Pierre Roux

Mohamed Iguernelala

Sylvain Conchon

Mohamed Iguernlala

A Non-linear Arithmetic Procedure for Control-Command Software Verification

Keywords: SMT, non-linear real arithmetic, polynomial inequalities, convex optimization

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

Systems of non-linear polynomial constraints over the reals are known to be solvable since Tarski proved that the first-order theory of the real numbers is decidable, by providing a quantifier elimination procedure. This procedure has then been much improved, particularly with the cylindrical algebraic decomposition. Unfortunately, its doubly exponential complexity remains a serious limit to its scalability. It is now integrated into SMT solvers [START_REF] Jovanovic | Solving non-linear arithmetic[END_REF]. Although it demonstrates very good practical results, symbolic quantifier elimination seems to remain an obstacle to scalability on some problems. In some cases, branch and bound with interval arithmetic constitutes an interesting alternative [START_REF] Gao | δ-complete decision procedures for satisfiability over the reals[END_REF].

We investigate the use of numerical optimization techniques, called semidefinite programming, as an alternative. We show in this paper how solvers based on these techniques can be used to design a sound semi-decision procedure that outperforms symbolic and interval-arithmetic methods on problems of practical interest. A noticeable characteristic of the algorithms implemented in these solvers is to only compute approximate solutions.

We explain this by making a comparison with linear programming. There are two competitive methods to optimize a linear objective under linear constraints: the interior point and the simplex algorithms. The interior point algorithm starts from some initial point and performs steps towards an optimal value. These iterations converge to the optimum but not in finitely many steps and have to be stopped at some point, yielding an approximate answer. In contrast, the simplex algorithm exploits the fact that the feasible set is a polyhedra and that the optimum is achieved on one of its vertices. The number of vertices being finite, the optimum can be exactly reached after finitely many iterations. Unfortunately, this nice property does not hold for spectrahedra, the equivalent of polyhedra for semi-definite programming. Thus, all semi-definite programming solvers are based on the interior-point algorithm, or a variant thereof.

To illustrate the consequences of these approximate solutions, consider the proof of e ≤ c with e a complicated ground expression and c a constant. e ≤ c can be proved by exactly computing e, giving a constant c , and checking that c ≤ c. However, if e is only approximately computed: e ∈ [c -, c +], this is conclusive only when c + ≤ c. In particular, if e is equal to c, an exact computation is required. This inability to prove inequalities that are not satisfied with some margin is a well known property of numerical verification methods [START_REF] Rump | Verification methods: Rigorous results using floating-point arithmetic[END_REF] which can then be seen as a trade-off between completeness and computation cost.

The main point of this paper is that, despite their incompleteness, numerical verification methods remain an interesting option when they enable to practically solve problems for which other methods offer an untractable complexity. Our contributions are:

(1) a comparison of two sound semi-decision procedures for systems of non-linear constraints, which rely on off-the-shelf numerical optimization solvers, (2) an integration of these procedures in the Alt-Ergo SMT solver, (3) an experimental evaluation of our approach on a set of benchmarks coming from various application domains.

The rest of this paper is organized as follows: Section 2 gives a practical example of a polynomial problem, coming from control-command program verification, better handled by numerical methods. Section 3 is dedicated to preliminaries. It introduces basic concepts of sum of squares polynomials and semi-definite programming. In Section 4, we compare two methods to derive sound solutions to polynomial problems from approximate answers of semi-definite programming solvers. Section 5 provides some implementation details and discuss experimental results. Finally, Section 6 concludes with some related and future works.

Example: Control-Command Program Verification

Control-command programs usually iterate linear assignments periodically over time. These assignments take into account a measure (via some sensor) of the state of the physical system to control (called plant by control theorists) to update an internal state and eventually output orders back to the physical system (through some actuator). Figure 1 gives an example of such an update, in0 being the input and s the internal state. The comments beginning by @ in the example are annotations in the ACSL language [START_REF] Cuoq | Frama-C -a software analysis perspective[END_REF]. They specify that before the execution of the function (requires) s must be a valid pointer satisfying the predicate inv and |in0| ≤ 1 must hold. Under these hypotheses, s still satisfies inv after executing the function (ensures).

To prove that the internal state remains bounded over any execution of the system, a quadratic polynomial5 can be used as invariant 6 . Checking the validity of these invariants then leads to arithmetic verification conditions (VCs) involving quadratic polynomials. Such VCs can for instance be generated from the program of Figure 1 by the Frama-C/Why3 program verification toolchain [START_REF] Cuoq | Frama-C -a software analysis perspective[END_REF][START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF]. Unfortunately, proving the validity of these VCs seem out of reach for current state-of-the-art SMT solvers. For instance, although Z3 [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF] can solve smaller examples with just two internal state variables in a matter of seconds, it ran for a few days on the three internal state variable example of Figure 1 without reaching a conclusion 7 . In contrast, our prototype can prove it in a fraction of second, as well as other examples with up to a dozen variables.

Verification of control-command programs is a good candidate for numerical methods. These systems are designed to be robust to many small errors, which means that the verified properties are usually satisfied with some margin. Thus, the incompleteness of numerical methods is not an issue for this kind of problems.

Preliminaries

Emptiness of Semi-algebraic Sets

Our goal is to prove that conjunctions of polynomial inequalities are unsatisfiable, that is, given some polynomials with real coefficients p 1 , . . . , p m ∈ R[x], we want to prove that there does not exist any assignment for the n variables x 1 , . . . , x n ∈ R n such that all inequalities p 1 (x 1 , . . . , x n) ≥ 0, . . . , p m (x 1 , . . . , x n) ≥ 0 hold simultaneously. In the rest of this paper, the notation p ≥ 0 (resp. p > 0) means that for all x ∈ R n , p(x) ≥ 0 (resp. p(x) > 0).

Theorem 1. If there exist polynomials r i ∈ R[x] such that - i r i p i > 0 and ∀i, r i ≥ 0 (1)
then the conjunction i p i ≥ 0 is unsatisfiable 8 .

Proof. Assume there exist x ∈ R n such that for all i, p i (x) ≥ 0. Then, since r i ≥ 0, we have r i (x) p i (x) ≥ 0 hence (i r i p i) (x) ≥ 0 which contradictsi r i p i > 0.

In fact, under some hypotheses 9 on the p i , the condition (1) is not only sufficient but also necessary, as stated by the Putinar's Positivstellensatz [27, §2.5.1]. Unfortunately, no practical bound is known on the degrees of the polynomials r i . In our prototype, we restrict the degrees of each r i to 10 d -deg(p i) where d := max i (deg(p i)), so that i r i p i is a polynomial of degree d. This is a first source of incompleteness, although benchmarks show that it already enables to solve many interesting problems.

The sum of squares (SOS) technique [START_REF] Bernard | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF] is an efficient way to numerically solve polynomial problems such as [START_REF] Abrial | The B-book -assigning programs to meanings[END_REF]. The next sections recall its main ideas.

Sum of Squares (SOS) Polynomials

A polynomial p ∈ R[x] is said to be SOS if there exist polynomials h i ∈ R[x] such that for all x, p(x) = i h 2 i (x).
Although not all non negative polynomials are SOS, being SOS is a sufficient condition to be non negative.

Example 1 (from [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF]).

Considering p(x 1 , x 2) = 2x 4 1 + 2x 3 1 x 2 -x 2 1 x 2 2 + 5x 4 2 , there exist h 1 (x 1 , x 2) = 1 √ 2 2x 2 1 -3x 2 2 + x 1 x 2 and h 2 (x 1 , x 2) = 1 √ 2 x 2 2 + 3x 1 x 2 such that p = h 2 1 + h 2 2 .
This proves that for all x 1 , x 2 ∈ R, p(x 1 , x 2) ≥ 0.

8 Or, with different words, the semi-algebraic set {x ∈ R n | ∀i, pi(x) ≥ 0} is empty. 9 For instance, when one of the sets {x ∈ R n | pi(x) ≥ 0} is bounded. Any polynomial p of degree 2d (a non negative polynomial is necessarily of even degree) can be written as a quadratic form in the vector of all monomials of degree less or equal to d:

p(x) = z T Q z (2)
where z = 1, x 1 , . . . , x n , x 1 x 2 , . . . , x d n T and Q is a constant symmetric matrix.

Example 2. For p(x 1 , x 2) = 2x 4 1 + 2x 3 1 x 2 -x 2 1 x 2 2 + 5x 4 2 , we have 11 p(x 1 , x 2) =   x 2 1 x 2 2 x 1 x 2   T 
 q 11 q 12 q 13 q 12 q 22 q 23 q 13 q 23 q 33

    x 2 1 x 2 2 x 1 x 2   = q 11 x 4 1 + 2q 13 x 3 1 x 2 + (q 33 + 2q 12)x 2 1 x 2 2 + 2q 23 x 1 x 3 2 + q 22 x 4 2 .
Thus q 11 = 2, 2q 13 = 2, q 33 + 2q 12 = -1, 2q 23 = 0 and q 22 = 5. Two possible examples for the matrix Q are shown below:

Q =   2 1 1 1 5 0 1 0 -3   , Q =   2 -3 1 -3 5 0 1 0 5   .
The polynomial p is then SOS if and only if there exists a positive semi-definite matrix

Q satisfying (2). A matrix Q is called positive semi-definite, noted Q 0, if, for all vector x, x T Q x ≥ 0. Just as a scalar q ∈ R is non negative if and only if q = r 2 for some r ∈ R (typically r = √ q), Q 0 if and only if Q = R T R for some matrix R (then, for all x, x T Qx = (Rx) T (Rx) = Rx 2 2 ≥ 0). The vector Rz is then a vector of polynomials h i such that p = i h 2 i . Example 3. In the previous example, the matrix Q is not positive semi-definite (for x = [0, 0, 1] T , x T Q x = -3). In contrast, Q 0 as Q = R T R with R = 1 √ 2 2 -3 1 0 1 3
giving the decomposition of Example 1.

Semi-Definite Programming (SDP)

Given symmetric matrices C, A 1 , . . . , A m ∈ R s×s and scalars a 1 , . . . , a m ∈ R, the following optimization problem is called semi-definite programming minimize tr(CQ)

subject to tr(A 1 Q) = a 1 . . . tr(A m Q) = a m Q 0 (3
)
where the symmetric matrix Q ∈ R s×s is the variable, tr(M) = i M i,i denotes the trace of the matrix M and Q 0 means Q positive semi-definite.

Remark 1. Since the matrices are symmetric, tr(AQ) = tr(A

T Q) = i,j A i,j Q i,j .
The constraints tr(AQ) = a are then affine constraints between the entries of Q.

As we have just seen in Section 3.2, existence of a SOS decomposition amounts to existence of a positive semi-definite matrix satisfying a set of affine constraints, that is a solution of a semi-definite program. Semi-definite programming is a convex optimization problem for which there exist efficient numerical solvers [START_REF] Boyd | Convex optimization[END_REF][START_REF] Vandenberghe | Semidefinite programming[END_REF], thus enabling to solve problems involving polynomial inequalities over the reals.

Parametric Problems

Up to now, we have only seen how to check whether a given polynomial p with fixed coefficients is SOS (which implies its non negativeness). However, according to Section 3.1, we need to solve problems in which polynomials p have coefficients that are not fixed but parameters. One of the great strengths of SOS programming is its ability to solve such problems.

An unknown polynomial p ∈ R[x] of degree d with n variables can be written

p = α1+•••+αn≤d p α x α1 1 . . . x αn n
where the p α are scalar parameters. A constraint such as r i ≥ 0 in (1) can then be replaced by r i is SOS, that is:

∃ Q 0, r i = z T Q z,
which is a set of affine equalities between the coefficients of Q and the coefficients r i,α of r i . This can be cast as a semi-definite programming problem 12 . Thus, problems with unknown polynomials p, as the one presented in Section 3.1, can be numerically solved through SOS programming.

Remark 2 (Complexity). The number s of monomials in n variables of degree less than or equal to d, i.e., the size of the vector z in the decomposition p(x) = z T Q z, is s := n+d d . This is polynomial in n for a fixed d (and vice versa). In practice, current SDP solvers can solve problems where s is about a few hundreds. This makes the SOS relaxation tractable for small values of n and d (n ∼ 10 and d ∼ 3, for instance). Our benchmarks indicate this is already enough to solve some practical problems that remain out of reach for other methods.

Numerical Verification of SOS

According to Section 3.1, a conjunction of polynomial constraints can be proved unsatisfiable by exhibiting other polynomials satisfying some constraints. Section 3.4 shows that such polynomials can be efficiently found by some numerical optimization solvers. Unfortunately, due to the algorithms they implement, we cannot directly trust the results of these solvers. This section details this issue and reviews two a-posteriori validation methods, with their respective weaknesses.

Approximate Solutions from SDP Solvers

In practice, the matrix Q returned by SDP solvers upon solving an SDP problem (3) does not precisely satisfy the equality constraints, due both to the algorithms used and their implementation with floating-point arithmetic. Therefore, although the SDP solver returns a positive answer for a SOS program, this does not constitute a valid proof that a given polynomial is SOS.

Most SDP solvers start from some Q 0 not satisfying the equality constraints (for instance the identity matrix) and iteratively modify it in order to reduce the distance between tr(A i Q) and a i while keeping Q positive semi-definite. This process is stopped when the distance is deemed small enough. This final distance is called the primal infeasibility, and is one of the result quality measures displayed by SDP solvers 13 . Therefore, we do not obtain a Q satisfying tr

(A i Q) = a i but rather tr(A i Q) = a i + i for some small i such that | i | ≤ .

Proving Existence of a Nearby Solution

This primal infeasibility has a simple translation in terms of our original SOS problem. The polynomial equality p = z T Q z is encoded as one scalar constraint tr(A i Q) = a i for each coefficient a i of the polynomial p (c.f., Examples 2). coefficients of the polynomials p and z T Q z differ by some i and, since | i | ≤ , there exists a matrix E ∈ R s×s such that, for all i, j, |E i,j | ≤ and

p = z T (Q + E) z. (4)
Proving that Q + E 0 is now enough to prove that the polynomial p is SOS, hence non negative. A sufficient condition is to check14 Q -s I 0. As seen in Section 3.2, checking that a matrix M is positive semi-definite amounts to exhibiting a matrix R such that M = R T R. The Cholesky decomposition algorithm [45, §1.4] computes such a matrix R. Given a matrix M ∈ R s×s , it attempts to compute R such that M = R T R and when M is not positive semi-definite, it fails by attempting to take the square root of a negative value or perform a division by zero.

Due to rounding errors, a simple floating-point Cholesky decomposition would produce a matrix R not exactly satisfying the equality M = R T R, hence not proving M 0. However, these rounding errors can be bounded by a matrix B so that, when the floating-point Cholesky decomposition of M -B succeeds, then M 0 is guaranteed to hold. Moreover, B can be easily computed from the matrix M and the characteristics of the floating-point format used [START_REF] Rump | Verification of positive definiteness[END_REF].

To sum up, the following verification procedure can prove that a given polynomial p is SOS 15 .

Let Q ∈ R s×s be the approximate solution returned by an SDP solver for the problem p = z T Q z ∧ Q 0. Then, 1. Compute a bound on the coefficients of p -z T Q z. 2. Check that Q -s I 0.

Complexity Note that step 1 can be achieved using floating-point interval arithmetic in Θ(s 2) operations while the Cholesky decomposition in step 2 requires Θ(s 3) floating-point operations. Thus, the whole verification method takes Θ(s 3) floating-point operations which, in practice, constitutes a very small overhead compared to the time required by the SDP solver to compute Q.

Soundness It is interesting to notice that the soundness of the method does not rely on the SDP solver. Thanks to this pessimistic method, the trusted code-base remains small, and efficient off-the-shelf solvers can be used as untrusted oracles. The method was even verified [START_REF] Martin | A reflexive tactic for polynomial positivity using numerical solvers and floating-point computations[END_REF][START_REF] Roux | Formal proofs of rounding error bounds -with application to an automatic positive definiteness check[END_REF] within the Coq proof assistant.

Incompleteness Numerical verification methods can only prove inequalities satisfied with some margin. Here, if the polynomial p to prove SOS (hence p ≥ 0) reaches the value 0, this usually means that the feasible set of the SDP problem Q p = z T Q z, Q 0 has an empty relative interior (i.e., there is no point Q in this set such that a small ball centered on Q is included in {M | M 0}) and the method does not work, as illustrated on Figure 2. This is a second source of incompleteness of our approach, that adds to the limitation of degrees of polynomials searched for, as presented in Section 3.1. Remark 3. The floating-point Cholesky decomposition is theoretically a third source of incompleteness. However, it is negligible as the entries of the bound matrix B are, in practice, orders of magnitude smallers than the accuracy of the SDP solvers [START_REF] Roux | Validating numerical semidefinite programming solvers for polynomial invariants[END_REF].

{M | M 0} { Q + E } Q M p = z T M z

Rounding to an Exact Rational Solution

The most common solution to verify results of SOS programming is to round the output of the SDP solver to an exact rational solution [START_REF] Harrison | Verifying nonlinear real formulas via sums of squares[END_REF][START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients[END_REF][START_REF] Monniaux | On the generation of positivstellensatz witnesses in degenerate cases[END_REF].

To sum up, the matrix Q returned by the SDP solver is first projected to the subspace M p = z T M z then all its entries are rounded to rationals with small denominators (first integers, then multiples of 1 2 , 1 3 , . . .) 16 . For each rounding, positive semi-definiteness of the resulting matrix Q is tested using a complete check, based on a LDLT decomposition17 [START_REF] Harrison | Verifying nonlinear real formulas via sums of squares[END_REF]. The rationale behind this choice is that problems involving only simple rational coefficients can reasonably be expected to admit simple rational solutions 18 .

Using exact solutions potentially enables to verify SDP problems with empty relative interiors. This means the ability to prove inequalities without margin, to distinguish strict and non-strict inequalities and even to handle (dis)equalities. All of this nevertheless requires a different relaxation scheme than [START_REF] Abrial | The B-book -assigning programs to meanings[END_REF].

Example 4. To prove x 1 ≥ 0 ∧ x 2 ≥ 0 ∧ q 1 = 0 ∧ q 2 = 0 ∧ p > 0 unsatisfiable, with q 1 := x 2 1 + x 2 2 -x 2 3 -x 2 4
-2, q 2 := x 1 x 3 + x 2 x 4 and p := x 3 x 4 -x 1 x 2 , one can look for polynomials l 1 , l 2 and SOS polynomials s 1 , . . . , s 8 such that

l 1 q 1 + l 2 q 2 + s 1 + s 2 p + s 3 x 1 + s 4 x 1 p + s 5 x 2 + s 6 x 2 p + s 7 x 1 x 2 + s 8 x 1 x 2 p + p = 0.
Rounding the result of an SDP solver yields

l 1 = -1 2 (x 1 x 2 -x 3 x 4), l 2 = -1 2 (x 2 x 3 + x 1 x 4), s 2 = 1 2 x 2 3 + x 2 4 , s 7 = 1 2 x 2 1 + x 2 2 + x 2 3 + x 2 4
and s 1 = s 3 = s 4 = s 5 = s 6 = s 8 = 0. This problem has no margin, since when replacing p > 0 by p ≥ 0, (x 1 , x 2 , x 3 , x 4) = (0, √ 2, 0, 0) becomes a solution.

Under some hypotheses, this relaxation scheme is complete, as stated by a theorem from Stengle [27, Th. 2.11]. However, similarly to Section 3.1, no practical bound is known on the degrees of the relaxation polynomials.

Complexity The relaxation scheme involves products of all polynomials appearing in the original problem constraints. The number of such products, being exponential in the number of constraints, limits the scalability of the approach.

Moreover, to actually enjoy the benefits of exact solutions, the floating-point Cholesky decomposition introduced in Section 4.2 cannot be used and has to be replaced by an exact rational decomposition 19 . Computing decompositions of large matrices can then become particularly costly as the size of the involved rationals can blow up exponentially during the computation.

Soundness

The exact solutions make for an easy verification. The method is thus implemented in the HOL Light [START_REF] Harrison | Verifying nonlinear real formulas via sums of squares[END_REF] and Coq [START_REF] Besson | Fast reflexive arithmetic tactics the linear case and beyond[END_REF] proof assistants.

Incompleteness Although this verification method can work for some SDP problems with an empty relative interior, the rounding heuristic is not guaranteed to provide a solution. In practice, it tends to fail on large problems or problems whose coefficients are not rationals with small numerators and denominators.

Experimental Results

The OSDP Library

The SOS to SDP translation described in Section 3, as well as the validation methods described in Section 4 have been implemented in our OCaml library OSDP. This library offers a common interface to the SDP solvers 20 Csdp [START_REF] Borchers | A C library for semidefinite programming[END_REF], Mosek [START_REF] Mosek Aps | The MOSEK C optimizer API manual Version 7[END_REF] and SDPA [START_REF] Yamashita | A high-performance software package for semidefinite programs: Sdpa 7[END_REF], giving simple access to SOS programming in contexts where soundness matters, such as SMT solvers or program static analyzers. It is composed of 5 kloc of OCaml and 1 kloc of C (interfaces with SDP solvers) and is available under LGPL license at https://cavale.enseeiht.fr/osdp/.

Integration of OSDP in Alt-Ergo

Alt-Ergo [START_REF] Bobot | Alt-Ergo, version 0.99.1[END_REF] is a very effective SMT solver for proving formulas generated by program verification frameworks. It is used as a back-end of different tools and in various settings, in particular via the Why3 [START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF] platform. For instance, the Frama-C [START_REF] Cuoq | Frama-C -a software analysis perspective[END_REF] suite relies on it to prove formulas generated from C code, and the SPARK [START_REF] Hoang | SPARK 2014 and gnatprove -A competition report from builders of an industrial-strength verifying compiler[END_REF] toolset uses it to check formulas produced from Ada programs. It is also used by EasyCrypt [START_REF] Barthe | Easycrypt: A tutorial[END_REF] to prove formulas issued from cryptographic protocols verification, from the Cubicle [10] model-checker, and from Atelier-B [START_REF] Abrial | The B-book -assigning programs to meanings[END_REF].

Alt-Ergo's native input language is a polymorphic first-order logic à la ML modulo theories, a very suitable language for expressing formulas generated in the context of program verification. Its reasoning engine is built on top of a SAT solver that interacts with a combination of decision procedures to look for a model for the input formula. Universally quantified formulas, that naturally arise in program verification, are handled via E-matching techniques. Currently, Alt-Ergo implements decision procedures for the free theory of equality with uninterpreted symbols, linear arithmetic over integers and rationals, fragments of non-linear arithmetic, enumerated and records datatypes, and the theory of associative and commutative function symbols (hereafter AC).

Figure 3 shows the simplified architecture of arithmetic reasoning framework in Alt-Ergo, and the OSDP extension. The first component in the figure is a completion-like algorithm AC(LA) that reasons modulo associativity and commutativity properties of non-linear multiplication, as well as its distributivity over addition 21 . AC(LA) is a modular extension of ground AC completion with a decision procedure for reasoning modulo equalities of linear integer and rational 20 Csdp is used for the following benchmarks as it provides the best results. 21 Addition and multiplication by a constant is directly handled by the LA module.

Fig. 3: Alt-Ergo's arithmetic reasoning framework with OSDP integration. arithmetic [START_REF] Sylvain Conchon | Canonized rewriting and ground AC completion modulo Shostak theories : Design and implementation[END_REF]. It builds and maintains a convergent term-rewriting system modulo arithmetic equalities and the AC properties of the non-linear multiplication symbol. The rewriting system is used to update a union-find data-structure.

The second component is an Interval Calculus algorithm that computes bounds of (non-linear) terms: the initial non-linear problem is first relaxed by abstracting non-linear parts, and a Fourier-Motzkin extension 22 is used to infer bounds on the abstracted linear problem. In a second step, axioms of non-linear arithmetic are internally applied by intervals propagation. These two steps allow to maintain a map associating the terms of the problems (that are normalized w.r.t. the union-find) to unions of intervals.

Finally, the last part is the SAT solver that dispatches equalities and inequalities to the right component and performs case-split analysis over finite domains. Of course, this presentation is very simplified and the exact architecture of Alt-Ergo is much more complicated.

The integration of OSDP in Alt-Ergo is achieved via the extension of the Interval Calculus component of the solver, as shown in Figure 3: terms that are polynomials, and their corresponding interval bounds, form the problem (1) which is given to OSDP. OSDP attempts to verify its result with the method of Section 4.2. When it succeeds, the original conjunction of constraints is proved unsat. Otherwise, (dis)equalities are added and OSDP attempts a new proof by the method of Section 4.3. In case of success, unsat is proved, otherwise satisfiability or unsatisfiability cannot be deduced. Outlines of the first algorithm are given in Figure 4 whereas the second one follows the original implementation [START_REF] Harrison | Verifying nonlinear real formulas via sums of squares[END_REF].

Our modified version of Alt-Ergo is available under CeCILL-C license at https://cavale.enseeiht.fr/osdp/aesdp/.

Incrementality In the SMT context, our theory solver is often succesively called with the same problem with a few additional constraints each time. It would then be interesting to avoid doing the whole computation again when a constraint is added, as is usually done with the simplex algorithm for linear arithmetic.

Some SDP solvers do offer to provide an initial point. Our experiments however indicated that this significantly speeds up the computation only when

p 1 := (p1 -a1)(b1 -p1), . . ., p k := (p k -a k)(b k -p k) // or p i := pi -ai when bi = +∞ or p i := bi -pi when ai = -∞ d := max i { deg(p i) } encode - k i=1 rip i is SOS, r1 is SOS, . . . r k is SOS as an SDP problem -rip i = z T 0 Q0 z0, r1 = z T 1 Q1 z1, . . ., r k = z T k Q k z k with deg(ri) := 2 d-deg(p i) 2
call an SDP solver and retrieve r1, r k and Q0, Q1, . . ., Q k

overapproximate i := max α |cα| ri -z T i Q1 zi = α cαx α if 1 ∈ z0 ∧ Q0 -#|z0| 0I 0 ∧ Q1 -#|z1| 1I 0 ∧ . . . ∧ Q k -#|z k | k I 0 then return Unsat else return Unknown end if
Fig. 4: Semi-decision procedure to prove

k i=1 p i ∈ [a i , b i] unsat. #|z|
is the size of the vector z and 0 is tested with a floating-point Cholesky decomposition [START_REF] Rump | Verification of positive definiteness[END_REF]. the provided point is extremely close to the solution. A bad initial point could even slow down the computation or, worse, make it fail. This is due to the very different nature of the interior point algorithms, compared to the simplex, and their convergence properties [START_REF] Boyd | Convex optimization[END_REF]Part III]. Thus, speed ups could only be obtained when the previous set of constraints was already unsatisfiable, ı.e. a useless case.

Small Conflict Sets When a set of constraints is unsatisfiable, some of them may not play any role in this unsatisfiability. Returning a small subset of unsatisfiable constraints can help the underlying SAT solver. Such useless constraints can easily be identified in (1) when the relaxation polynomial r i is 0. A common heuristic to maximize their number is to ask the SDP solver to minimize (the sum of) the traces of the matrices Q i .

When using the exact method of Section 4.3, the appropriate r i are exactly 0. Things are not so clear when using the approximate method of Section 4.2 since the r i are only close to 0. A simple solution is to rank the r i by decreasing trace of Q i before performing a dichotomy search for the smallest prefix of this sequence proved unsatisfiable. Thus, for n constraints, log(n) SDPs are solved.

Experimental Results

We compared our modified version of Alt-Ergo (v. 1.30) to the SMT solvers ran in both the QF NIA and QF NRA sections of the last SMT-COMP. We ran the solvers on two sets of benchmarks. The first set comes from the QF NIA and QF NRA benchmarks for the last SMT-COMP. The second set contains four subsets. The C problems are generated by Frama-C/Why3 [START_REF] Cuoq | Frama-C -a software analysis perspective[END_REF][START_REF] Filliâtre | Why3 -Where Programs Meet Provers[END_REF] from control-command C programs such as the one from Section 2, with up to a dozen variables [START_REF] Cox | A Bit Too Precise? Bounded Verification of Quantized Digital Filters[END_REF][START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF]. To distinguish difficulties coming from the handling of the memory model of C, for which Alt-Ergo was particularly designed, and from the actual non-linear arithmetic problem, the quadratic benchmarks contain simplified versions of the C problems with a purely arithmetic goal. To demonstrate that the interest of our approach is not limited to this initial target application, the flyspeck benchmarks come from the benchmark sets of dReal 23 [18] and global-opt are global optimization benchmarks [START_REF] César | Formalization of Bernstein Polynomials and Applications to Global Optimization[END_REF]. All these benchmarks are available at https://cavale.enseeiht.fr/osdp/aesdp/. Since our solver only targets unsat proofs, benchmarks known sat were removed from both sets. All experiments were conducted on an Intel Xeon 2.30 GHz processor, with individual runs limited to 2GB of memory and 900 seconds. The results are presented in Tables 1, 2 and 3. For each subset of problems, the first column indicates the number of problems that each solver managed to prove unsat and the second presents the cumulative time (in seconds) for these problems.AE is the original Alt-Ergo, AESDP our new version, AESDPap the same but using only the approximate method of Section 4.2 and AESDPex using only the exact method of Section 4.3. All solvers were run with default options, except CVC4 which was run with all its --nl-ext* options. As seen in Table 1 and 2, despite an improvement over Alt-Ergo alone, our development is not competitive with state-of-the-art solvers on the QF NIA and QF NRA benchmarks. In fact, the set of problems solved by any of our Alt-Ergo versions is strictly included in the set of problems solved by at least one of the other solvers. The most commonly observed source of failure for AESDPap here comes from SDPs with empty relative interior. Although AESDPex can handle such problems, it is impaired by its much higher complexity.

However good results are obtained on the more numerical24 second set of benchmarks. In particular, control-command programs with up to a dozen variables are verified while other solvers remain limited to two variables. Playing a key point in this result, the inequalities in these benchmarks are satisfied with some margin. For control command programs, this comes from the fact that they are designed to be robust to many small errors. This opens new perspectives for the verification of functional properties of control-command programs, particularly in the aerospace domain, our main application field at ONERA 25 .

Although solvers such as dReal, based on branch and bound with interval arithmetic could be expected to perform well on these numerical benchmarks, Table 3: Experimental results on benchmarks from [START_REF] Cox | A Bit Too Precise? Bounded Verification of Quantized Digital Filters[END_REF][START_REF] Gao | dreal: An SMT solver for nonlinear theories over the reals[END_REF][START_REF] César | Formalization of Bernstein Polynomials and Applications to Global Optimization[END_REF][START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF]. dReal solves less benchmarks than most other solvers. Geometrically speaking, the C benchmarks require to prove that an ellipsoid is included in a slightly larger one, i.e., the borders of both ellipsoids are close from one another. This requires to subdivide the space between the two borders in many small boxes so that none of them intersects both the interior of the first ellipsoid and the exterior of the second one. Whereas this can remain tractable for small dimensional ellipsoids, the number of required boxes grows exponentially with the dimension, which explains the poor results of dReal. This issue is unfortunately shared, to a large extent, by any linear relaxation, including more elaborate ones [START_REF] Maréchal | Polyhedral approximation of multivariate polynomials using handelman's theorem[END_REF].

Related Work and Conclusion

Related work. Monniaux and Corbineau [START_REF] Monniaux | On the generation of positivstellensatz witnesses in degenerate cases[END_REF] improved the rounding heuristic of Harrison [19]. This has unfortunately no impact on the complexity of the relaxation scheme. Platzer et al. [START_REF] Platzer | Real world verification[END_REF] compared their early versions with the symbolic methods based on quantifier elimination and Gröbner basis. An intermediate solution is offered by Magron et al. [START_REF] Victor Magron | Formal proofs for nonlinear optimization[END_REF] but only handling a restricted class of parametric problems. Branch-and-bound and interval arithmetic constitute another numerical approach to non-linear arithmetic, as implemented in the SMT solver dReal by Gao et al. [START_REF] Gao | δ-complete decision procedures for satisfiability over the reals[END_REF][START_REF] Gao | dreal: An SMT solver for nonlinear theories over the reals[END_REF]. These methods easily handle non-linear functions such as the trigonometric functions sin or cos, not yet considered in our prototype 26 . In the case of polynomial inequalities Muñoz and Narkawicz [START_REF] César | Formalization of Bernstein Polynomials and Applications to Global Optimization[END_REF] offer Bernstein polynomials as an improvement to simple interval arithmetic.

Finally, VSDP [START_REF] Härter | VSDP: verified semidefinite programming[END_REF][START_REF] Jansson | Rigorous error bounds for the optimal value in semidefinite programming[END_REF] is a wrapper to SDP solvers offering a similar method to the one of Section 4.2. Moreover, an implementation is also offered by Löfberg [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF] in the popular Matlab interface Yalmip but remains unsound, since all computations are performed with floating-point arithmetic, ignoring rounding errors.

Using convex optimization into an SMT solver was already proposed by Nuzzo et al. [START_REF] Nuzzo | Calcs: SMT solving for non-linear convex constraints[END_REF][START_REF] Shoukry | SMC: satisfiability modulo convex optimization[END_REF]. However, they intentionally made their solver unsound in order to lean toward completeness. While this can make sense in a bounded model checking context, soundness is required for many applications, such as program verification. Moreover, this proposal was limited to convex formulas. Although this enables to provide models for satisfiable formulas, while only unsat formulas are considered in this paper, and whereas this seems a perfect choice for bounded model checking applications, non convex formulas are pervasive in applications such as program verification 27 .

The use of numerical off-the-shelf solvers in SMT tools has also been studied in the framework of linear arithmetic [START_REF] Faure | SAT modulo the theory of linear arithmetic: Exact, inexact and commercial solvers[END_REF][START_REF] Monniaux | On using floating-point computations to help an exact linear arithmetic decision procedure[END_REF]. Some comparison with state-of-the-art exact simplex procedures show mitigated results [START_REF] Caminha | Experiments on the feasibility of using a floating-point simplex in an SMT solver[END_REF] but better results can be obtained by combining both approaches [START_REF] King | Leveraging linear and mixed integer programming for SMT[END_REF].

Conclusion.

We presented a semi-decision procedure for non-linear polynomial constraints over the reals, based on numerical optimization solvers. Since these solvers only compute approximate solutions, a-posteriori soundness checks were investigated. Our first prototype implemented in the Alt-Ergo SMT solver shows that, although the new numerical method does not strictly outperform state-ofthe-art symbolic methods, it enables to solve practical problems that are out of reach for other methods. In particular, this is demonstrated on the verification of functional properties of control-command programs. Such properties are of significant importance for critical cyber-physical systems.

It could thus be worth studying the combination of symbolic and numerical methods in the hope to benefit from the best of both worlds.

Fig. 1 :

 1 Fig. 1: Example of a typical control-command code in C.

10

 More precisely to 2 d-deg(p i) 2 as deg(ri) is necessarily even since ri ≥ 0.

Fig. 2 :

 2 Fig. 2: When the feasible set has an empty interior, the subspace M p = z T M z is tangent to {M | M 0}. Thus the ball { Q + E } intersecting the subspace almost never lies in {M | M 0}, making the proof fail.

Table 1 :

 1 Experimental results on benchmarks from QF NIA.

			AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3
	AProVE (746)	unsat 103 time 7387 23968 319	359 7664	318 22701 10821 3879 1982 5156 586 185 709 252
	calypto (97)	unsat 92 time 357	88 679	88 489	89 816	87 7	89 754 409 613 97 95
	LassoRanker (102)	unsat 57 time 9	62 959	64 274	63 878	72 27	20 12 595 2538 84 84
	LCTES (2)	unsat time	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0
	leipzig (5)	unsat time	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0
	mcm (161)	unsat time	0 0	0 0	0 0	0 0 2489 4	0 0	0 0 2527 4
	UltimateAutom (7)	unsat time 0.35 1	7 0.73	7 0.62	7 0.69 0.03 6	1 7.22 0.04 0.31 7 7
	UltimateLasso (26)	unsat 26 time 118	26 212	26 126	26 215	4 66	26 177	26 6	26 21
	total (1146)	unsat 279 time 7872 25818 502	544 8553	503 24611 13411 4829 2993 10855 780 321 924 468

Table 2 :

 2 Experimental results on benchmarks from QF NRA.

			AE AESDP AESDPap AESDPex CVC4 Smtrat Yices2 Z3
	Sturm-MBO (300)	unsat 155 time 12950 13075 155	155 13053	155 12973 1403 285	285 620	2 0	47 21
	Sturm-MGC (7)	unsat time	0 0	0 0	0 0	0 0	1 7	1 0	0 0	7 0
	Heizmann (68)	unsat time	0 0	0 0	0 0	0 0	1 16	1 0 2083 11	3 41
	hong (20)	unsat time	1 0	20 28	20 24	20 27	20 1	20 0	8 240	9 6
	hycomp (2494)	unsat 1285 time 15351 15857 1266	1271 16080	1265 2184 1588 2182 2201 14909 208 13784 1241 4498
	keymaera (320)	unsat 261 time 36	291 356	278 97	291 360	249 4	307 13	270 318 359 2
	LassoRanker (627)	unsat time	0 0	0 0	0 0	0 441 0 32786	0 0 30835 1733 236 119
	meti-tarski (2615)	unsat 1882 time 10	2273 91	2267 65	2241 1643 2520 2578 2611 73 804 3345 2027 337
	UltimateAutom (13)	unsat time	0 0	0 0	0 0	0 0 0.52 5	0 0 57.19 19.23 12 13
	zankl (85)	unsat time 1.00 15.46 14 24	24 16.09	24 15.67 9.40 13.47 7.22 0.43 24 19 32 27
	total (6549)	unsat 3571 time 28348 29423 4029	4015 29334	3996 4853 4740 5331 5355 28357 35239 17775 36849 6658

For instance, the three variables polynomial in inv in Figure1.

Control theorists call these invariants sublevel sets of a quadratic Lyapunov function. Such functions exist for linear systems if and only if they do not diverge.

This is the case even on a simplified version with just arithmetic constructs, i.e., expurgated of all the reasoning about pointers and the C memory model.

All monomials of p are of degree 4, so z does not need to contain 1, x1 and x2.

By encoding the ri,α ∈ R as r + i,α -r - i,α with r + i,α , r - i,α ≥ 0 and putting the new variables in a block diagonal matrix variable Q := diag(Q, . . . , r + i,α , r - i,α , . . .).

Typically, ∼ 10 -8 .

In order to get good likelihood for this to hold, we ask the SDP solver for Q-2s I 0 rather than Q 0, as solvers often return matrices Q slightly not positive definite.

It is worth noting that the value reported by the solver for , being just computed with floating-point arithmetic, cannot be formally trusted. It must then be recomputed.

In practice, to ensure that the rounded matrix Q still satisfy the equality p = z T Q z, a dual SDP encoding is used, that differs from the encoding introduced in Section 3. This dual encoding is also called image representation[36, §6.1].

The LDLT decomposition expresses a positive semi-definite matrix M as M = LDL T with L a lower triangular matrix and D a diagonal matrix.

However, there exist rational SDP problems that do not admit any rational solution.

The Cholesky decomposition, involving square roots, cannot be computed in rational arithmetic, however its LDLT variant can.

We can also use a simplex-based algorithm[START_REF] Bobot | A Simplex-Based Extension of Fourier-Motzkin for Solving Linear Integer Arithmetic[END_REF] for bounds inference.

Removing problems containing functions sin and cos, not handled by our tool.

Involving polynomials with a few dozen monomials or more and whose coefficients are not integers or rationals with small numerators and denominators.

Polynomial approximations such as Taylor expansions should be investigated.

Typically, to prove a convex loop invariant I for a loop body f , one need to prove I ⇒ I(f), that is ¬I ∨ I(f) which is likely non convex (¬I being concave).

This work has been partially supported by the French ANR projects ANR-12-INSE-0007 Cafein and ANR-14-CE28-0020 Soprano and the project SEFA IKKY.

Data Availability Statement and Acknowledgements. The source code, benchmarks and instructions to replicate the results of Section 5 are available in the figshare repository: https://doi.org/10.6084/m9.figshare.5900260

The authors thank Rémi Delmas for insightful discussions and technical help, particularly with the dReal solver.