution
of forces o -n on I

By linearity of the problems at hand, suitable force fields must be chosen
linear with respect to the macroscopic pressure gradient VP. Let us introduce
the field of force concentration tensor A such that f(z) = A(z)- VP, then (27)
and (26) respectively become:

1
K=o [ A7) 6 —v)- Aw)av, av. .

21 Te)- Gl (% —x): Glz — 1) -
Kj@///s;fv(z)A () - G"( ):G(z —y) - A(y) dV, dV, dV;

where < stands for the inequality in the sense of quadratic forms and the con-
vention for the transposition of a third order tensor is g;ﬂk = G, i Since the
considered Green operators are translation independent, the change of variables
r =z —y and s = z — x allow to re-express the bounds (28) as:

K= /G(r) s AP (r) AV,

K < 2#// (gT(r) : g(s)) L AP (p5) AV, dV,

10



where A?P(r) and A%P*(r, s) are fourth-order tensor carrying information on
two- and three-point correlations respectively, defined by:

ARG (1) = (Agi(z) Au(z + 7))

3pts (30)
Aijkl (r,s) = (I,(2)Aj(z +7)Ay(z + 8))
In (30), the volume average over the RVE in the periodic homogenisation
framework is replaced by an ensemble average over all realisations of the random
media as stated in §3.3 in the framework of random media. The bounds (29) hold
for any force localisation tensor A such that A-V P € F(V P). The bounds are
assessed in §4.4 for specific choices of the force fields, for which A%P* (7, s) and
A3P®(p s) are combinations of the two- and three-point correlation functions
introduced in §2.

4.2 Approximation of the Green operators

For the bounds to be fully explicit, a classical simplifying approximation is
conceded: provided that there is no long-range order in the porous medium
and that the size of the domain €2 is much larger than the caracteristic size of
correlation of the random medium, the infinite-body Green operators will be
substituted for the finite-body Green operators defined on 2. The infinite-body
Green function G™ (or Stokeslet) and the third-order Green operator G of the
incompressible Newtonian fluid are translation invariant and explicitly known
as functions of r = z — y:

1 T T
G (r) = % i
il with 7=|r|; e, = — (31)
o 1®e, —3e, Ve, Ve, r
G (r) = e
U

The simplifying approximation of substituting the infinite-body Green oper-
ators for those of the finite-body is classically performed in elasticity homogeni-
sation for the fourth-order Green operator while assessing the bounds of Hashin
and Shtrikman (1962); it has been justified by Willis (1977) in the framework
of kinematically uniform boundary conditions. In the latter framework, the
infinite-body fourth-order Green operator has to be applied to the fluctuation
of the polarisation field around its average to avoid an unwanted behaviour with
uniform polarisation fields. Similarly in the present setting, the Green function
and the third order Green operator of the infinite body have to be applied to
the fluctuation of the force field around its average, namely to f — f. Since the
overall equilibrium imposes here to consider trial force fields satisfying f = 0,
the infinite-body Green operators will directly be applied to f.

4.3 Simplification of the bounds for isotropic media

Let us now focus on isotropic media ; then K = K1 is an isotropic tensor.
Furthermore, provided that the choice of the force concentration field A does not

11



introduce a preferential orientation, the quantity a®"*(r,s,u) (resp. a?P*(r))
defined below only depends on r = |r|, s = |s| and u = e, - e, (resp. on r):
a®S(r) = (1+e,®e,): APH(r): 1

32
a3pts(r, su) =e, Qe : A3pts(r, s):1 (32)

where e, = r/r and e; = s/r. Using these definitions and (31), the two- and
three-point bounds (29) simplify after integration over appropriate angles to:

1 oo
K < —/ 2ptS(T) dr

61

K< —/ / 1)a®P®(r, s, u) dr ds du
MT‘ 0s=0u=-—1

where use has been made of:
3e, e, (3(e, - e5)? —1
g=" (r): G%(s) = (3er —e)” ~1) (34)

(87 purs)?

4.4 Trial force fields

This section introduces several explicit choices of admissible trial force fields
involved in the above bounds. First, two trial fields classically used in the
literature — uniform volume and surface force fields — are presented in the light
of the framework of §4.1. Second, a new force field is proposed to improve the
statistical description of the solid-fluid interface. Finally, sharper bounds are
derived by combining all these force fields in the variational formulation of §4.1.

The simplest choice of admissible force field complying with (17) is a phase-
wise uniform force field, which will be referred to as the void force field, and
whose concentration tensor is:

1 (35)

In the case of an isotropic media, the application of the two- and three-point
bounds (33) to the void force field (35) reveal the two- and three-point correla-
tion functions of the void phase:

2 oo
K < Kyyopts = m /T:OT (Fvv(T) - ¢2) dr

1 o0
K < Kyp,3pts = m / / / (3u? — 1) uFyy,(r, s,u) drdsdu

r=0s=0u=—1

The void bound (35) corresponds to the proposal of Prager (1961). In the
original work of Prager (1961), a coefficient 9/10 had been found instead of 2/3,

12



as pointed out and corrected by Berryman and Milton (1985). It can be shown
that the bounds of Berryman and Milton (1985) are equivalent to the Prager
one’s provided a third order Green operator for compressible flow is used.

Doi (1976) subsequently proposed a surface force field featuring a uniform
distribution of force on the solid-fluid interface I':

A, = <§15 - L,) 1 (37)

The two- and three-point bounds (33) corresponding to this field are:

K<Kss2 tszi/oor FU'U(T)_2?F’US(T‘)+¢_2FSS(T) dr
- P 3:“ r=0 s s?

oo oo 1
1
KSKss3pts:_// /
’ 4
ur:O s=0u=-1

2
(3u? — 1)u (Fvw(r, S,u) — QQFM,S(T, s,u) + %Fvss(r, s,u)) drdsdu
s s

(38)
The two-point bound K 2pts, known as Doi’s bound, has been shown to yield
better results than Ky 2pts. The three-point bound K 3p¢s has been looked for
by previous investigators (see Beasley and Torquato, 1989, p. 206) but is new
to the best of our knowledge. As stated by Torquato (1986), Doi had actually
suggested a means of obtaining an infinite hierarchy of bounds, involving three-
point information for the next bound in his hierarchy.

Note that the choice of the intensity of the force in the solid-fluid interface
for the field (37) is made a priori from the cell equilibrium condition A;- VP €
F(VP) (and similarly for A,), whereas in previous derivations of Doi’s bound
this choice is made a posteriori as the only choice ensuring the convergence of
the integrals (Rubinstein and Torquato, 1989).

Finally, a new trial field is considered, of surface nature, whose intensity and
direction depend on the normal to the solid-fluid interface. For an isotropic
medium, the proposed orientation force field corresponds to the following local-
isation tensor:

3¢

A, = ?IO—LJI (39)
where the tensorial surface distribution I, is defined by (3). This choice is
motivated by analysis of the solution to particle-in-cells problems (Happel, 1958;
Kuwabara, 1959; Boutin, 2000) which have been considered to derive estimates
of the permeability of beds of spherical particles. Particle-in-cells problems
feature a spherical solid core surrounded by a spherical fluid shell to which
appropriate boundary conditions are imposed. One way to retrieve the solution
to these problems — although not the one presented by previous investigators —
is to impose a combination of the two surface force fields (37) and (39) on the
boundary of the solid core. In the infinitely dilute case, the contribution of (39)
is observed to vanish and (37) alone allows to retrieve the solution to the Stokes
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problem of slow flow past a single sphere in an infinite body. This is the reason
why the bounds (38) give a valid asymptotic behaviour in the dilute-limit. The
orientation force field is an attempt to deal with non-dilute situations. However,
the orientation force field (39) will have to be combined with the surface force
field (37) in order to retrieve the correct dilute-limit. The framework of §4.1
actually ensures that all the previous fields can be combined to derived improve
bounds. We hence suggest to consider concentration tensors of force field of the
type:

A=aA,+ BA; +7A, with a+B8+y=1 (40)

where the last condition is required for the admissibility of the force field: A -

VP € F(VP). For isotropic media, the choice of the force field (40) leads to
the following expressions of the two- and three-point bounds (33):

K < 042va + BQKSS + '72Koo + 2aﬁK5v + 2ﬁ’7Kos + 27aKvo (41)

where the following definition are used for the two or three-point bounds:

1 oo
Kijopts = @ /_0(1 +e ®e): (Ai(z) Aj(z+r)) rdr

oo 00 1
Kijapts = % / / / e (I,(2)Ai(z+71) Aj(z+8)) - es (3u® — 1)drdsdu
lur:O s=0u=-1
(42)
where the subscripts ¢ and j are chosen among {v,s,o}. The property (32)
ensure that the integrands in (42) depend only on r = |r| or 7, s and u. The
terms in the ensemble averaging sign (e) in (42) involve simple combinations of
the spatial correlation functions introduced in §2.

The void bounds correspond to K,,, i.e. to the case f = v = 0 and the
surface ones to Kz 2pts, i.6. to the case & = v = 0. Note that the rectangle
terms K5, K,, and K, are not bounds themselves. The optimal choice of the
weights «, 8, under the condition oo + 8 + « = 1 yields the optimal bound:

K'uvasKoo + 2K1}5K50K0v - K'U’UK520 - Kssng - Kongs
A
Wlth A :2K50(Kvs - K'uv) + 2Kvs(Kov - Koo) + 2KO'U(KSO - Kss)

+ vaKss + KssKoo + Koova - Kgs - ng - Ks20

K SKopt =

(43)
Interestingly, the evaluation of the combined bounds can be made at no addi-
tional computational cost as compared to the surface bound (38) while restrict-
ing to v = 0. The optimal choice is then:

_ 2
K< vaKss KUS

44
- K'uv - 2Kvs + Kss ( )

which improves on the void and surface bounds but is weaker than (43).
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Figure 1: Realisation of a RVE of a Boolean set of 400 spheres with ¢ = 21.7%

5 Permeability of the Boolean model of spheres:
results and discussion

5.1 Boolean model of spheres

The bounds derived in §4.4 are now evaluated for a specific morphological model
of random porous media: the Boolean model of spheres (Matheron, 1967). This
morphological model is build by randomly positioning fully penetrable spheres
according to a uniform spatial distribution, see figure 1. The present study
is restricted to the case where the pore space is the complementary domain
of that occupied by the union of the spheres, but the phase interchange case
(swiss-cheese like) could be dealt with similarly (Rubinstein and Torquato, 1989;
Abdallah et al, 2015). Further, all spheres are supposed to have the same
radius R. Extensions to non monodisperse sphere size distributions could readily
be handled, although to obtain the correct low-density limit, the chosen trial
function must depend on the sphere radius (see Given and Stell, 1990; Torquato
and Lu, 1990, for the two point surface bound). However, such extensions would
be worth of consideration only if the proposed bounds provide accurate results
in the easier case presently under consideration.

The Boolean model of spheres is of particular interest since the two- and
three-point spatial correlation function involved in the expressions (42) can be
derived explicitly, see Online Resource 12. Furthermore, this model offers a
rather realistic — albeit simplified — representation of actual porous materials
such as sandstones, chalks or compacted powders.

2 Appendix A of the present document.
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5.2 Existing estimates and full-field simulations

In order to assess the quality of the derived bounds, several theoretical bounds
and estimates are recalled and full-field simulations are carried out.

5.2.1 Dilute-limit

The permeability of the Boolean model of spheres can be evaluated in the dilute-
limit ¢ — 1 from Stokes formula (see Childress, 1972; Howells, 1974; Hinch,
1977):
2R?

u(l - o)
Since the permeability varies from 0 when ¢ — 0 to 400 when ¢ — 1, the
results on figure 2 appear packed due to the scale dilation. To improve the
readability and allow for a more precise discussion, subsequent plots of the
obtained permeabilities (figures 3 and 5) are scaled by the following factor which
is obviously well behaved in the dilute-limit ¢ — 1:

K ¢:1 Kdilute = (45)

Kscalc = ¢Kdilutc (46)

5.2.2 Effective medium approximations based on Brinkman equa-
tion

To study the flow of a Newtonian fluid in porous media, Brinkman (1949) sug-
gested to combine Darcy’s law and Stokes equation as follows:

—Vp+pAv=pK ' v (47)

The damping force in the r.h.s. corresponds in an approximate way to the
average of the forces applied to solid particles to keep them fixed. Based on a
modified Stokes formula for the drag on a sphere, Brinkman proposed a self-
consistent approximation of the permeability:

R? < 2(2 — 3¢)
KBrinkman =
# \3(3c+ V8¢ —3c?

The self-consistent approximation exhibits a percolation threshold ¢ = 1/3,
below which the permeability vanishes. The Brinkman equations (47) and (48)
are actually only valid for low solid concentration c¢; the series expansion of
Kaitute/ KBrinkman to o(c) being 1 + %\/E + %c + o(c). From a hierarchy of
integro-differential equations, Howells (1974); Hinch (1977); Kim and Russel

1985) latter found the series expansion 1+ ==+/c + 133¢In(c) + 16.456¢ + o(c
2 64

))2 with ¢c=1-¢ (48)

for random arrays of non-penetrable spheres.

To avoid the percolation threshold of the self-consistent scheme and to handle
poly-disperse sphere size distributions, Wilkinson (1985) suggested a so-called
iterated dilute approximation. The effective medium is build up iteratively as in
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Figure 2: Permeability of Boolean sets of spheres: bounds (lines) egs. (36),
(38), (43) and (51), numerical simulations (points) by Abdallah et al (2015)
and additional numerical simulations from the present work (see §5.2.5 and
figure 1).
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the differential scheme (see e.g. Roscoe, 1952; McLaughlin, 1977), by substitut-
ing infinitesimal fractions of solid to the effective Brinkman medium obtained
from the previous step. In the case of a mono-disperse sphere size distribution,
the procedure leads to the implicit equation:

2
—gln¢ =In(14+a+a?/3)—2V3 [arctan (%) - g] with «a= %
(49)

5.2.3 Particle-in-cell models

According to the terminology proposed by Dassios et al (1995), particle-in-cell
models are based on the solution to a flow problem on a simplified representative
pattern of the porous media, of finite extension. The models of Happel (1958)
and Kuwabara (1959) belong to this category. They both feature a domain
comprising a fixed solid sphere at the centre (the particle), which is surrounded
by a spherical shell of Newtonian fluid (the cell). At the boundary of the domain,
either uniform velocity boundary conditions are applied (Kuwabara, 1959) or
boundary conditions with no tangential stress and a normal stress corresponding
to a pressure field with a uniform gradient (Happel, 1958).

Boutin (2000) has shown that the particle-in-cell models may be interpreted
as self-consistent models in which the solid particle and the surrounding fluid
cell are embedded in an infinite uniform Darcy medium. Two different types of
field continuity conditions at the Stokes-Darcy interface are considered : either
the velocity is continuous, in which case the model of Kuwabara is retrieved,
or the stress vector is continuous while assuming no shear stress in the Darcy
domain, in which case the model of Happel is retrieved.

Assuming that the porosity of the particle-in-cell is equal to the one of the
modelled porous medium, the following permeability /porosity relationships are
obtained from these models (Boutin, 2000) :

R? (1-X)3(4+7X +4X?)
e 18X3(1+ X 4+ X2 + X3 + X14)
REP1-XP1+X)2+ X +2X?)
m 3X3(3 +2X9)

KKuwabara -

with X = (1 —¢)'/3

KHappcl =
(50)

5.2.4 Bound of Weissberg and Prager (1970)

In addition to the bounds derived in §4.4, figures 2, 3 and 5 also feature the

three point upper bound of Weissberg and Prager (1970):
20 R?

—9ulng

The bound of Weissberg and Prager (1970) has been established for the Boolean

model of spheres by constructing a trial stress field for the variational formula-
tion (22) based on the superposition of stress fields solutions to the Stokes flow

K < Kwpspts = (51)
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¢ va,ths Kv'u,3pts Kss,2pts Kss,Bpts Kopt,ths Kopt,3pts simulations
0.99 26.3254  23.4878  21.8076  21.6422 21.7751  21.6129 18.03

0.90 2.3293 1.9146 1.8254 1.6874 1.7976 1.6614 1.019

0.80  1.0006 0.7441 0.7341 0.6234 0.7113 0.6030 0.306

0.50 0.2170 0.1097 0.1257 0.07887 0.1158 0.07312 0.0255
0.20  0.04009 0.01042 0.01648 0.006764 0.01449  0.006349  0.000956

Table 1: Evaluated bounds and full field simulations by Abdallah et al (2015)
of the dimensionless permeability K u/R?.

past a sphere. By construction, the bound retrieves the correct dilute-limit. As
a side remark, let us note that the strategy proposed by Beasley and Torquato
(1989) to derive new bounds on the permeability of random arrays of spheres
is more closely linked to the approach of Weissberg and Prager (1970) than
originally thought by the authors. Although it had been applied to a random
model of impenetrable spheres in the original paper, a simple adaptation of this
strategy to penetrable sphere can be shown to also lead to (51).

5.2.5 Full-field simulations

The bounds are compared in figure 2 to full field simulations performed on
several realisations of representative volume elements of Boolean sets of spheres
over the whole range of porosity. In addition to the numerical results of Abdallah
et al (2015), a series of dedicated simulations have been performed using the
numerical scheme presented in Bignonnet and Dormieux (2014). The latter
simulations have been performed on a 2563-voxel discretization grid with sphere
radii of 24 voxels. The simulated microstructures feature up to several hundreds
of spheres, depending on the target porosity. Figure 1 presents an example of
simulated microstructure. Both numerical methods lead to similar results and
will be considered as a reference to assess the accuracy of the bounds.

5.3 Results

Figures 3 illustrates that for the same force field, three point bounds pro-
vide a sizeable improvement on their two point counterparts. Among three
point bounds, the Weissberg and Prager (1970) bound is the weakest for most
porosities, apart from the void bound Ky 3pts in the dilute-limit ¢ — 1. The
bounds (36) based on the void force field over-estimate the permeability are
indeed ill-behaved in the dilute-limit, by a factor of 6/5 for the two-point bound
and 27/25 for the three-point bound, whereas the other bounds have a valid
asymptotic behaviour. The void bounds K,, are systematically weaker than
the surface bounds K, in their two- or three-point versions. As expected, the
optimal bounds K, are sharper than the surface bounds. However, the im-
provement is minor. This is rather disappointing since the orientation force field
is well activated as indicated by sizeable positive values of the optimal choice of
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Figure 3: Permeability of Boolean sets of spheres, scaled by (46): bounds (lines)
eqs. (36), (38), (43) and (51), numerical simulations (points) by Abdallah et al
(2015) and additional numerical simulations from the present work (see §5.2.5
and figure 1).
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Figure 4: Optimal values of the force field weights «, 3,~ in (40)

the weight v in figure 4a. The bounds (44) are not displayed as they lie within
K5 and Kqpt, which are already close. The optimal choice of the weights o and
B under the constraint v = 0 for the combined force field (40) clearly indicates
that the surface force field takes over the void force field (see figure 4b).

Next, the bounds are quantitatively compared to the full field simulations.
Table 1 indicates that the weakest bounds such as K, 2pts may not be used
as reliable estimates of the permeability since they differ from simulation data
by more than one order of magnitude. The best bounds, namely K 3pts and
Kopt,3pts are better behaved but overestimate the simulation data in the non-
dilute regime, by a factor 2 at 80% of porosity, 3 at ¢ = 50% and 7 at ¢ = 20%.
As will be discussed later, it is already satisfactory that these bounds deliver the
proper order of magnitude since even estimates fail to provide accurate results
in the non-dilute regime. For example, the bound K, 3pts improves on the
iterated dilute approximation of Wilkinson (1985) for porosities below 30%.

5.4 Discussion

Among three point bounds, the force field based bounds (33) improve on the
bound based on the solution to the Stokes flow past a sphere (51). By construc-
tion, the Weissberg and Prager (1970) bound indeed only conveys statistical
information about the position of the sphere centres. Since the latter are uncor-
related in the Boolean model, such information is rather poor. On the contrary,
the volume and surface force field based bounds involve a richer information,
namely three-point correlation functions involving the fluid phase and the solid-
fluid interface.

An alternative point of view on the force field based bounds is that they
enforce particular constraints on the velocity field. Referring to the auxiliary
problem (23), the uniform volume force field corresponds to the Lagrange mul-
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Figure 5: Permeability of Boolean sets of spheres, scaled by (46): bounds and
estimates (lines), numerical simulations (points) by Abdallah et al (2015) and
additional numerical simulations from the present work (see §5.2.5 and figure 1).
In turn, the simulations of Mourzenko et al (2008) correspond to loose packings
of polydisperse unpenetrable spheres.

tiplier of the constraint : “the average of the velocity over the domain occupied
by the solid phase is null” for a flow in a uniform fluid. The uniform surface
force field corresponds to the Lagrange multiplier of the constraint : “the av-
erage of the velocity over the domain occupied the solid-fluid interface is null”.
When both of these constraints are imposed, figure 4b and the proximity of the
bounds (38) and (44) indicate that the latter constraint is the most efficient.
The reason is that the interface constraint is related — although in a diminished
version — to the no-slip constraint at all points of the solid-fluid interface in the
actual problem.

Although the Kwp, K and Kopt bounds retrieve the correct asymptotic
behaviour in the dilute-limit, figures 3 and 5 illustrate that none of them repro-
duce the non-analytic higher order terms in the series expansion of K/Kqgiute-
Contrarily, denoting by ¢ = 1—¢ the solid phase concentration, effective medium
approximations based on Brinkman equation evidence a higher order term in
V¢ for ¢ — 0. The underlying idea of the Brinkman-based approaches is that,
from the point of view of a solid sphere, the near field involves mainly viscous
forces and follows Stokes equation, while due to the shielding effect of the other
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spheres, the far field is pressure gradient driven and follows Darcy equation.

In the light of the work of Boutin (2000), particle-in-cell models also corre-
spond to a similar idea of decomposition of the far and near fields (see §5.2.3).
At low porosities, the Happel particle-in-cell model provides the best permeabil-
ity estimate among all presented models but underestimates the permeability.
At high porosities, figure 5 illustrates that the particle-in-cell models lead to a
too stiff decrease of the permeability with increasing solid concentration, with
a second order term in /c instead of y/c. As discussed by Saffman (1973), the
¥/c term which also arises for periodic cubic arrays is due to the existence of a
lengthscale associated with the cell. The numerical results of Mourzenko et al
(2008) indicate that for intermediate porosities, the Happel estimate is actu-
ally closer to the permeability of loose packings of non-overlapping spheres, for
which the porosity is more evenly distributed around the solid particles than
for the Boolean model.

As suggested by Saffman (1973), the /¢ term for random fixed arrays of
fixed spheres arises because the forces which keep the spheres fix are random.
However, the present choices of force field are deterministic, in that the values
of the tested force fields are uniform within a phase (solid, fluid or interface)
and do not depend on the position of other particles in the neighbourhood.
To us, this is precisely where an improvement of the bounds is to be sought.
Unfortunately from a practical point of view, spatial correlation of higher order
will likely arise while following that way.

6 Conclusion

New bounds on the permeability of random porous media have been proposed,
improving earlier versions and clarifying their links. All these bounds are ex-
pressed as a function of statistical descriptors of the morphology of the pore
space, namely two- and three-point correlation functions. The spatial corre-
lation functions involved in the bounds are explicitly derived for the Boolean
model of spheres. From a practical point of view, the implementation of the
proposed three-point bounds is somewhat involved since it requires, in addition
to the knowledge of three-point correlation functions involving the fluid phase
and the solid-fluid interface, a threefold numerical integration.

To the best of our knowledge, the newly derived three-point bound based on
the surface force field, which is seen as a higher order version of the Doi bound, is
the first bound that predicts the correct order of magnitude as compared to nu-
merical simulation data. The optimal bounds including the surface orientation
force field are very close to the simpler bounds based on the sole surface force
field. Since the derivation of such bounds which feature information about the
local orientation of the solid-fluid interface is much more involved, they do not
offer an interesting accuracy/complexity ratio. Note that applications of the
bounds derived herein to other morphological models than the Boolean model
of spheres are still prospective and would likely be computationally involved.

Nonetheless, there is still room for major improvements of the surface field

23



based bounds. The proposed strategy relies on piece-wise uniform force fields
combined with the Green operator for an infinite body governed by Stokes
equation, and thus loses the random character of the force on solid particles. In
particular, the non-analytic behaviour of the series expansion of the permeability
at low solid concentration is not retrieved.
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The following purely technical aspects which are required to evaluate the
bounds on the permeability presented in the above article were provided as
“Electronic Supplementary Material” in the published version.

A Spatial correlation functions of the Boolean
model of spheres

A systematic derivation of all the required spatial correlation functions for the
Boolean model of spheres is presented in detail for the sake of completeness.
Some results for the scalar correlation functions have already been provided
by previous authors (see e.g. Torquato, 1986, 2002), but the tensorial correla-
tion functions which involve additional information about the orientation of the
normal to the solid-fluid interface are new.

A.1 Notations

A Representative Volume Element (RVE) Q of a porous medium comprises a
fluid phase (or void phase) in the domain Qf and a solid phase in the domain
Q,, such that Q; U Qg = €. The solid-fluid interface is denoted I', and its local
unit normal n (see figure 6). Let us introduce the following indicator functions
I,, I; and I, such that for any field f:

[ (z)dV. = [ f(z)dV;
Q Qs

/ F(2)LL(2) AV, = / f(2)ds. (52)
Q T
. f(2)I,(z)dV, = /Ff(z)n(z) ®@n(z)dsS,

where z denotes the position vector in the RVE. In the following developments,
the random media is assumed stationary and ergodic.

Based on these three indicator functions, several types of one-point (z), two-
point (z, z+7) and three-point (z, z+7r, z+ s) correlation functions are defined
as follows:

Fy = (li(2))
Fij(r) = (Li(2)I(z + 7)) (53)
Fuij(r,s) = (I(2)1i(z + 7)I;(z + s))

where the subscripts ¢ and j are chosen among {v, s, 0} and the dot product is
to be used between I, and I, whenever i = j = o.

Note that for two surfaces S; and Sy of €2, whose unit normals are respec-
tively denoted ny and no and whose indicator (surface) distributions are denoted
I, and I, the product 115 is a line distribution such that:

dL,
vr, /Qh(zﬂz(z)f(z)dvz: / f(2)

51NS2 1— (n1 . n2)2

(54)
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Figure 6: Schematic Representative Volume Element (2 of a porous medium

where the right hand side is a line integral over the intersection of S; and Sa,
which may diverge if the two surfaces are tangent.

A.2 Boolean model of spheres

The Boolean model of spheres is built on a Poisson point process of rate p. For
more details, the reader is referred to reference books on random set theory (see
detailed presentations in Matheron, 1975; Torquato, 2002; Chiu et al, 2013).
Considering a RVE, a collection of N random points (or germs) (¢;);=1.. N are
first randomly positioned in ). The rate p corresponds number of these points
per unit volume:

=T (55)
In the following developments, the limiting case N — oo and Q — R3? for
prescribed values of p is considered. The solid phase is then defined as the union
of the spheres centred at the points ¢;, and the fluid phase as the complementary
domain. The solid phase is thus made of potentially overlapping spheres of
radius R. The roles of the solid and fluid phases could be interchanged, resulting
in a different morphology of the pore space. This phase interchange alternative
will not be dealt here, but has been studied by Rubinstein and Torquato (1989);
Abdallah et al (2015) among others.

Since the positions of the sphere centres are uncorrelated in the Boolean
model, the required n-point correlation functions will now be derived using the
following ensemble averaging rule, which amounts to average over all positions
of the sphere centres (¢;)i=1.. N:

<.>:ﬁ/g.../g-dml...dvcn (56)
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A.3 Decomposition of the void, interface and oriented in-
terface indicator functions
The void, interface and oriented interface indicator functions for a single sphere

of radius R centred at the origin, respectively denoted by V, S and O, are
defined such as for any field f:

/f(z)V(z)de:/ f(z)dv,

Q@ llzl|>R

/f(Z)S(z)de:/ f(z)dS. (57)
Q |

Using these notations, the indicator functions of the void phase I, of the solid-
fluid interface Iy and its oriented version I, defined by (52) can be generated
as functions of the positions (¢;);=1.. n of the sphere centres:

N

I,(z) = HV(Z —¢)

=1

T
L(z)=) [S(z—c) [[V(z—<) (58)
= i
N T
I,(z)= Z O(z — ¢j) HV(z —c)
i= | i

A.4 One-point correlation functions

The one-point correlation function of the void phase F,,, equal to the porosity
o =[]/, may be derived as a function of the rate p = N/|| of the Poisson
point process as follows:

N
1
F:—// V(z—c)dVe, ...dV,,
o Jo LIV E e d
|
— | V(x;)dV,, with ¢, = z — ¢; (59)
M\
:<1__p ) — exp (—pM,)

N N —o00

where the independence of the positions of the centres of the spheres has been
used and M, is the volume of a sphere of radius R:

B A7 R3
-3

M, = / |- V(z)av, (60)
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The one-point correlation function of the interface F; is equal to the specific
surface area s = |I'|/|€2|. Proceeding as for (59):

N
FS:—|Ql|N/.../Z S(Z—Cj)HV(Z—Ci) dvg, ... dV,,
@ Q=1

i#]

-3 | ' o : (61)
_; |Q|/QS(:BJ)dejH|Q|/QV(:BZ)(1V%_

i#]

p oM N—1
NNMS <1— N> mpMsexp(—va)

where M is the surface area of a sphere of radius R:

M, = / S(x)dV, = 47R? (62)

A.5 Two-point correlation functions

Since the centres of the spheres follow a random Poisson process, the two-point
correlation functions indicate a decorrelation as soon as the distance r between
the two points is greater than the diameter of the spheres. It is then convenient
to express the results as a function of the dimensionless parameter #:

r

= 3R (63)

Ui

A.5.1 Scalar two-point correlation functions

Let us introduce the following geometrical measures on the union of two spheres:

301, .
U <
Mvv(r):/l—v(iv)‘/(:l:—i—r)dvm:MvX 1+277 5" ifn<1
2 ifn>1
(64)
1+n .
— <
Msv(r) = /S(-'B)V(.’B —I—’I‘) de = Ms X 2 1f77 > 1 (65)
1 ifn>1
I
— ifn<1
Mss(r) = /S(:v)S(err)dvm — M, x { 4R (66)
0 ifn>1

My (r) is the volume of the union of two spheres whose centres are distant of
r. Msy,(r) is the surface area of the sphere of radius R centred at the origin, at
the exclusion of the sphere of radius R centred at r. M4(r) scales as a length
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and is determined using the property (7). Using these notations, the two-point
correlation functions are given by:

Fup(r) Vie)V(e, +7r)dV,, ... dV,,
a1 1

]:[ Q|/sz (z; +7)dVj, (67)

< Pl > s exp (~pMo (1)

N
H (kg +7r)dVy, ... dV,,

Fsv(r)_ﬁ/Q /Q[ZS:(;J [TV)

Jj=1 i#]

NS
:Z —/ S(x;)V(x;+1) de]H| . V(wi)V(mi—l-r)dei

it i#]

N—-1
N%Msv(f‘) (1 - PM;;;(T)> pM s, (1) exp (—pMyy(r))

1
- [19]

n
M=
*ﬂ

1
/ S(x;)V(x; +r)dVy, — | S(xr +7)V(xr)dVy,
Q €2 Jo

|/ (x:) V(:I:l—f—r)dV%}

175_] k

- N%Mss(r) (1 - %)Nl

2 r N—-2
N = DLt (1- 20

ot [PMas (1) + 07 (Mo (1)) D (= pMon(r)

N —oc0
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A.5.2 Tensorial two-point correlation functions

Proceeding as in (68) and (69), the two-point correlation functions involving the
orientation of the solid-fluid interface through I, reduce to:

F (1) = pM o (1) exp (—pMy, (7))
Fos(r) = [pMOS(T) + p2M0v(r)Mv5(T)} exp (—pMyy(r)) (70)
FOO(T) = [pMOO(T) + p2Mov (T) : MUO(TH exp (_vav(T))

where

/O S(x+7)dV, (71)

r)= /O(m) -O(x +7)dV,

These second order tensors possess the transverse isotropic symmetry w.r.t the
direction e, = r/r and thus may be expressed in the basis (e, ® e,, 1 —e, Q@ e,)
which is orthogonal for the dot product :

n*—n—2
M, () v (n2—n+1)er®er—f(1—er®er) ifn<1
3 1 ifn>1
2

! (1_er®er)>

M, (r) =

1
M y5(r) = Mgy(r) % (n2er R e, +

2
1 1-e-®e;)

M) = Mas(r) x (2 = 1) (1P, e, -

(72)
where the property (54) has been used whenever a product of two surface
distributions is encountered. Note that only projections of the type F;(r) :
(1+ e, ®e,) for i in {v,s,0} are required for the evaluation of the two-point
bounds on the permeability.

A.6 Three-point correlation functions

The three-point correlation functions defined in (53) can be derived for the
Boolean model of spheres following the same steps as in §A.5:
Foup(r,8) = exp (—pMyyy (T, 8))
PMoyus(r, 8) exp (—pMyyo(T, 8))
= pM (T, 8) exp (—pMyuo(T, 8))
[pMyss(r, 8) + p* Mysy (7, 8) Myys (7, 8)] exp (—pMywo (7, 8))
= [pMyso(r, 8) + p* Moysy (v, 8) M o (T, 8)] €xp (—p Mo (T, 8))
[

PM o0 (7, 8) + p> M you (T, 8) - M (7, s)] exp (—pMyvy (7, 8))
(73)
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where the following geometrical quantities involving three spheres at the origin,
r and s appear:

Myyy(r, 8) = / 1-V(@)V(e+7r)V(x+s)dV,

V(z)V(x+7r)S(x+s)dV,

’UUS

V(z)V(x+7r)O(x+ s8)dV,

UUO

(74)

V(x)S(x+ r)O(x + s)dV,

’USO

IAC
IAC

Myss( /V S(x +r)S(x + s)dV,
)= [ve

M ,00(r, 8) = /V(:c)O(m +7)-O(x+s)dV,

For example, M, (7, s) is the volume of the union of three spheres of radius
R centred at 0, » and s. Using the inclusion-exclusion formula, it is conve-
nient to express the geometrical quantities (74) as functions of complementary
geometrical quantities defined on the intersection of the three spheres:

Moo (7, 8) = My (1, 8) + My (r) + My (s) + Moy (t) — 3M,
(r,s) = Mva(r 8) + Miu(s) + Mo (t) — M
M yyo(7,8) = Myyo(T, 8) + Moy(s) + Moy (t) — M,
(r,s) = —MUSS(T, 8) + Mss(t)

with t=7r—s

(75)
where M, = [ O(x) dV, = 37R*1 and

with V=1-V  (76)

For example, va (r, s) is the volume of the intersection of three spheres. The
expressions of the geometrical quantities in (74) and (76) involve several cases
depending on the configuration of the three spheres (see Gibson and Scheraga,
1987). Let us denote

a=|lrll/R sb=|lsl[/R ; c=]|{tl|/R
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case 3 case 4

Figure 7: Configurations of three equal spheres, in the plane of their centres

the scaled distances between the sphere centres, so that the cosine of the angle
between r and s is

u=e. es;=(a*+b*—c*)/(2ab)
Following Gibson and Scheraga (1987), let us introduce the quantities
g =al’+*—a®) ; @=bc+a®-b) ; g=c(a®+b"—c)
w? = (a® +b* +)* = 2(a* + 0" + ') — a®b?

(77)

The triple intersection of the spheres is non-trivial (i.e. not empty or not equal
to the intersection of two spheres) when w? > 0, which happens only if a < 2,
b<2and c_ <c<cy with
1 2, 32 272 272 2720 2 | 12 4,4\ 1/2]1/2
e =3 [4(a +0?) — 20202 £ 2 (16a%h? — 4a2b%(a2 + b2) + a'bY) } (78)
By symmetry, we present only the situations for which b < a, restricting to

r, s and t smaller than 2R:

e Casel1: 0<b<a<2andc_ <c<ecy
The triple intersection is non-trivial. From the formula of Gibson and
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Scheraga (1987) and derivation w.r.t. appropriate sphere radii one readily

obtains (with the convention 0 < tan™! < 7):

va(r, s)/R3

6 3 q1

w4 _1 aw _q1 bw _icw
— 4+ - |tan " — 4+ tan - — +tan T —
q2

a? 2w b2 2w 2
1——Jtan ' = 4+b(1—-—)tan ' — 1—— Jtan™!
[ ( 12) an o + ( 12) an - +c( 12) an

q3

2w}
q3

N b 2 2
Myys(r,8)/R* = 2tan™! Y iotant Y —ctan ' 22 _pan—! 22
a3 qz a3 a2
. 2 2w
Myss(r,s)/R = — tan~! 2=
(ro)/R = 2 tant 2
(79)
Further lengthy geometrical considerations lead to:
7r79h —
Mype = & a0 =Bz —20,) with tan(0y) = ———2C
¢ Jo, c 4(1 —wu?) — ¢
R [™ c? c
M, = —/ ns, @ngdo with mgs=1/1— —(cosfuj + sinfus) + —e;
& 0, 4 2
22 [T On c? c
Moo =R / n,®@nsdd with n, =41/1 — —(cosbuy + sinfusz) — —e;
2¢c J,, 1 2
(80)
where (u1, u9, €;) is a direct orthonormal basis defined by:
esNey, (b —au)e, + (a — bu)es t
U = —F——= ; U2 = e =7 81
! V1—u? 2 V1 —u? Tt (81)
and
. N 1
Mo = (M'uvs - b.f(xb) - Cf(.Ic)) §
2 €r — U€Eg
+bf(zp)es ® s+ cf (zc)e ® e — gh?’ <u2 ® e+ % ® es>
—u
(82)

where
a— bu

T 5)

7 e

Ty =

R

h:R\ll—m ;o fx) = 5

e Case2:0<b<aanda—-b<c<c_

uc

(1—u2)(4—c?)

{w/2 —arcsin(z) —zv/ 1 — IQ}

The triple intersection is included in the sphere centred at s and equal to
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the intersection of the two spheres centred at 0 and .

Moy (7, 8) = Myy(8) + My (t) — M,

Myps(r, 8) = Msy(s) + Msy(t) — M

M yyo(T,8) = Moy(s) + Moy(t) — M,
Mysy(r,8) = Msp(t) 3 Myop(r,8) = Moy (t)
Myss(r,8) = Mgs(t) 3 Mayoo(r,8) = M oo(t)
M ,s0(1,8) = M yos(1r,8) = M ,5(t)

e Case3: 0<b<vd—a?andcy <c<a+b

The triple intersection is included in the sphere centred at 0 and equal to

the intersection of the two spheres centred at r and s.

Mywo(7, 8) = My (1) + Myy(s) — My
Myys(r1,8) = Mso(s) 3 Mypo(r,8) = M oy(s)
Myso(r,8) = Mo(r) ;5 Mayon(T,8) = Moy(T)
Myss(r,8) = M yoo(1,8) = M yso(r,8) = M yos(r,8) =0

(84)

eCase4: (Vi—-a?>? <b<aandcy <c<a+b)or (0 <b<2and

2<a<2+0b)
The triple intersection does not occur.

M’UU’U(T7 S) = MUU(T) + Mvv(s) + Mvv(t) —3M,

Myys(r,8) = Myy(s) + Mgy (t) = My 5 Myyo(r,s) =
My (1, 8) = My(r) + Mgy (t)

Myss(r,8) = Mss(t) 3 Myoo(r,8) = Moo(t)

M y50(r,8) = M yos(r, 8) = M ,4(t)

(85)

A.7 Alternative derivation of the scalar spatial correlation

functions

A powerful tool to derive the correlation functions involving scalar surface in-
formation such as Fs, Fss, Fyus Or Fyss is to express I as a function of I,:

I;(z2,R) = ——=1,(z,R)

AR

(86)

where the additional argument R refers to the radius of the spheres used to
build the Boolean model. Let us then introduce the functions:

Fy(r,

Fi(Ry) = (Iy(z, R) xp (—pMi(R1))

)=
FQ(T‘ Rl,Rg) < (Z,R )IU(Z+T Rg)) = exp (—ng(T, Rl,Rg))
8, Ry, Re, R3) = (I, (2, R1)I,(2 + 7, R2)I,,(2 + s, R3)) = exp (—pM3(r,
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where M (R;) = 47R3/3 is the volume of one ball of radius Ry ; Ma(r, R1, Ra)
is the volume of the union of two balls of radii R; and R whose centres are
distant of r:

1—; (3(R1 — R2)2 + 2(R2 + RQ)’I” — T2) (Rl + Rs + T)2 ifr <Ri+ Ry
(R + RY) if r > Ry + Ry
(88)
and Mjs(r, s, Ry, R2, R3) is the volume of the union of three balls of radii Ry,
R5, R3 centred at 0, 7 and s. The volume M3 of the union of three spheres of
unequal sizes can be deduced by the inclusion-exclusion formula from My, My
and the volume of the intersection of three spheres of unequal sizes provided
in Gibson and Scheraga (1987).
By use of (86) in (53), derivation under the integrals in (87) with respect to
R1, Ry or R3 whenever appropriate yields:

M2(T,R1,R2)={

0
Fy=— —Fi(R
(9R1 1( 1) Ri1=R
F, 4 F5(R1, R2)
vs — A5 12 1,412
ORs Ri=R2=R
82
Fss = ———F (R, R
R0, 2(R1, Ra) rin (89)
0
Fyps = — =5 F3(R1, R2, R3)
ORs Ri=Ry;=R3=R
82
Foss = === F3(R1, R, R3)
IR20Rs Ri=Ry=R3=R
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B Numerical integration

The evaluation of the bounds of the permeability requires to compute integrals
of the type:

1 o0
Kij,2pts = @ /_0(1 +e-R® 67«) . <A1(Z) . Aj(z + ’I’)> rdr (90)

for the two-point bounds and:

1

Kijapts = 41# / / / e (I,(2)Ai(z+71) - Aj(z+9))-es (3u®—1)drdsdu
r=0s=0u=-1
(91)
for the three-point bounds, where A; and A, are linear combinations of the
indicator functions (52), so that the terms in brackets are linear combinations
of the spatial correlation functions (53).

For the Boolean model of spheres, the simple integrals of the type K;j opts
(90) for the two-point bounds have a vanishing integrand as soon as the two
spheres do not intersect, that is for » > 2R, and can easily be numerically inte-
grated. The triple integrals of the type K;j spis (91) have a vanishing integrand
as soon as the three spheres do not intersect at all. However, the direct integra-
tion of K;; spts as expressed in (91) has to be carried out on an infinite domain
since the spheres centred at r and s may intersect for arbitrarily large values of
r and s.

To overcome this difficulty, in view of performing the numerical integration
on finite domains, recall that for any admissible trial force field f:

VPP < [ 1662 1@): G-y fw) voav,av.

jtl
(92)
In (92), one may rewrite the void indicator I,,(z) as ¢+ (I, (z) — @). The integral
in the r.h.s. of (26) is then split in two terms: one for ¢ and one for I,(z) — ¢.
The former term is simply ¢ times the simpler bound:

ﬁ //Q f(z)-G(z—vy) - fly)dV,dV, (03)

By following the subsequent steps of the companion article, it is a simple matter
to show that K spes can be decomposed as:

Kij3pts = ¢ Kijopts + 0K 3pts (94)
where
o oo 1
0K ij3pts = 4i / / / e — @) Ai(z+71)-Aj(z+ 8))es (3u*~1)drdsdu
MT‘:O s=0u=—1
(95)
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The term in brackets in §K; spts involves similar two- and three-point correla-
tion functions as in Kj; opts and Kj; 3pts. However, the integrand is now non-zero
on a finite domain, which eases the numerical triple integration. The numerical
integrations have been carried out using a Python interface to QUADPACK
(Piessens et al, 1983).
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