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S U M M A R Y
Tsunamis propagating along the ocean surface generate internal gravity waves which can
be detected in the atmosphere and ionosphere using airglow or total electron content (TEC)
measurements. Since the late 1960s, the summation of the seismic normal modes of the
Earth allows to simulate the seismic ground motions measured by seismometers. We present a
detailed case study of the same technique extended to the whole solid Earth–ocean–atmosphere
system and show how the extended normal modes can be used to retrieve the tsunami signature
not only in the ocean but also in the atmosphere and the ionosphere. On the example of the
tsunami triggered by the 2012 Mw = 7.8 Haida Gwaii earthquake, we illustrate the coupling
mechanisms under play and investigate in details the propagation properties of Lamb modes,
atmospheric gravity modes and tsunami modes. The computed normal modes show a resonance
between the tsunami modes and the atmospheric gravity modes at specific frequencies: 1.5, 2
and 2.5 mHz. We highlight that only the 1.5 mHz resonance of the tsunami modes can survive
up to the ionospheric heights. Other remarkable features are also presented, such as the arrival
of fundamental mode gravity waves prior to the (extended in the atmosphere) tsunami wave
and the increased ocean/atmosphere coupling efficiency for larger ocean depths and during
daytime. At last, for the purpose of validating the technique, we apply it to three real tsunami
events and evaluate how well we quantitatively reconstruct the main features of the sea level
anomaly measured by Deep-ocean Assessment and Reporting of Tsunamis buoys and the
global positioning system (GPS)-derived TEC perturbation.

Key words: Ionosphere/atmosphere interactions; Theoretical seismology; Tsunami warning;
Wave propagation.

1 I N T RO D U C T I O N

Tsunamis are long-period oceanic gravity waves propagating over
large distances (Satake 2002). They are generated by submarine
earthquakes, landslides, eruptions or meteorite impacts. Since the
2004 megathrust earthquake off Sumatra and subsequent giant
tsunami, the efforts in tsunami monitoring, originally focused in the
Pacific area, have moved toward worldwide coverage by tsunami
real-time warning systems (Titov et al. 2005). Real-time sea level
sensors include the DART (Deep-ocean Assessment and Report-
ing of Tsunamis) buoy system designed to accurately measure the
tsunami wave amplitude to within 3 cm despite their long horizontal
wavelength (up to 200 km). A dense tsunami detection and monitor-
ing system covering all the Earth’s oceans remains costly, however,
as DART systems are complex to install and require frequent mainte-
nance. Complementary systems are therefore necessary, especially
should the DART buoys be temporarily down in critical areas at
the time of the tsunami wave’s arrival. While regional geodetic

and seismic networks can provide such additional strategies for lo-
cal tsunami warning systems (Melgar & Bock 2015), it has also
been suggested that tsunami monitoring and warning systems could
be complemented and enhanced using ionospheric signals (Peltier
& Hines 1976) measured by the global positioning system (GPS;
Occhipinti et al. 2008; Rolland et al. 2010; Kamogawa et al. 2016)
and even over-the-horizon radar systems (Coı̈sson et al. 2011). In-
deed, perturbations in ionospheric signals can be measured even if
the tsunami has an amplitude of only a few centimetres. Tsunami
warning systems, however, require not only detection of the iono-
spheric signal but also a measurement processing which produces
the sea level height with an acceptable error and a high success rate.

In the 1970s, Hines (1972) and Peltier & Hines (1976) suggested
that events originated in the Earth, such as earthquakes, tsunamis
or volcanic eruptions, trigger internal gravity waves (IGWs) that
produce detectable signatures in the ionosphere. Indeed, the conser-
vation of kinetic energy and exponential decrease in atmospheric
density mean that these atmospheric waves are strongly amplified.
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Thus, even if the amplitude of the tsunami wave is small compared
to ocean swell wave, amplitudes at ionospheric sounding heights
(from 250 to 350 km) are 104–105 larger than those at ground
level.

Using GPS-derived total electron content (TEC) data from the
dense Japanese GPS network, Artru et al. (2005) were the first to
observe an ionospheric disturbance associated with a tsunami, trig-
gered by the 2001 June 23 Peru earthquake measured at Mw = 8.2.
This novel observation was rapidly followed by the detection of
similar GPS signals associated with other tsunamis (Lognonné
et al. 2006; Rolland et al. 2010; Galvan et al. 2011; Grawe &
Makela 2015), and initiated modeling efforts. Using a 3-D tsunami
wavefield as input to a coupling model, Occhipinti et al. (2006)
reconstructed the TEC ionospheric signature of the 2004 Sumatra
tsunami extracted from the Jason-1 and the Topex/Poseidon satel-
lites altimetry data. Occhipinti et al. (2008) then highlighted the
directivity effect of the tsunami’s direction of propagation with
respect to the geomagnetic field orientation on the ionospheric sig-
nature amplitude. This modeling approach was then applied to the
Tohoku tsunami (Occhipinti et al. 2011) and explained the space–
time pattern observed. However, as the damping associated with
molecular viscosity and thermal conduction was neglected, the sim-
ulated disturbance of the neutral atmosphere was unrealistically
large, with a vertical and horizontal wind of about 600 m s−1. The
attenuation of gravity waves in the upper atmosphere, included by
Hickey et al. (2009) and Mai & Kiang (2009), must be taken into
account. The theory behind the possibility of observing the imprint
of a tsunami in the Earth’s atmosphere airglow (emission of light by
the upper atmosphere) was investigated by Hickey et al. (2010). Air-
glow fluctuations were for the first time observed by Makela et al.
(2011) thanks to an all-sky 630 nm imager during the Tohoku-Oki
tsunami and fully modeled by Coı̈sson (2012). Similar observations
were made for the Haida Gwaii tsunami by the same observation
system in Hawaii (Grawe & Makela 2015).

These early works triggered more complete wave propaga-
tion and coupling models integrating electromagnetic field per-
turbations in addition to viscosity and compressibility (Kherani
et al. 2012, 2016). Other numerical approaches have been based on
fully non-linear modeling of thermospheric coupling effects (Meng
et al. 2015), modeling of wave packets (Vadas et al. 2015) or appli-
cation of the perturbation theory of acoustic-gravity waves (Godin
et al. 2015). All these techniques nevertheless require the tsunami
height wavefield as the source to force the atmospheric waves.

This research shows that normal modes computed in the full
Earth system (i.e. solid Earth, ocean and atmosphere) are an alter-
native approach for computing the ionospheric signals associated
with tsunamis. This formalism considers all boundary conditions
and therefore implicitly integrates the full coupling between the
solid, oceanic and atmospheric parts of the Earth. By their very
essence, tsunami normal modes in the full Earth system represent a
basis for computing any 3-D Earth response to a tsunami and there-
fore not only displacement in the oceanic part but also displacement
or strain in the solid part and wind, temperature and density in the
atmospheric part. As shown by Rolland et al. (2011a), the normal
mode approach fully accounts for linear propagation and anelastic
effects, ionospheric coupling generated by the local geomagnetic
field and TEC observation geometry. The latter has a critical influ-
ence on TEC signals (Rolland et al. 2011a).

The solid Earth–ocean–atmosphere coupled tsunami normal
modes formalism was used for the first time by Coı̈sson et al.
(2015) in order to model the radio occultation perturbations gener-
ated by the IGWs associated with the 2011 Tohoku tsunami. These

observations were made by one of the COSMIC satellites, which
recorded an occultation over the North Pacific coinciding with the
tsunami wavefront location after 2.5 hr of propagation. Observa-
tions were compared with models obtained from a summation of
the tsunami normal modes of the solid Earth–ocean–atmosphere
system, the latter being used to model the ionospheric response
associated with the atmosphere-generated neutral wind.

This paper therefore first outlines normal mode theory and com-
putation. It then focuses on the resonances of tsunami normal modes
in the atmosphere due to interaction with gravity modes. There fol-
lows a sensitivity study of tsunami normal modes with respect to
ocean depth and the atmospheric structure. The normal mode sum-
mation technique is illustrated by computing simple examples at
boundary conditions, especially at the ocean bottom interface, and
at the ocean surface interface. The gravity and Lamb waves are then
computed and used to discuss the origin of the early ionospheric
waves detected in Hawaii prior to the arrival of the tsunami and
reported by Makela et al. (2011). In order to validate our modeling
method, we then apply it to the case of three tsunami events and
then compare the model data with recorded signals. The conclusion
discusses both the limitations and perspectives of tsunami normal
modes modeling.

2 N O R M A L M O D E S M O D E L I N G

Several methods have been proposed for computing the spherical
normal modes of the Earth with the atmosphere (Francis 1973, 1975;
Lognonné et al. 1998; Watada et al. 2006; Kobayashi 2007). In this
paper, we use the normal modes modeling approach in keeping
with Lognonné et al. (1998) and Artru et al. (2001), which includes
viscosity in the atmosphere and attenuation in the solid Earth, and
computes the associated complex normal modes and eigenfrequen-
cies. Other assumptions included in this modeling method are a full
elastic model of the solid Earth, compressibility of fluids, gravi-
tation and mass redistribution. Parameters not explicitly included
in the model are winds, non-linearity (including the non-linearity
associated with temperature change in speed of sound) and non-
viscous attenuation processes in the atmosphere, such as neutral
ion collision or thermal conduction (Hickey et al. 2009). These are,
however, partially integrated through an effective viscosity and lo-
cal plane wave approximation for heat diffusion. See, for example
Landau & Lifshitz (1958) for such ad hoc approximation.

This approach was successfully used to model the atmo-
spheric perturbations generated by Rayleigh waves and compared
to data recorded by ionospheric monitoring techniques such as
Doppler sounding (Artru et al. 2004), GPS-derived TEC (Rol-
land et al. 2011b) or thermospheric neutral density perturbations
recorded by the GOCE satellite (Garcia et al. 2013). Applying sim-
ilar research to tsunamis can be seen as the next step after these
previous works, with an extension to the atmosphere of the tsunami
normal modes coupling with the solid Earth and integration of wa-
ter compressibility (Okal 1982; Comer 1984; Watada 2013; Tsai
et al. 2013).

Geographic and local time variations in the atmospheric structure
are integrated in the atmospheric model used for the local 1-D nor-
mal mode computations, but not in an explicit 3-D computation, for
example through an aspheric perturbation theory (Lognonné 1991).
This approximation is motivated by the fact that ionospheric signals
generated by tsunamis are known to be produced by gravity waves
created by the tsunami wavefront less than 500 km away (Occhipinti
et al. 2010), a distance for which there is little horizontal variation in
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the background atmospheric structure. This last assumption might
nevertheless be less accurate at sunset and sunrise.

Other lateral variations, such as ocean depth effect, are not mod-
eled in this paper and will have to be integrated in future efforts,
possibly with theories and approaches comparable to those used
to compute 3-D Rayleigh normal modes (Lognonné 1991; Millot-
Langet et al. 2003). The first consequence, when the tsunami normal
mode waveform is made through normal mode summation, is the
non-accurate fit of the tsunami’s arrival time, as the latter reflects
the history of propagation along the path between source and ob-
servation location and therefore of ocean depth variation along that
path. A second consequence is to affect the waveform, through fo-
cusing/defocusing effects due to ocean depth, coastal reflection and
even islands diffraction. These effects are not modeled by conven-
tional 1-D normal modes modeling of tsunamis.

The tsunami normal modes of a spherical non-rotating elastic
isotropic Earth surrounded by a realistic 1D atmosphere are com-
puted according to Lognonné et al. (1998) from 0.1 to 2.6 mHz,
corresponding to a maximum angular order of � ≈ 500. There are
two steps to the computations. First, we compute a set of normal
modes using the MINOS software (Woodhouse 1974; Gilbert &
Dziewonski 1975; Woodhouse & Dahlen 1978), which solves the
elastodynamic equation in the Fourier domain:

ω2
k uk = Auk, (1)

where ωk is the eigenfrequency of uk, the eigenfunction of index k
associated with the angular order �, azimuthal order m and radial or-
der n. As the model is spherical, normal modes are degenerated with
respect to the azimuthal order m and the eigenfrequency depends
only on � and n. A is the gravitoelastic operator defined by:

Auk =− 1

ρ0
(∇ · (T − uk · ∇T0) − ∇ · (ρ0uk) g0−ρ0∇�E1) , (2)

where ρ0 is the density, g0 the gravity, T the elastic tensor, T0 the
pre-stress tensor at equilibrium and �E1 the mass redistribution
potential [see Lognonné et al. (1998); Dahlen & Tromp (1999) for
more details]. At equilibrium, the pre-stress forces are compensated
by the gravity force, so that:

∇.T0 + ρ0g0 = 0. (3)

In this first step, both the atmospheric viscosity and the solid planet
attenuation are neglected in the normal mode computation (note
that the MINOS software only computes the frequency perturbation
generated by attenuation and its quality coefficient, Q, to a first
order). The boundary condition is a free surface on the top of the
atmosphere generally taken at a high altitude. The Earth’s internal
structure model is provided by the Preliminary Reference Earth
Model (PREM, Dziewonski & Anderson 1981) with an oceanic
thickness corresponding to that of the tsunami observation. The
surrounding atmosphere extends upwards to 550 km and its struc-
ture is modeled by the NRLMSISE-00 empirical model (Picone
et al. 2002). Atmospheric parameters such as viscosity, speed of
sound and air density are computed for the time and location of
observations.

Artru et al. (2001) have shown that the attenuation process in
the upper atmosphere cannot be neglected. The second step of our
tsunami normal modes computation consists in modeling the com-
plex normal modes, integrating several sources of attenuation. These
attenuation sources are not only atmospheric viscosity but also the
solid attenuation of the PREM model. The computation also takes

into account the dispersion effect on seismic velocities. The normal
modes equation in the Fourier domain reads:

ω2
k uk = (A(ω) + iωB) uk, (4)

with B the viscous operator for the atmosphere and A(ω) including
the solid Earth attenuation. Starting from the solution obtained at
the first step, the new complex eigenfunctions and eigenfrequencies
are computed through a variational method (Lognonné et al. 1998;
Artru et al. 2001).

Two critical points in this approach are associated with the bound-
ary condition at the top of the atmosphere and truncation effects in
the variational method with respect to the number of test func-
tions used to represent the normal modes solution. In practice,
the normal modes are computed for an atmosphere model with
a top boundary (550 km) high enough to almost fully damp the
modeled normal modes. The more rigorous boundary condition
of elastogravity atmospheric waves proposed by Watada (2009) is
naturally accounted for and the free-surface boundary condition is
kept for normal modes computations. The variational techniques
used for the complex normal mode computation is therefore almost
identical to the Galerkin computation, used extensively for comput-
ing solid Earth normal modes (Park & Gilbert 1986). Truncation
effects are associated with the finite number of real normal modes
(all with the same angular order, �, but a different radial number,
n, used in the variational computation as test functions. The normal
modes are computed using the 100 real normal modes nearest in fre-
quency (but with the same � order). Although viscosity effects (i.e.
the term ωB) can be computed directly when both the displacement
and velocity are computed by the Galerkin method, a few additional
iterations are carried out in order to fully model the frequency de-
pendence of seismic velocities associated with the attenuation and
physical dispersion in the solid part of the model [i.e. A(ω)], taken
here as the classical constant Q in the PREM model (Dziewonski
& Anderson 1981), but with the associated physical dispersion of
seismic velocities.

3 AT M O S P H E R I C R E S O NA N C E S O F T H E
T S U NA M I M O D E S

The modes are computed for the NRLMSISE-00 atmosphere for
Hawaii at the local time of the tsunami’s arrival, (i.e. 20◦N, 155◦W
at 0:00 LT (10:00 UT), on 2012 October 28 and with the F10.7
index corresponding to that day (121.7 sfu). The local bathymetric
data are from the General Bathymetric Chart of the Ocean with
30 arcsec resolution for a depth of 4750 m. Fig. 1 represents the
dispersion diagram (eigenfrequency as a function of �) for normal
modes computed by the MINOS software and used as input for
the variational second step. There are three types of modes: solid
modes (Rayleigh modes in green, noted R), ocean modes (tsunami
modes in black, noted T) and atmospheric modes (gravity modes
in red, noted G; Lamb modes in light blue, noted L; and acoustic
modes in dark blue, noted A). For infinite ground rigidity and for
the long wavelength waves (kD � 1), the tsunami phase velocity is
constant and equal to cphase

tsunami = √
gD. Here, k denotes the tsunami’s

wavenumber, D the ocean depth and g = 9.8 ms−2, the Earth’s sur-
face gravity. Note discontinuities in the normal modes branches at
� = 380 due to the fact that we are using two starting models: one
computed up to an altitude of 550 km for � ≤ 380 and a second
one for an altitude of 400 km for � > 380. Mode branches with
marked discontinuities are associated with branches having signif-
icant energy above 400 km, while all the energy of those without
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Figure 1. Dispersion of normal modes of the full Earth system for the 0.1–30 mHz frequency range. Atmospheric gravity modes (G) are plotted in red,
Rayleigh modes (R) in green, atmospheric acoustic (A) modes in dark blue, Lamb modes in light blue (L) and tsunami modes (T) in black.

any significant discontinuities is below that altitude. Verifications
carried out on the obtained solutions show that, no significant ef-
fect were found in the normal modes computation by changing the
upper altitude of our model from 550 to 400 km for � > 380 as
long as the normal modes are fully damped at 400 km. Rayleigh
modes are subject to atmospheric resonances when their disper-
sion branch crosses the dispersion curves of the fundamental and
overtones acoustic branches. The frequencies of the three clearly
observed resonances (and crossing of dispersion curves) are near
those of the fundamental (3.70 mHz and 4.5 mn), first (4.3 mHz
and 3.9 mn) and second (5.0 mHz and 3.3 mn)× acoustic over-
tones. These resonances were observed in seismic records of the
Pinatubo eruption, e.g. Kanamori & Mori (1992), Widmer & Zürn
(1992) and Watada & Kanamori (2010) or in the continuous excita-
tion of normal modes (Nishida 2000) and can be retrieved through
the atmospheric coupling of normal modes (Lognonné et al. 1998).
Similar resonances are found for tsunamis, when the tsunami branch
crosses the atmospheric gravity mode branches.

In order to illustrate these resonances, we computed the distri-
bution of the normal modes’ energy in the ocean, solid Earth or
atmospheric layers. Normal mode energy is proportional to:

P = ρ0 |uk|2 . (5)

The relative atmospheric energy of a mode is the ratio of the mode’s
energy integrated over the whole atmosphere by the mode’s energy
integrated over the whole Earth model. Similar definitions are used
for relative energy in the solid Earth and ocean. The relative atmo-
spheric energy of tsunami modes is shown for our case study in
Fig. 2.

As may be expected, most of the energy of tsunami modes is in
the ocean. The coupling between G and T modes is inversely pro-
portional to the difference in the squared frequencies. The complex
tsunami normal mode eigenfunction therefore has large atmospheric
amplitudes. We shall later name this large atmospheric sensitivity
as atmospheric resonance. In a similar way, the complex G modes

close in frequency to T modes will have large amplitudes in the
ocean.

This is illustrated by Fig. 2: in panel (a), there is a resonance
when the T branch (black) crosses the G branches (red). Part of
the tsunami energy from the ocean is transferred to the atmosphere
(Fig. 2b). The resonances occur around 1.5 mHz (11.1 mn), 2 mHz
(8.3 mn) and 2.5 mHz (6.7 mn). As attenuation is larger in the
atmosphere than in the ocean, the quality factor is significantly
reduced at resonance frequencies (Fig. 2c). However, due to the
high value of the quality factor (up to 105–106), the atmospheric
effect on the quality factor is not likely to be observed in data, as
these Q factors correspond to a much longer propagation time than
needed for trans-Pacific propagation.

The resonances at 2 and 2.5 mHz have interesting features. At
these frequencies, we find that the tsunami’s energy is almost equally
distributed between the air and the ocean. These resonances occur
in a very narrow frequency bandwidth and are similar to the ocean’s
anomalous transparency, an idea proposed by Godin (2006).

Let us now discuss some features of the tsunami normal modes
eigenfunctions. In the atmosphere, the tsunami normal modes am-
plitude corresponds to gravity waves amplitude forced by the
tsunami (IGWs). Let us remind that IGWs are characterized by
the same horizontal wavenumber and frequency as tsunami waves.
Furthermore, both the wave equation in the atmosphere and all
boundary conditions between the ocean and atmosphere have to be
met. Although our normal modes accurately verify these equations,
including mass redistribution and compressibility aspects, the sim-
plified gravity waves equation for an incompressible atmosphere can
be used to understand the main feature of tsunami normal modes
in the atmosphere. Let us recall that in this simple approach, the
waves’ propagation properties are determined by the Brunt–Väisälä
(angular) frequency N, which is expressed as:

N 2 = − g

ρ

dρ

dr
− g2

c2
. (6)
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Figure 2. Tsunami normal modes resonances for an ocean depth of 4750 m. Three resonances occur at 1.5, 2 and 2.5 mHz. Panel (a): dispersion diagram
centred on the tsunami branch. Panel (b): relative energy of the tsunami modes in the solid part (green), in the atmosphere (red) and in the ocean (blue). Note
that here the tsunami’s energy is almost equally distributed between the air and the ocean at 2 and 2.5 mHz. Panel (c): effect of the tsunami normal modes
resonances on the tsunami quality factor.

When the Brunt–Väisälä frequency is greater than the modes’ eigen-
frequency, it is a gravity regime and gravity waves can propagate
upward. Above this frequency, the mode is evanescent and decays
exponentially with altitude. Note furthermore that compressibil-
ity is fully accounted for in our normal mode modeling, unlike in
some previous models (Occhipinti et al. 2008) which were made for
an incompressible atmosphere. Compressibility reduces the Brunt–
Väisälä frequency and therefore increases the wavelength of the
tsunami normal modes in the atmosphere or even makes them
evanescent. The dispersion relationship of the gravity waves is then
expressed as:

m2 = k2

[
N 2

ω2
− 1

]
, (7)

where m is the vertical component of the wavenumber, k the hor-
izontal component and ω its frequency. Here, the gravity waves
are forced by the tsunami, so the relationship between ω and k is
imposed by the tsunami:

ω = k
√

gD. (8)

Let us remember that k = 2π

λtsu
and m = 2π

λV
where λtsu and λV are

the tsunami horizontal wavelength and tsunami atmospheric verti-
cal wavelength, respectively. Finally, the vertical wavelength of the
tsunami mode in the atmosphere can be written as:

λV = λtsu√
N 2

ω2 − 1
. (9)

For frequencies above the Brunt–Väisälä frequency, λV is imaginary
and gives us the damping length. Below, λV is the propagation
wavelength in the atmosphere. Let us now interpret the amplitude
of the normal modes with this wavelength.

Fig. 3 shows the complex eigenfunctions of the T modes for res-
onances at 1.5, 2 and 2.5 mHz along with the associated Väisälä
frequency and vertical wavelength. Throughout the paper, the nor-
mal modes eigenfunctions Ur(r) (vertical component) and Vr(r)
(horizontal component) are plotted on figures with an amplitude
scaled by the inverse square root of the density. In the Brunt–
Väisälä frequency panel, the mode’s eigenfrequency is indicated
by the vertical red line. The blue and green bars are respectively
the minimum and maximum wavelength found with relationship
(9). We define as a ‘gravity waveguide’ the propagation zone of
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Figure 3. Propagation characteristics of the three resonant modes. From left to right: amplitude of the atmospheric part of vertical (Ur) and horizontal (Vr)
normal modes eigenfunctions, scaled by the inverse square root of density, Brunt–Väisälä frequency (fB) and vertical wavelength λV as a function of the altitude
for the 1.5, 2 and 2.5 mHz resonances from top to bottom. In the Brunt–Väisälä frequency panel, the resonant mode eigenfrequency is plotted with a red vertical
bar, and the blue and green vertical bars are the minimum and maximum vertical wavelengths, respectively. The green and blue circles in the Brunt–Väisälä
and vertical wavelength panels represent the location of the maximum and minimum of the vertical wavelength, respectively.

the atmosphere where the normal mode frequency is greater than
the Brunt–Väisälä frequency. The height of the gravity waveguide,
hGW, ranges from 300 km at 1.5 mHz to 150 km at 2.5 mHz. For
the first resonance, the gravity waveguide height is about 2.5 times
larger than the maximum vertical wavelength, allowing wave oscil-
lations in the atmosphere. This propagative character is found in the
π/2 phase shift between the real and imaginary parts of the normal
mode. The decrease in the real and imaginary parts’ amplitudes
above 200 km is due to the low density, which increases kinematic
viscosity. At a height of 285 km, the Brunt–Väisälä frequency is
below 1.5 mHz and the mode starts to be evanescent: its ampli-
tude then decays very rapidly with height, as both the atmospheric
cut-off and viscosity are concurring to damp the amplitude. The
amplitude of the mode nevertheless remains large at the F2 peak
altitude (around 300 km), which explains why big signals are ob-
served at 1.5 mHz in the tsunami-induced perturbed TEC spectrum
(Rolland et al. 2010).

The amplitudes at ionospheric heights are much lower in the
case of the higher frequency normal modes (i.e. 2 and 2.5 mHz)
and become almost null at an altitude of 300 km. This is due to
the evanescent property of the wave and not to atmospheric vis-
cosity. Above 2 mHz, viscosity plays a minor role in the normal
mode decay, which is instead mainly related to atmospheric cut-off.
Furthermore, the value of the mode’s vertical wavelength in the
atmosphere is much higher and for the 2 mHz resonant mode about
2 oscillations are accommodated in the atmospheric waveguide.
In this case, the vertical wavelength and the waveguide height are
comparable, leading to a critical configuration where the real part
and imaginary amplitudes are in phase. At 2.5 mHz, the maximum
vertical wavelength value is so high (more than 1000 km) that the
mode only has one evanescent damping effect and is little affected
by viscosity. In the latter case, the imaginary part of the mode is
much smaller than the real part (note that the imaginary part of the
2.5 mHz normal mode has been multiplied by 200).
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Figure 4. Panel (a) shows the dispersion diagram of the tsunami branches, with ocean depths of 4, 5, and 6 km in addition to the Lamb and atmospheric gravity
modes. Panel (b) shows the energy fraction in the atmosphere, ocean and ground, with resonance peaks. The blue, red and green curves stand for the ocean,
atmosphere and solid energy fraction, respectively. Panel (c) shows the tsunami quality factor plotted as a function of frequency. The tsunami mode’s phase
velocity and therefore the resonance frequencies depend on the ocean depth.

Both the limited number of oscillations of the tsunami normal
mode amplitude as a function of altitude and the evanescent tran-
sition explain the similarities in the waveform of ionospheric TEC
signals and that of water height signals, as illustrated by several
observations (Rolland et al. 2010; Kherani et al. 2016).

The atmospheric coupling of a tsunami mode depends however
not only on the structure of the atmosphere, in a similar way to
the coupling of Rayleigh waves (Rolland et al. 2011b), but also on
ocean depth, which determines the phase velocity of the tsunami
branch and therefore coupling with the atmospheric branches. This
sensitivity to atmospheric and oceanic structure is analysed in the
following section.

4 S E N S I T I V I T Y T O O C E A N D E P T H

We computed the modes up to � = 500 for three ocean depths
(4, 5 and 6 km). The atmospheric model of the Haida Gwaii case
was used. Fig. 4 shows the resulting dispersion diagram, energy
fraction and quality factor. Atmospheric gravity branches are not
affected by ocean depth changes. Note that this figure only shows
those crossing the tsunami branch and responsible for atmospheric

resonances. All the others were nevertheless used for the varia-
tional computation of the tsunami modes described in Section 2.
As the phase and group velocity of the tsunami waves depend on√

D, a 1 km change in the ocean depth markedly shifts the atmo-
spheric resonance frequency. This bathymetric variation also affects
the transfer of energy between the ocean and solid part as shown
in Table 1. Indeed, for an ocean depth of 4 and 5 km, the tsunami
branch just cuts across the gravity branches and the only major
coupling occurs for modes with frequencies close to the resonance.
For a 6 km depth, on the other hand, the tsunami branch is almost
parallel to one of the gravity branches between 1 and 2 mHz. Ma-
jor atmospheric couplings are thus found in this frequency band-
width, as the group or phase velocities of the tsunami waves are
quite close to those of the corresponding atmospheric gravity mode
branch. More than 10 per cent of the tsunami’s energy is then trans-
ferred to the atmosphere. This significant coupling is similar to the
acoustic–gravity atmosphere–ocean coupling recently analysed by
Godin et al. (2015) with an asymptotic approach that neglects the
solid Earth part. This major coupling is shown in Fig. 5, where
large amplitudes are found below 100 km for an ocean depth of
6 km.
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1126 V. Rakoto, P. Lognonné and L. Rolland

Table 1. Eigenfrequency and energy fraction in the atmosphere and ocean for resonance at an ocean depth of 4000, 5000 and 6000 m.

4000 m 5000 m 6000 m

Frequency (mHz) 1.24 1.61 2.28 1.39 2.03 2.4 1.24 1.67 1.9

Energy fraction in ocean 0.99 0.96 0.62 0.94 0.72 0.55 0.95 0.51 0.58

Energy fraction in atmosphere 1.0 × 10−2 4 × 10−2 0.38 8.0 × 10−3 0.26 0.45 5.2 × 10−2 0.49 0.42

Figure 5. Amplitude of tsunami eigenfunctions between 1.3 and 1.7 mHz in the atmosphere for three different ocean depths. The red horizontal bar represents
the upper altitude limit up to which the 1.5 mHz mode can propagate. The modes for a 6 km ocean depth are highly resonant only at low altitudes (below
60 km).

In the previous section, we showed that the high-frequency modes
above 2 mHz are evanescent above 200 km and do not contribute
to marked thermospheric winds. Fig. 5 shows the vertical and hor-
izontal components for 4, 5 and 6 km ocean depths and for fre-
quencies between 1.3 and 1.7 mHz. The red horizontal line marks
the altitude where the Brunt–Väisälä frequency reaches 1.5 mHz.
It is clear that the large resonance observed in the energy for 6 km
is corresponds to the large low-altitude amplitudes, below 60 km.
This high-frequency resonance will have little effect on the TEC,
as the normal mode amplitudes are small in the ionosphere. Indeed,
already at the F2 peak altitude (300 km), the wave is attenuated by a
factor of 4–5. At this altitude, the amplitude of the modes between
the 4 and 6 km depths is similar. For the 5 km ocean depth, the
amplitude of the wave is smaller.

5 S E N S I T I V I T Y T O L O C A L T I M E

In order to analyse the sensitivity of normal modes amplitude to
local time, we computed the normal modes while changing just the
local time, and keeping all other parameters (day and location) as in
Section 3 and for local ocean depth equal to 5 km. The four different
local times chosen are 00:00, 06:00, 12:00 and 18:00. Fig. 6 shows
the vertical profiles of kinematic viscosity, air density, speed of
sound and Brunt–Väisälä frequency for these different local times.
These parameters are the most sensitive to solar radiation at higher
altitudes. The energy fraction and quality factor for these four local
times are shown in Fig. 7. Three resonances occurred around 1.4, 2
and 2.4 mHz. The phase velocity of the tsunami modes was found to
depend only on the ocean depth and be unaffected by the variation in
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Tsunami normal modes resonances 1127

Figure 6. Atmospheric parameters (viscosity, density, speed of sound and Brunt–Väisälä frequency) for four different local times (00:00, 06:00, 12:00 and
18:00 LT) on 2012 October 28 as computed by the NRLMSISE-00 empirical model (Picone et al. 2002). The density and speed of sound are greater during
the daytime, while viscosity and Brunt–Väisälä frequency are greater during the night-time. Sensitivity to the local time increases with altitude.

local time. However, the gravity waves’ dispersion branches moved
slightly as atmospheric parameters changed with local time. This
explains the slight shift in resonance frequencies depending on local
time. Variations in the energy fractions were also observed. Indeed,
coupling strength increased when the waves’ phase velocities were
closer together. The relative sensitivity to the local time decreased
at high frequencies. It was especially visible in the atmospheric
energy fraction at 2.4 mHz. Indeed, as explained in Section 3, the
normal mode at 2.4 mHz is already evanescent at 150 km, and
cannot be affected by the temperature change in the thermosphere
(and therefore by density and sound speed changes) as much as the
modes propagating widely in the thermosphere. As there is smaller
variation in the atmospheric parameter below 200 km, the sensitivity
to local time is lower. The complex eigenfunctions of the resonance
at 1.4 mHz are shown in Fig. 8. The horizontal lines represent
the upper limit of the wave’s propagation regime, defined as the
altitude where the frequency equals the Brunt–Väisälä frequency.
This upper limit varies from 275 km at noon to 323 km at mid-night.
It is clear that there is a daytime regime and a night-time regime.

At low altitudes, the real part of the mode is not very sensitive to
local time due to the small variation in the atmospheric parameters
below 100 km. At higher altitudes, there is a major difference in

amplitude and phase shift, as a consequence of the variation in al-
titude of the evanescence threshold for these modes. The real and
imaginary parts of the normal mode amplitudes are in phase and
mostly dictated by the variation in viscosity depending on local time.
As for Rayleigh modes, atmospheric amplitudes for the 1.5 mHz
resonance are larger during the daytime than during the night-time,
due to the higher density and lower viscosity at ionospheric heights
(Rolland et al. 2011a). Furthermore, the ionosphere is more devel-
oped during the day. We can therefore expect the electron density
signals during the daytime to be much greater due to the combi-
nation of larger driving neutral atmospheric waves and a higher
density of transported electrons.

6 N O R M A L M O D E S S U M M AT I O N F RO M
S E A F L O O R T O I O N O S P H E R E

While the amplitude of normal modes is already useful to explain
the mechanism of the atmospheric–ocean coupling of tsunamis, it
is even more suitable for modeling the response anywhere in the
Earth to any source that excites these normal modes, whether they
are earthquakes, tsunamis or volcanic eruptions for instance. The
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1128 V. Rakoto, P. Lognonné and L. Rolland

Figure 7. Variability of tsunami modes resonance in the atmosphere depending on local time. (a) Quality factor as a function of frequency for 00:00, 06:00,
12:00h and 18:00 LT. (b) Energy fraction as a function of frequency in the atmosphere (solid line), ocean (dashed line) and solid Earth (dotted line). Sensitivity
to the local time is higher for low frequencies due to the large variations in temperature and density at high altitudes.

normal mode summation technique is extensively used in seismol-
ogy. Normal mode summation can also be used to compute the
solid Earth’s response to a tsunami [e.g. ground tilt, see Yuan et al.
(2005)], or the ocean’s response [e.g. water height variation from
DARTs (Titov et al. 2005); atmospheric wind perturbation (Gar-
cia et al. 2014)] or ionospheric perturbations, in the latter case by
applying the transfer function from the neutral perturbation to the
electron density perturbation (Coı̈sson et al. 2015).

In order to compute the displacement or velocity, we use the
normal mode summation expression given by Lognonné (1991):

s(r, t) = H (t)Re

[
�k M : εk(r0) uk(r)

1 − eiωk t

ω2
k

]
, (10)

where M denotes the moment tensor, ε the normal mode strain at
the epicentre r0, H(t) the Heaviside function, uk(r) and ωk the nor-
mal mode displacement function at location r and eigenfrequency,
respectively and k the normal mode index.

To further compute the TEC perturbation induced by tsunamis
from the atmospheric wind field, we use the methods of Rolland
et al. (2011b) and Coı̈sson et al. (2015). Fig. 9 shows the mod-
els reconstructed using such a normal mode summation technique
for the vertical TEC, and for vertical and horizontal displace-
ments of the neutral atmosphere at altitudes of 300, 200 and 0 km

(interface between the ocean and the atmosphere) and at a depth of
5 km (interface between the ocean and the Earth’s crust). A point
source model was used with the centroid moment tensor (CMT) of
the Haida Gwaii tsunami in 2012 of magnitude Mw = 7.8. As in all
normal modes summations seismograms, ringing are present in the
displacement seismograms, especially before the expected first ar-
rival, as the summation is limited to only one branch. This feature is
comparable to the ringing of Rayleigh waves summation (e.g. Artru
et al. 2004), when only the fundamental spheroidal branch is mod-
eled. Note however that the ringing is strongly attenuated on the
TEC synthetics, as the later is based on the integrated signal and
therefore is low pass filtered by the measurement.

The waveforms of Fig. 9 show the main features of tsunami
propagation and the differences with the incompressible shallow
water solution.

The horizontal displacement between the surface and the bottom
of the ocean is almost identical, the small difference being mostly
associated with water compressibility. The dispersion of tsunamis
waves related to both the coupling with the ground and compress-
ibility of water (Watada et al. 2014) is also shown, associated with
the ramp starting about 20 min prior to the tsunami’s first arrival.
This coupling with the solid Earth generates a non-zero vertical
displacement at the bottom of the ocean of about 0.5 per cent of the
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Tsunami normal modes resonances 1129

Figure 8. Tsunami eigenfunction in the atmosphere at 1.5 mHz for the four different local times. The horizontal lines correspond to the upper limit of the
propagation zone for the tsunami modes. The vertical wavelength of the mode is plotted on the right-hand panel. A daytime and night-time regime can be
clearly identified.

tsunami height for the PREM crust elastic properties, and about
0.02 per cent for the horizontal amplitude at the solid side of the
ocean bottom interface. The tsunami’s horizontal and vertical dis-
placements are in quadrature phase as expected from the theory (see
Appendix for further details). Note that the horizontal to vertical
displacement ratio in the atmosphere depends, for a given horizon-
tal wave number or angular order, on the vertical amplitude just
above the sea surface and of the tsunami phase velocity. This ratio
is therefore slightly affected by the atmospheric coupling of the
tsunami, especially near the resonances where we have Q as low as
about 500 for the 2 mHz resonance. It might lead to the generation
of not only tsunami-induced gravity waves but also to atmospheric
gravity waves not representative of a realistic tsunami-equivalent
source but present only due to the non-explicit integration of the
tsunami atmospheric coupling.

At the ocean surface, the vertical displacement is continuous be-
tween the ocean/atmosphere interfaces. Nevertheless, the horizontal
displacement is almost opposite, with a π phase shift. Indeed, when
the surface of the water moves forward, the air slides over it to fill
the vacuum left by the displaced water mass. This is a classical
feature of an internal mode in a two-layered fluid system under
gravity (Massel 2015). Adding the atmosphere slightly increases

the amplitude of this precursor on the horizontal component as well
as on the solid response at the bottom of the ocean, and needs to be
taken into account in order to accurately model the tilt generated by
tsunamis (e.g. Boudin et al. 2013).

Above the surface, upward propagation is illustrated with the
waveforms at an altitude of 200 and 300 km. At 200 km, upward
propagation is more complex, with significant signals after the main
wave’s arrival, probably related to the dispersion of the rising wave.
At 300 km, however, the signal looks like a low-pass filtered water
height waveform. This can be interpreted as a direct consequence
of the transition from propagation to evanescent modes. There is
clearly a delay in the first wave’s arrival time due to propagation from
the bottom of the atmosphere up to an altitude of 300 km (around
7 min, consistent with the analysis of Occhipinti et al. 2013).

Last but not least, the vertical peak-to-zero displacement ampli-
tude of about 5 cm at sea level is magnified as altitude increases,
reaching a few dozen kilometres at 300 km, typical of the 105 am-
plification factors expected for these long-period waves.

In conclusion, normal mode summation provides a complete and
accurate description for both the vertical and horizontal neutral
winds. This technique can be used to model ionospheric signals
through neutral wind–plasma coupling. Modeling results can then
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Figure 9. Tsunami-induced displacement in the ocean, the neutral atmosphere and the ionosphere. From bottom to top: modeled vertical (left-hand side) and
horizontal displacement (right-hand side) at the seafloor, sea bottom, sea surface, in the atmosphere (at 200 and 300 km), and ionosphere (GPS TEC) for the
Haida Gwaii study case, computed at the location of the DART buoy 51407 using the CMT Harvard source.

be compared to observations, as is the case later in this paper for
several different tsunamis.

7 G R AV I T Y M O D E S A N D L A M B WAV E S ;
E A R LY AT M O S P H E R I C G R AV I T Y WAV E
A R R I VA L S

As observed after the Tohoku earthquake, underwater earth-
quakes not only generate tsunamis but also gravity waves (Rolland
et al. 2011a; Komjathy et al. 2012; Yu et al. 2015). We therefore
develop first the coupling properties of the atmospheric gravity and
Lamb modes with the ocean before computing the waveforms of
the associated branches.

7.1 Atmospheric gravity modes resonances with the ocean

When the atmospheric gravity branches cross the tsunami branch,
there is resonance with the ocean structure as shown in Fig. 10 for

the gravity fundamental and the first two overtone branches. These
resonances occur around 1.5, 2 and 2.5 mHz, as for tsunamis. At
these frequencies, part of the energy is efficiently transferred from
the atmosphere to the ocean [panel (c)]. We label these modes with
the increasing number of zero crossing between the tropopause
and about 150 km of altitude, which corresponds to the altitude
range where the Brunt–Väisälä frequency is larger than the mode
frequency. The fundamental mode is therefore the 2.5 mHz one,
while the first and second harmonics are the 2 and 1.5 mHz modes.
For the 2 and 2.5 mHz resonances, energies in the atmosphere
and ocean are comparable. These resonance features can also be
found in the quality factor, which shows a local maximum at the
resonance frequencies due to the fact that water attenuates much
less than the atmosphere. On the contrary, a local Q minimum is
found for resonances with fewer trapped gravity waves. As the L
branch does not cross the T branch (panel a), there is no resonance
for Lamb modes, which have almost no energy in the ocean (panel
c). The surface trapping of Lamb waves make them undetectable in
the ionosphere.
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Figure 10. Gravity normal modes resonances for an ocean depth of 4750 m. Oceanic resonance in the fundamental G modes (respectively solid, dashed and
dotted lines) with the T modes. In (a) and (b), the light blue solid line corresponds to the L modes. In (c), the Lamb branch is represented by dashed–dotted
lines.

7.2 Fundamental gravity modes and tsunami precursors

The fundamental gravity mode branch is the only one with group
velocities faster than those of the tsunami for frequencies below 1.6
mHz. This is illustrated by Fig. 11, which shows the variation in
group velocity as a function of frequency for the L, G and T modes
and for three different modeling assumptions.

The first is the classical approach, which assumes an incompress-
ible oceanic layer (Okal 1988) for which phase and group velocities
are, respectively:

c(ω) =
√

gD tanh(k(ω)D)

k(ω)D
. (11)

u(ω) = c(ω)

[
1

2
+ k(ω)D

sinh(2k(ω)D)

]
. (12)

The second is the tsunami normal mode computation for PREM
without atmosphere, which can be directly compared to Watada
et al. (2014). The third, and last, is the computation with both the
solid part and the atmosphere, as described above. At 2 and 2.5
mHz, significant variations are observed for the tsunami group ve-
locity. These perturbations cannot be seen in the model without the
atmosphere, suggesting that they are due to atmospheric resonance

by gravity waves. At these frequencies, the fundamental and the first
overtone G modes show a peak in group velocity which corresponds
to oceanic resonance.

As the modes below 1.6 mHz have larger group velocities than the
tsunami, the fundamental gravity wave below 1.6 mHz should arrive
before the tsunami. We illustrate this phenomenon with modeled
seismograms computed at the ocean surface and in the atmosphere
(Fig. 12) for both tsunami and fundamental gravity branches and
for two tsunamis: the 2011 Tohoku tsunami and the Haida Gwaii
tsunami. Results are summarized in Fig. 12.

The result shows the perturbations in electron density and neutral
displacement at 260 km and the sea level displacement for both the
tsunami and the fundamental gravity modes for the two tsunamis.
The amplitude of the electron density perturbations is reported in
Table 2 for all cases.

Let us set the detection threshold of the electron density pertur-
bation to about δnthreshold

e ≈ 5 × 109 e m−3, which corresponds to
an integration over 50 km, to about 0.025 TECU and therefore to
an amplitude comparable to the TEC perturbation noise level in
Hawaii for the Haida Gwaii ionospheric TEC observations (Grawe
& Makela 2015).

In Table 2, we reported the ionospheric perturbation induced
by atmospheric gravity modes and tsunami modes in the case of
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Figure 11. Group velocity of the L modes, G modes fundamental and two first overtones (red lines) and T modes (computed for three different physical
assumptions). Note that below 1.6 mHz, the fundamental gravity waves travel faster than the tsunami. The ocean depth is 5 km.

the Tohoku and Haida Gwaii tsunami. The perturbation induced
by the tsunami modes will be higher than the detection threshold
for both events, however the ionospheric perturbation induced by
gravity modes will be higher than the detection threshold only in
the case of Tohoku. Indeed,the ionospheric perturbations for Haida
Gwaii are six times smaller. This simple analysis suggests that the
fundamental gravity waves generated at the source by the Tohoku
quake have observable amplitudes and could be the waves preceding
the Tohoku tsunami that were detected by Makela et al. (2011) off
the Hawaiian shore. Future studies will have to be conducted in
order to confirm this.

8 M O D E L I N G R E S U LT S A N D
C O M PA R I S O N W I T H DATA

We now show modeling results for both the tsunami height and
perturbed TEC for three different tsunamis. We first study the 2012
Haida Gwaii and 2006 Kuril Islands tsunami recorded off Hawaii.
The corresponding ionospheric TEC observations were analysed by
Grawe & Makela (2015) and Rolland et al. (2010), respectively. The
third case is the large 2011 Tohoku tsunami (Kherani et al. 2016).
All TEC perturbation observations are derived from 30 s data from
the SOPAC (http://sopac.ucsd.edu/) Hawaii GPS array in the case
of Haida Gwaii and Kuril, and from Pacific Ocean island stations
forming part of the Japanese GEONET GPS network in the case
of Tohoku. Tsunami amplitude data were recorded by DART buoys
and detided according to Watada et al. (2014). A summarize of the
GPS TEC and DART data reconstructed in this section is provided
in Table 3.

In all cases, the normal modes were computed with atmospheric
models evaluated at the time and location of the tsunami’s arrival
and with the ocean depth of the observation area.

The perturbations associated with each tsunami were computed
using two types of source: a single-point source located at the
epicentre and an extended source corresponding to several point
sources distributed along the fault plane. The source parameters
used in the point source simulations were those of the CMT project
(Dziewonski et al. 1981), while those for the extended sources
were the finite fault source models from the U.S. Geophysical Sur-
vey (http://earthquake.usgs.gov/) for the three events (Hayes 2011).
The extended source seismograms were then computed by summing
seismograms from all subfaults, each being represented by a point
source.

Fig. 13 compares the models computed with a single-point source
and an extended source to observed data in TEC perturbation and
in tsunami height in the case of the 2012 Haida Gwaii event. As
expected, a single-point source generates too high a TEC pertur-
bation amplitude and tsunami displacement. The amplitude of the
first wave is reduced for the extended source model due to the in-
terferences between all the point sources. Both the modeled TEC
perturbation and modeled tsunami fit the DART and TEC data well
for the amplitude of the first wave. The validity of our method was
then confirmed by the very good fit obtained in the case of Kuril
(Fig. 14) and Tohoku (Fig. 15). Note that as point source mod-
els overestimate the amplitudes, only the results from the extended
source model were shown and compared with observed data in these
last two figures.

However, even if we can reproduce fairly well the main wave
in TEC and in tsunami height, the normal modes modeling shows
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Figure 12. From top to bottom: perturbed electron density at 260 km (δne), displacement projected on the magnetic field at 260 km (Uatm) and vertical
displacement at the ocean surface (Utsu). The Tohoku case study is shown on the left and Haida Gwaii on the right.

Table 2. Peak of the electron density perturbation generated by the funda-
mental gravity modes and the tsunami modes in the case of the Tohoku and
Haida Gwaii events.

δne Tohoku Haida Threshold
(e−m−3) Gwaii detection

Tsunami modes 3.6 × 1011 7.33 × 109 ≈5 × 109

Fundamental gravity modes 3.31 × 1010 8.5 × 108

some limitations. Indeed, as our 1D normal mode model does not
take into account the variation in ocean depth, we have to apply
a time-shift to fit the arrival time of the waves to observations. It
corresponds to −9.5 min in the case of Haida Gwaii, −11.7 min in
the case of Kuril and −15.2 min in the case of Tohoku.

In addition, a second wave, arriving about 20 min after the
first one, is not modeled. It is inverted in amplitude and most
likely corresponds to the coastal reflection near the source, which
cannot be reproduced by the simple 1-D global Earth model
used.

Table 3. Summarize of data used for comparison with normal mode mod-
eling for the Haida Gwaii, Kuril and Tohoku event.

Haida Gwaii Kuril Tohoku

GPS ground station kosm radf 1098
GPS satellite 07 17 and 29 09 and 12
Dart station 51 407 51 407 52 401
Filtering frequency range (mHz) 0.2–2.6 1.0–2.6 1.0–2.0

In summary, the results obtained are promising but limited by
the 1-D approach. If this approach is partially mitigated by the
computation of normal modes with the bathymetry corresponding
to the observation location, the 3-D effects on the waveform are not
modeled and only the first wave amplitude can therefore be modeled.
Future steps will have to focus on the impact of the ocean depth
variation and the coastal reflection effects on the waveform. This
will likely be computational challenging for 3-D tsunami modes as
the large bathymetry variations cannot be handle by perturbation
techniques.
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Figure 13. 2012 Haida Gwaii tsunami situation map and forward modeling results. (a) Map centred on the location of the 2012 Haida Gwaii tsunami. (b) Map
centred on Hawaii. The white line marks the plot of the KOSM station (satellite 07 sounding path) from 4 to 7 hr after the earthquake. (c) Perturbed TEC for the
KOSM station (satellite 07 path). (d) Tsunami amplitude recorded by DART buoy 51407. We filtered observed data (black curve) and modeled data (blue and
red curves for the point source and extended source case, respectively) between 0.2 and 2.6 mHz. Both point source and extended source models are shown.
A time-shift of −9.5 min is applied to the model.

9 C O N C LU S I O N S

Tsunami normal modes can be computed for 1-D Earth models
integrating not only the solid Earth but also the atmosphere, and
can be used to model the tsunami-induced sea level DART or iono-
spheric TEC signals, as well as any other seismic or geodetic signals
recorded by the tsunami-induced deformations of the solid Earth.

We have illustrated this forward modeling by computation of the
tsunami normal modes in Hawaii using the local ocean depth and
the atmospheric structure at the time of the tsunami’s arrival. We
have shown that resonance between tsunami normal modes and the
atmosphere occurs at 1.5, 2 and 2.5 mHz. Indeed, at these frequen-
cies, the tsunami branch crosses the atmospheric gravity branches
and there is major coupling between the ocean and the atmosphere.
Conversely, there is resonance in the oceanic gravity waves at these
frequencies. Energy is transferred from the atmosphere to the water.
As the group velocity of the fundamental atmospheric gravity modes
is slightly faster than that of the tsunami, an atmospheric gravity
wave should arrive before the tsunami signal. This is confirmed by
seismograms modeling both the sea level height and atmospheric
winds, and might be an interesting line of research in order to clar-
ify ionospheric tsunami precursor signals such as those observed
by Makela et al. (2011).

Our results first demonstrate that accurate modeling of iono-
spheric tsunami signals requires the integration of atmospheric
compressibility, which significantly changes the wavelength and
propagation properties of tsunami waves in the atmosphere. At 1.5
mHz, the vertical wavelength is relatively small and the wave can
oscillate several times in the atmospheric gravity waveguide before
reaching an altitude of about 285 km, where it transits to an evanes-
cent wave. Below this altitude, the phase shift between the real and
imaginary part of the wave is indeed π/2 which is characteristic of a
propagative regime. Above 2 mHz, the vertical wavelength is longer
than at 1.5 mHz and the height of the gravity waveguide decreases.
The wave oscillates only once before becoming evanescent. These
effects increase even further for larger frequencies, and for the 2.5
mHz resonance, the vertical wavelength is so long (300 km) that
the wave is fully damped well before reaching the thermosphere. Its
amplitude is mostly damped by the gravity cut-off and it is not very
sensitive to attenuation processes, with an imaginary part 200 times
smaller than the real one. At the altitude of the F2 peak (around
300 km), the resonant modes at 2 and 2.5 mHz therefore have very
small amplitudes. This explains why reported TEC observations
show large spectral amplitudes at 1.5 mHz, but not at 2 or 2.5 mHz.

We then investigated sensitivity to bathymetric properties. The
modes were computed for 12:00 LT in Hawaii for an ocean depth of
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Figure 14. 2006 Kuril Islands tsunami situation map and forward modeling results. See Fig. 13 for a description of the panels. We filtered observed data and
modeled data between 1 and 2.6 mHz. A time-shift of −11.7 min is applied to the model.

4, 5 and 6 km. As the phase velocity of the tsunami modes strongly
depends on ocean depth, the frequencies at which resonances occur
also depend on bathymetric properties. The modes for a 6 km depth
are highly resonant. There is a major impact on the eigenfunction of
normal modes at resonances between 1.3 and 1.7 mHz only at low
altitudes (up to 70 km). At higher altitudes, the mode is attenuated
by atmospheric viscosity. We also performed a sensitivity study to
local time, which revealed that the effect of local time is larger at
low frequencies with a clear daytime and night-time regime at the
1.5 mHz resonant frequency. Such a large impact on the amplitude
of normal modes must be taken into account in all modeling, and
climatic atmospheric models such as NRLMSIS-00 are essential.

We concluded by comparing several DART and TEC observa-
tions with the results of modeling for three moderate to large
tsunamis generated by the 2012 Haida Gwaii, the 2006 Kuril Is-
lands and the 2011 Tohoku earthquakes. The agreement between
observed and synthetics data using an extended source model was
good for both the tsunami height (compared to DART) and the
perturbed TEC (which are compared to GNSS-TEC (Global Navi-
gation Satellite System) for the first arrival. The arrival time of the
first tsunami wave is however affected by variations in ocean depth
along the tsunami propagation path and a time-shift must therefore
be applied to the modeling results in order to correct these lateral
variation effects. A secondary tsunami wave, most likely related to

coastal reflection, is not modeled through the 1-D method, where
the ocean waveguide is global. These promising results suggest that
tsunami normal modes summation is a promising technique for
modeling and inverting GNSS-TEC data in order to estimate the
variation in tsunami water height from the measured ionospheric
data. This will be investigated in a future paper.
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Figure 15. 2011 Tohoku tsunami situation map and forward modeling results. See Fig. 13 for a description of the panels. We filtered observed and modeled
data between 1 and 2 mHz. A time-shift of −15.2 min is applied to the model. The DART 52401 was not operational at the time of the tsunami and only the
modeled tsunami is therefore shown in contrary to the right bottom panel, where both the data and modeled tsunami are shown for the DART 52402.

R E F E R E N C E S
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A P P E N D I X : H O R I Z O N TA L A N D
V E RT I C A L D I S P L A C E M E N T
Q UA D R AT U R E P H A S E S H I F T

The π/2 phase shift between the vertical and horizontal displace-
ments just above the ocean surface can be easily explained the-
oretically. Indeed, in the plane wave approximation and Cowling

approximation (i.e. when mass redistribution is neglected), where
U = U0 exp(i(ωt − kx)), projection to the x-axis of eqs (1) and (2)
leads to:

−ρω2V = ik(pHooke + ρgU ), (A1)

pHooke = −ρc2
sound

(
∂U

∂r
− ikV

)
, (A2)

where U and V are, respectively, the vertical and horizontal compo-
nents of the T normal modes displacement in the ocean and pHooke

is the pressure change associated with fluid compressibility. Simi-
lar expressions can be obtained in the case of a sphere. These two
equations lead to:

V

U
= −ik

g − c2
sound
U

∂U
∂r

ω2 − k2c2
sound

= − i

k

g − c2
sound
U

∂U
∂r

c2
tsunami − c2

sound

. (A3)

In the ocean, vertical displacement increases almost proportionally
from the bottom of the ocean to the surface and ∂U

∂r = U0/D, where
U0 is the vertical amplitude of the ocean surface and D the depth of
the ocean. This leads to the following amplitude ratio at the surface,
where V0 is the horizontal amplitude of the ocean surface:

V0

U0
= − i

k D
. (A4)

This explains the quadrature phase shift between the vertical and
horizontal components of water displacement at the surface of the
ocean as well as the much larger horizontal amplitudes as kD � 1.
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