N
N

N

HAL

open science

A relaxation scheme for a hyperbolic multiphase flow
model. Part I: barotropic eos
Khaled Saleh

» To cite this version:

Khaled Saleh. A relaxation scheme for a hyperbolic multiphase flow model. Part I:. barotropic
eos. ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53 (5), pp.1763-1795.

10.1051/m2an /2019034 . hal-01737681v2

HAL Id: hal-01737681
https://hal.science/hal-01737681v2

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01737681v2
https://hal.archives-ouvertes.fr

A RELAXATION SCHEME FOR A HYPERBOLIC MULTIPHASE
FLOW MODEL. PART I: BAROTROPIC EOS

Khaled Saleh!

I Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 bd 11 novembre
1918; F-69622 Villeurbanne cedex, France.

Abstract

This article is the first of two in which we develop a relaxation finite volume scheme for the convective
part of the multiphase flow models introduced in the series of papers [17, 16, 6]. In the present article
we focus on barotropic flows where in each phase the pressure is a given function of the density. The
case of general equations of state will be the purpose of the second article. We show how it is possible
to extend the relaxation scheme designed in [12] for the barotropic Baer-Nunziato two phase flow model
to the multiphase flow model with N - where N is arbitrarily large - phases. The obtained scheme
inherits the main properties of the relaxation scheme designed for the Baer-Nunziato two phase flow
model. It applies to general barotropic equations of state. It is able to cope with arbitrarily small
values of the statistical phase fractions. The approximated phase fractions and phase densities are
proven to remain positive and a fully discrete energy inequality is also proven under a classical CFL
condition. For N = 3, the relaxation scheme is compared with Rusanov’s scheme, which is the only
numerical scheme presently available for the three phase flow model (see [6]). For the same level of
refinement, the relaxation scheme is shown to be much more accurate than Rusanov’s scheme, and for
a given level of approximation error, the relaxation scheme is shown to perform much better in terms of
computational cost than Rusanov’s scheme. Moreover, contrary to Rusanov’s scheme which develops
strong oscillations when approximating vanishing phase solutions, the numerical results show that the
relaxation scheme remains stable in such regimes.

Keywords: Multiphase flows, Compressible flows, Hyperbolic PDEs, Entropy-satisfying methods, Relax-
ation techniques, Riemann problem, Riemann solvers, Godunov-type schemes, Finite volumes.
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1 Introduction

A multiphase flow is a flow involving the simultaneous presence of materials with different states or phases
(for instance gas-liquid-solid mixtures) or materials in the same state or phase but with different chemical
properties (for instance non miscible liquid-liquid mixtures). The modeling and numerical simulation of
multiphase flows is a relevant approach for a detailed investigation of some patterns occurring in many
industrial sectors. In the oil and petroleum industry for instance, multiphase flow modeling is needed for
the understanding of pipe flows where non miscible oil, liquid water and gas and possibly solid particles are
involved. In the chemical industry some synthesis processes are based on three phase chemical reactors.
In the metalworking industry, some cooling processes involve multiphase flows.

In the nuclear industry, many applications involve multiphase flows such as accidental configurations
that may arise in pressurized water reactors, among which the Departure from Nucleate Boiling (DNB)
[28], the Loss of Coolant Accident (LOCA) [29], the re-flooding phase following a LOCA or the Reactivity
Initiated Accident (RIA) [19], that all involve two phase liquid-vapor flows. Other accidental configurations
involve three phase flows such as the steam explosion, a phenomenon consisting in violent boiling or flashing



of water into steam, occurring when the water is in contact with hot molten metal particles of “corium”:
a liquid mixture of nuclear fuel, fission products, control rods, structural materials, etc.. resulting from
a core meltdown. The corium is fragmented in droplets the order of magnitude of which is 100um. This
allows a very rapid heat transfer to the surrounding water in a time less than the characteristic time of
the pressure relaxation associated with water evaporation, hence a dramatic increase of pressure and the
possible apparition of shock and rarefaction pressure waves that may also damage the reactor structure
and cause a containment failure. The passage of the pressure wave through the pre-dispersed metal creates
flow forces which further fragment the melt, increasing the interfacial area between corium droplets and
liquid water, hence resulting in rapid heat transfer, and thus sustaining the process. We refer the reader
to [3| and the references therein in order to have a better understanding of that problem, and also to the
recent paper [21].

The modeling and numerical simulation of the steam explosion is an open topic up to now. Since
the sudden increase of vapor concentration results in huge pressure waves including shock and rarefaction
waves, compressible multiphase flow models with unique jump conditions and for which the initial-value
problem is well posed are mandatory. Some modeling efforts have been provided in this direction in
[17, 16, 6, 22]. The N-phase flow models developed therein consist in an extension to N > 3 phases of the
well-known Baer-Nunziato two phase flow model [1|. They consist in N sets of partial differential equations
(PDEs) accounting for the evolution of phase fraction, density, velocity and energy of each phase. As in
the Baer-Nunziato model, the PDEs are composed of a hyperbolic first order convective part consisting in
N Euler-like systems coupled through non-conservative terms and zero-th order source terms accounting
for pressure, velocity and temperature relaxation phenomena between the phases. It is worth noting that
the latter models are quite similar to the classical two phase flow models in [4, 2, 14]. We emphasize that
the models considered here are only suitable for non miscible fluids. We refer to [20, 15] and the references
therein for the modeling of flows involving miscible fluids such as gas-gas mixtures.

The existing approach to approximate the admissible weak solutions of these models consists in a
fractional step method that treats separately convective effects and relaxation source terms. The present
work is only concerned with the numerical treatment of the convective part. For the numerical treatment
of the relaxation source terms in the framework of barotropic equations of state, we refer the reader to [6].
Up to now, Rusanov’s scheme is the only numerical scheme available for the simulation of the convective
part of the considered multiphase flow model (see [6]). Rusanov’s scheme is well known for its simplicity
but also for its poor accuracy due to the very large associated numerical viscosity. Another drawback of
Rusanov’s scheme observed when simulating two phase flows is its lack of robustness in the regimes of
vanishing phases occurring when one (or more) phase is residual and the associated phase fraction is close
to zero. Since accuracy and robustness are critical for the reliable simulation of 2D and 3D phenomena
arising in multiphase flows such as the steam explosion, one must develop dedicated Riemann solver for
these models.

The aim of this work is to develop a relaxation finite volume scheme for the barotropic multiphase
flow model introduced in [17]. In particular, we show how it is possible to extend the relaxation scheme
designed in [12] for the barotropic Baer-Nunziato two phase flow model to the multiphase flow model
with NV - where N is arbitrarily large - phases. The obtained scheme inherits the main properties of the
relaxation scheme designed for the Baer-Nunziato model. Since it is a Suliciu type relaxation scheme, it
applies to any barotropic equation of state, provided that the pressure is an increasing function of the
density (see [5, 25, 26]). The scheme is able to cope with arbitrarily small values of the statistical phase
fractions, which are proven to remain positive as well as the phase densities. Finally, a fully discrete energy
inequality is also proven under a classical CFL condition.

In [11], the relaxation scheme has shown to compare well with two of the most popular existing schemes
available for the full Baer-Nunziato model (with energy equations), namely Schwendeman-Wahle-Kapila’s
Godunov-type scheme [24] and Tokareva-Toro’s HLLC scheme [27]. Still for the Baer-Nunziato model,



the relaxation scheme also has shown a higher precision and a lower computational cost (for comparable
accuracy) than Rusanov’s scheme. Regarding the multiphase flow model considered in the present paper,
the relaxation scheme is compared to Rusanov’s scheme, the only scheme presently available. As expected,
for the same level of refinement, the relaxation scheme is shown to be much more accurate than Rusanov’s
scheme, and for a given level of approximation error, the relaxation scheme is shown to perform much
better in terms of computational cost than Rusanov’s scheme. Moreover, the numerical results show that
the relaxation scheme is much more stable than Rusanov’s scheme which develops strong oscillations in
vanishing phase regimes.

The relaxation scheme described here is restricted to the simulations of flows with subsonic relative
speeds, i.e. flows for which the difference between the material velocities of the phases is less than the
monophasic speeds of sound. For multiphase flow simulations in the nuclear industry context, this is not a
restriction, but it would be interesting though to extend the present scheme to sonic and supersonic flows.

For the sake of concision and simplicity, this work is only concerned with barotropic equations of states.
However, as it was done for the two phase Baer-Nunziato model in [11], an extension of the relaxation
scheme to the full multiphase flow model with energy equations is within easy reach. This will be the
purpose of a companion paper.

The paper is organized as follows. Section 2 is devoted to the presentation of the multiphase flow
model. In Section 3 we explain how to extend the relaxation Riemann solver designed in [12] to the
multiphase flow model and Section 4 is devoted to the numerical applications on the three phase flow
model. In addition to a convergence and CPU cost study in Test-case 1, we simulate in Test-cases 2 and
3 vanishing phase configurations where two of the three phases have nearly disappeared in some space
region. In particular, Test-case 3 is dedicated to the interaction of a gas shock wave with a lid of rigid
particles.

2 The multiphase flow model

We consider the following system of partial differential equations (PDEs) introduced in [17] for the modeling
of the evolution of N distinct compressible phases in a one dimensional space: for k =1,.., N, z € R and
t>0:

Orarg, + %(U)@xak =0, (1&)
Oy (agpr) + Or (appruy) = 0, (1b)
O (owprur) + Oz (aprui + arpr(pr)) + Z%}g P1(U)0z0q = 0. (1c)

The model consists in N coupled Euler-type systems. The quantities oy, pr and ug represent the mean
statistical fraction, the mean density and the mean velocity in phase k (for k£ = 1,.., N). The quantity py, is
the pressure in phase k. We assume barotropic pressure laws for each phase so that the pressure is a given
function of the density pi — pi(pr) with the classical assumption that pj (pr) > 0. The mean statistical
fractions and the mean densities are positive and the following saturation constraint holds everywhere
at every time: Z,iv:l aj = 1. Thus, among the N equations (la), N — 1 are independent and the main
unknown U is expected to belong to the physical space:

T _ m3N—1
Qu = {U = (1, .., N_1, 101, -, ANPN, Q1 p1UL, ..,y pNuUN) € R ;

such that 0 < aq,..,any_1 < 1 and agpgr >0 for all k =1, ..,N}.
Following [17], several closure laws can be given for the so-called interface velocity #7(U) and interface

pressures Py (U). Throughout the whole paper, we make the following choice :

for k=1, 21(U) =p(p), forl=2,.,N

71(U) =w, and {fork;«él, Pu(U) = pilpr), forl=1,.,N, 1 # k. @



With this particular choice, observing that the saturation constraint gives le\il Ik Oy = —0pay, for
all k =1,.., N the momentum equations (1c) can be simplified as follows:

3 (1prur) + 0y (arp1u? + arpi(p1)) + Sy mi(pr)decy = 0, (3)

O (anprur) + Oy (awprui + axpr(pr)) — Pr(pr) Ok = 0, k=2,.,N. (4)

Remark 2.1. When N = 2, system (1) is the convective part of the Baer-Nunziato two phase flow model
[1].  This model is thus an extension of the Baer-Nunziato two phase flow model to N (possibly > 3)
phases. As for the Baer-Nunziato model, in the areas where all the statistical fractions ay are constant
in space, system (1) consists in N independent Euler systems weighted by the statistical fraction of the
corresponding phase. These FEuler systems are coupled through non-conservative terms which are active
only in the areas where the statistical fractions gradients are non zero.

Remark 2.2. The choice ¥7(U) = uy is classical for the two phase flow model when phase 1 is dispersed
and phase 2 prevails in the fluid. It is then natural to take an interfacial velocity which is equal to the
material velocity of the dispersed phase. For three phase flows, the choice ¥7(U) = u; has been made in [0].
When simulating the steam explosion phenomenon [3, 21], it corresponds to taking an interfacial velocity
equal to the material velocity of the corium particles.

The following proposition characterizes the wave structure of system (1):

Proposition 2.1. With the closure laws (2), system (1) is weakly hyperbolic on Qy : it admits the
following 3N — 1 real eigenvalues: o1(U) = .. = ony_1(U) = w1, ony_14%(U) = ug — cx(pg) for k=1,..,N
and oon_14x(U) = ur + cr(pr) for k = 1,..,N, where c;(pr) = \/p.(pr). The corresponding right
eigenvectors are linearly independent if, and only if,

ap#0, Vk=1,..,N and lup — ug| # cx(pr), Vk=2,..,N. (5)

The characteristic field associated with o1(U),..,on—1(U) is linearly degenerate while the characteristic
fields associated with on_11x(U) and oony_14x(U) for k =1,..,N are genuinely non-linear.

Proof. The proof can be found in [18]. O

Remark 2.3. The system is not hyperbolic in the usual sense because when (5) is not satisfied, the right
eigenvectors do not span the whole space R3*N"1. Two possible phenomena may cause a loss of the strict
hyperbolicity: an interaction between the linearly degenerate field of velocity uy with one of the acoustic
fields of the phase k for k = 2,.., N, and vanishing values of one of the phase fractions ag, k =1,..,N. In
the physical configurations of interest in the present work (such as three phase flows in nuclear reactors),
the flows have strongly subsonic relative velocities, i.e. a relative Mach number much smaller than one:

_ Jun — g

M
" e(on)

<< 1, Vk=2,.,N, (6)
so that resonant configurations corresponding to wave interaction between acoustic fields and the ui-contact
discontinuity are unlikely to occur. In addition, following the definition of the admissible physical space
Qu, one never has ap, = 0. However, ap = 0 is to be understood in the sense ay, — 0 since one aim of
this work is to construct a robust enough numerical scheme that could handle all the possible values of
ar € (0,1), k=1,..,N, especially, arbitrarily small values.



An important consequence of the closure law ¥7(U) = uy is the linear degeneracy of the field associated
with the eigenvalue o1(U) = .. = ony_1(U) = u;. This allows to define solutions with discontinuous phase
fractions through the Riemann invariants of this linear field. Indeed, as proven in [18], there are 2N
independent Riemann invariants associated with this field which is enough to parametrize the integral
curves of the field since the multiplicity of the eigenvalue is N — 1. This can be done as long as the system
is hyperbolic i.e. as long as (5) is satisfied, which prevents the interaction between shock waves and the
non conservative products in the model.

An important consequence of the closure law (2) for the interface pressures Py (U) is the existence
of an additional conservation law for the smooth solutions of (1). Defining the specific internal energy of
phase k, ex by e} (pr) = pr(pr)/pi and the specific total energy of phase k by Ej = u2/2 + ex(p), the
smooth solutions of (1) satisfy the following identities:

O (a1p1 1) + 8y (1p1 Bruy + axpy(pr)ur) 4wy Y1y pi(pr) sy = 0, (7)

O (axprEy) + Or (apprErur + cupr(pr)ur) — u1pg(pr)dzou = 0, k=2,.,N. (8)

In [18], the mappings U +— (agprEx)(U) are proven to be (non strictly) convex for all £ = 1,.., N.
Since, as long as the system is hyperbolic, the gradients of «y, are supported away from shock waves, it is
natural to use theses mappings as mathematical entropies of system (1) and select the physical non-smooth
weak solutions of (1) as those which satisfy he following entropy inequalities in the weak sense:

O (a1p1 Er) 4 0y (1p1 Erur + capy(pr)un) +us S pi(p)dzay < 0, 9)

O (apprEr) + Oy (cprExur + cpr(pr)ur) — wipk(pr)Orou, <0, k=2,.,N. (10)

If a shock appears in phase 1, inequality (9) is strict and if a shock appears in phase k for some k € {2,.., N}
inequality (10) is strict. Summing for £ = 1,.., N, the entropy weak solutions of (1) are seen to satisfy
the following total energy inequality:

O <Z]kV:1 akPkEk) + 0y (Z]kvzl (axprEruy + Oékpk(ﬂk)uk)) <0. (11)

Obviously, for smooth solutions, (11) is an equality.

3 A relaxation approximate Riemann solver

As for the Baer-Nunziato two phase flow model, system (1) has genuinely non-linear fields associated
with the phasic acoustic waves, which makes the construction of an exact Riemann solver very difficult.
Following similar steps as in [12], we introduce a relaxation approximation of the multiphase flow model
(1) which is an enlarged system involving N additional unknowns 7y, associated with linearizations of the
phasic pressure laws. These linearizations are designed to get a quasilinear enlarged system, shifting the
initial non-linearity from the convective part to a stiff relaxation source term. The relaxation approxima-
tion is based on the idea that the solutions of the original system are formally recovered as the limit of
the solutions of the proposed enlarged system, in the regime of a vanishing relaxation coefficient € > 0.
For a general framework on relaxation schemes we refer to [9, 10, 5].

We propose to approximate the solutions of (1) by the solutions of the following Suliciu relaxation
type model (see [5, 25, 26]) in the limit £ — O:

OWE + D, g(WF) + (WD, W — éR(Wa), TER >0, (12)

where the relaxation unknown is now expected to belong to the following enlarged phase space:



T _ mAN—1
Qw = {W = (a1, .., N1, Q1P1, .., ANPN, Q1PIUL, ., ANPNUN, 1 p1T1, ., anpNTN) €R ,

such that 0 < aq,..,an_1 <1, agpr > 0 and agprTr > 0 for k =1, ..,N},

and where:
- 0 - [ ulazoq i - 0 -
6 10, 0N 1 6
0
a1p1Ul ) 0
QANPNU 0 O
W) = NENEN . d(W)o,W = N T, (W), R(W) =
g(W) arprii? + arm (W) 25;% 11(W)dzy (W) 0
anpNUud + aNTN SO T (W) By ey 0
a1p1Tiug #N 0 aipi(m —Th)
anpNTNun | 0 lanpN(Th — T) ]

The saturation constraint is still valid: N
> =1 (13)

For each phase k =1,..,N, 7, = ,0,;1 is the specific volume of phase k and the pressure 7y is a (partially)
linearized pressure mi (7, T ), the equation of state of which is defined by:

7rk(7—k777€) = ,Pk(n) + a%(n - Tk)7 k= 17 "7N7 (14)

where 7 — Py (1) := pp(771) is the pressure of phase k seen as a function of the specific volume 7 = p~1.

Accordingly with (2) the relaxation interface pressure Il (W) is defined by:

{ for k=1, Iy(W)=m(n,7;), forl=2,..,N (15)

for k £ 1, (W) =1k, Tg), forl=1,...N, 1 #k.

When N = 2, system (12) is exactly the same relaxation approximation introduced in [12] for the
Baer-Nunziato two phase flow model. In the formal limit ¢ — 0, the additional variable 7T} tends towards
the specific volume 73, and the linearized pressure law 7y (7, Tr) tends towards the original non-linear
pressure law pg(pr), thus recovering system (1) in the first 3N — 1 equations of (12). The constants
(ak)k=1,. N in (14) are positive parameters that must be taken large enough so as to satisfy the following
sub-characteristic condition (also called Whitham’s condition):

dPy,

2
ay > ———
k AT

(Tx), k=1,..N, (16)
for all the values T encountered in the solution of (12). Performing a Chapman-Enskog expansion, one
can see that Whitham’s condition expresses that system (12) is a viscous perturbation of system (1) in
the regime of small €.

At the numerical level, a fractional step method is commonly used in the implementation of relaxation
methods: the first step is a time-advancing step using the solution of the Riemann problem for the
convective part of (12):

OW + 0,g(W) + d(W)a,W =0, zecR,t>0, (17)



while the second step consists in an instantaneous relaxation towards the equilibrium system by imposing
Tr = 71 in the solution obtained by the first step. This second step is equivalent to sending ¢ to 0 instan-
taneously. As a consequence, we now focus on constructing an exact Riemann solver for the homogeneous
convective system (17). Let us first state the main mathematical properties of system (17).

The linearization (14) is designed so that system (17) has only linearly degenerate fields, thus making
the resolution of the Riemann problem for (17) easier than for the original system (1). We have the
following proposition:

Proposition 3.1. System (17) is weakly hyperbolic on Qyy in the following sense. It admits the following
AN —1 real eigenvalues: o1(W) = .. =on_1(W) = u1, on_106(W) = u — a7k, oon—146(W) = ug + ap7y
and osN_14£(W) = uy for k = 1,..,N. All the characteristic fields are linearly degenerate and the
corresponding right eigenvectors are linearly independent if, and only if,

ap#0, Vk=1,.,N and |luy — ug| # ag, Vk=2,..,N. (18)
Proof. The proof is given in Appendix A. O

Remark 3.1. Here again, one never has ap = 0 for W € Qw. However, ai = 0 is to be understood in
the sense ay, — 0.

We also have the following properties:

Proposition 3.2. The smooth solutions as well as the entropy weak solutions of (17) satisfy the following
phasic energy equations:

A (a1p1&1) + 0 (a1 pr&1ur + armiug) +ur SR, mdeay = 0, (19)
Oy (akpké'k) + 0, (akpké'kuk + akﬂ'kuk) — U TR0z, = 0, k=2,..,N, (20)

where ) ) - -
, —-P
gk: = gk(ukaleﬁ) - % + ek(ﬁ) + ﬂ-k(Tk kz)az k( k)7
k

k=1,.,N.

Summing for k = 1,..,N, the smooth solutions and the entropy weak solutions of (17) are seen to satisfy
an additional conservation law:

Oy (Zgzl akpké'k) + Oy (Zgzl akpkgkuk + akﬂ'kuk) =0. (21)

Under Whitham’s condition (16), to be met for all the Ty, under consideration, the following Gibbs principles
are satisfied for k =1,..,N:

T = arngin{gk(uk,Tk,E)h and  E(ug, T, k) = Eg(ug, ), (22)
k

where By (ug, i) = ui /2 + ex(pr)-

Proof. The proof of (19) and (20) follows from classical manipulations. From the phasic mass and mo-
mentum equations we first derive the evolution equation satisfied by u% /2. We then derive an equation
for (7, Tr), using the mass equation of phase k£ and the advection equation of 7. Combining these two
equations and the fact that 7 is advected, we obtain (19) and (20). The proof of Gibbs principle follows
from an easy study of the function Ty — Ex(ug, 7%, Tx)- O



Remark 3.2. Since all the characteristic fields of system (17) are linearly degenerate, the mizture energy
equation (21) is expected to be satisfied for not only smooth but also weak solutions. However, as we will
see later when constructing the solutions of the Riemann problem, in the stiff cases of vanishing phases
where one of the left or right phase fractions oy, 1, or oy g is close to zero for some k € {1,.., N}, ensuring
positive values of the densities of phase k requires an extra dissipation of the mizture energy by the computed
solution.

3.1 The relaxation Riemann problem

Let (W, Wg) be two constant states in Qy and consider the Riemann problem for system (17) with the
following initial condition:

W(z,t=0) =

{ Wy, ifx <0, (23)

Wg, ifx>0.

3.1.1 Definition of the solutions to the Riemann problem

Following Proposition 3.1, a solution to the Riemann problem (17)-(23) is expected to be a self-similar
function composed of constant intermediate states separated by waves which are contact discontinuities
associated with the system’s eigenvalues. Since the phase fractions are transported by the material velocity
of phase 1, the non-conservative products involving the phase fraction gradients are only active across this
wave and the phases are independent away from this wave. In particular, for a fixed k in {2,.., N}, the
phase k quantities may change across the contact discontinuities associated with the eigenvalues uy — ap7g,
ug, up — arTr and uq and are constant across the other waves. For the applications aimed at by this work,
we are only interested in solutions which have a subsonic wave ordering;:

]ul—uk\ < ATk, Vk=2,..,N.

Consequently, in the self-similar Riemann solution, the propagation velocity u; lies in-between the acoustic
waves of all the other phases. Moreover, ensuring the positivity of the phase 1 densities also requires the
material wave u; to lie in between the acoustic waves of phase 1.

Uy t
Ul — a1T Ut aim Uk + agTy
. T .
Wave structure for phase 1. Wave structure for phase k, k = 2,.., N.

We now introduce the definition of solutions to the Riemann problem (17)-(23), which is a straight-
forward extension of the definition of solutions in the case of two phase flows (see [12, Definition 4.1]).

Definition 3.1. Let (W, Wg) be two states in Qyy. A solution to the Riemann problem (17)-(23) with
subsonic wave ordering is a self-similar mapping W(z,t) = Wgiem(z/t; Wi, Wg) where the function
& — WRiem (& W1, Wg) satisfies the following properties:

(i) Wriem (& WL, Wg) is a piecewise constant function, composed of 3N waves (associated with the
eigenvalues ug — agT, up and up + agT, for k = 1,..,N) separating 3N + 1 constant intermediate
states belonging to Qwy, and such that:

£ < kfrllinN {ur,r — armi,r} = Wriem(§; Wi, Wg) = Wy,

&> kmaXN {uk,R + aka,R} — WRiem(5§WL7WR) = Wg.

=1,..,

(24)



(ii) There exist uf € R and IT* = (73, .., ) € RV~ which depend on (Wr, Wg) such that the function
W(x,t) = Wriem(x/t; W, Wg) satisfies the following system of PDEs in the distributional sense:

W 4 0,g(W) 4+ D* (W, Wg)do(z — ujt) =0, (25)
with
D*(Wr, Wg)= (ufAay,..,ufAan_1,0,..,0, 3 Y, 1 Aq, —m5Aay, .., —miAan ,0,..,0)T
where fork =1,..,N, Aay, = ag g — ak,L-

(iii) Furthermore, the function W(x,t) = Wgiem (z/t; Wi, Wgr) also satisfies the following energy equa-
tions in the distributional sense:

O (a1p1&1) + 0y (a1p1&1u1 + aymiug) + uf 2512 0oy =0, (26)
O (awpi€i) + O (aprErug + cpmrug) — uimpOzo = —Qp(uy, Wr, Wg)do(z — uit), k=2,.,N.
(27)
where Qp(ui, W, Wg) is a nonnegative number.
(iv) The solution has a subsonic wave ordering in the following sense:
U1, — Ok Tk, < U] < Uk R+ QKT R, Vk=2,..,N. (28)

Remark 3.3. Following (15), there are N — 1 interface pressures corresponding to the phase pressures
(ma, .., ). Moreover, the saturation constraint (13) gives le\i”#k Oyoy = —0gay for allk = 1,..,N,
which justifies the simplified form of the non-conservative product D*(Wr, Wgr)do(z — uit).

Remark 3.4. Equation (27) is a relazed version of (20) in which the energy of phase k is allowed to be
dissipated across the ui-wave despite the linear degeneracy of the associated field. As explained in [12] for
the relaxation approzimation of the Baer-Nunziato two phase flow model, allowing such a dissipation may
be necessary when an initial phase fraction oy 1, or ay g 1s close to zero, in order to ensure the positivity
of all the intermediate densities.

3.1.2 The resolution strategy: a fixed-point research

Following the ideas developed in [12], the resolution of the Riemann problem (17)-(23) is based on a fixed-
point research which formally amounts to iterating on a two step procedure involving the pair (uj,II*) €
R x RV~1 We first remark that system (25) can be written in the following form:

O + uj0za; = 0,

(1) O (capr) + Oz (uprur) =0,
O (caprwr) + 0y (arpruf + axmi (71, Th)) + SN, Oy = 0,
O (a1p1Th) + Oz (1p1Tiur) = 0,

and for £k =2,.., N:

Oray, + uj0zay, = 0,

(Sk) O (agpr) + Oz (rprur) = 0,
O (agprug) + Oy (ozkpkug + i (Th, 7})) — m0ga =0,
O (arprTr) + O (arpr Truy) = 0.



First step: The family of interface pressures II* = (73,..,7y) € RN~ defining the non-conservative
products w0z = mpAogdo(xr — uft) for k = 2,.., N are assumed to be known. Hence, system (S),
which gathers the governing equations for phase 1, is completely independent of the other phases since
the non-conservative terms can now be seen as a known source term and the Riemann problem for (S1)
can therefore be solved independently of the other phases. Observe that system (S;) is very similar to [12,
System (4.16)] in the two phase flow framework. This Riemann problem is easily solved since (S;) is a
hyperbolic system with a source term which is a Dirac mass supported by the kinematic wave of velocity
uj. Hence, there is no additional wave due to the source term.

Consequently, knowing a prediction of the interface pressures II* = (73,..,my) € RN~ one can
explicitly compute the value of the kinematic speed u] by solving the Riemann problem associated with
phase 1. This first step enables to define a function:

RN — R

II* = (75, ..,mx) — uj. (29)

FIWr, Wg;aq] : {
Second step: The advection velocity u] of the phase fractions oy, is assumed to be a known constant.
Thus, for all £ = 2,.., N, the governing equations for phase k, gathered in system (Si), form a system
which is independent of all the other systems (S;) with [ = 1,.., N, [ # k. In addition to the kinematic
velocity ug and the acoustic speeds uy + ag7k, the Riemann problem for (Sk) involves an additional wave
whose known constant velocity is uj. This wave is weighted with an unknown weight 7} Aoy, (only for
the momentum equation) which is calculated by solving the Riemann problem for (Sy) and then applying
Rankine-Hugoniot’s jump relation to the momentum equation for the traveling wave of speed uj. Here
again, we observe that system (Sy) is the exact same system already solved in the two phase flow framework
(see [12, System (4.20)]). This is what justifies the straightforward extension of the relaxation scheme to
the multiphase flow model. Solving all these Riemann problems for (S;) with & = 2,.., N, this second step
allows to define a function :

R — RN

wf s I = (1.1 (30)

YW, Wg; (ax)k=2, ] : {

Fixed-point research: Performing an iterative procedure on these two steps actually boils down to the
following fixed-point research.

Find v} in the interval (k max {ug,r —apmiL} - nllinN {ug,r+ aka,R}> such that

ui = (FIWL, Wi ar] o @ We, Wi (ar)ims,..] ) (). (31)
The interval in which u} must be sought corresponds to the subsonic condition (28) on the one hand, and

to the positivity of the intermediate states of phase 1 on the other hand.

Let us now introduce some notations which depend explicitly and solely on the initial states (Wp, Wg)
and on the relaxation parameters (ay)g=1,. n. For k=1,..,N:

1 1
ul = 3 (k. + uk,R) — ar (7&(Tk,R> Tk,R) — Tk (Th,L> ThoL)) 5
# 1 ag
=5 (76 (Tk, R, The,R) + Tk (The,Ls Tho1)) — > (uk,rR — Uk.L)

(32)

g Loy

Tl = Th,L + a_k(uk — uk,L),
1

TR =ThR— a—k(ui — Uk,R)-

Remark 3.5. Observe that with these definitions, uy — apTh = ui - akTgL and up R + QpTE,R =

ui + akT}iR.
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3.1.3 First step of the fixed-point procedure: solving phase 1

In this first step, the interface pressures II* = (73,..,7y) € RN~1 defining the non-conservative products
0z = T Aagdo(r — uit) for k = 2,.., N are first assumed to be known and one solves the Riemann
problem for (S;) with the initial condition

. _ Wl,L if x <0,
Wl(“’t_o)_{ Wig if >0, (33)

where Wy = (a1, a1p1, a1p1ur, a1 p171) denotes the state vector for phase 1, and (W 1, Wy g) are the re-
striction of the complete initial data (W, Wg) to the phase 1 variables. Observe that the non-conservative
products 70,y are not ambiguous here since for all k = 2,.., N, 7} is a known constant. System (S;)
is very similar to [12, System (4.16)| encountered in the two phase flow framework, and the resolution of
the corresponding Riemann problem follows from the exact same steps. Therefore, we only state the main
results and the reader is referred to [12, Section 4.4] for the proofs.

The following proposition characterizes the convective behavior of system (S7).

Proposition 3.3. System (S1) is a hyperbolic system with linearly degenerate fields associated with the
etgenvalues uy — a171, w1 and up + a171. The eigenvalue uy has multiplicity 2.

Proof. The proof is similar to that of Proposition 3.1 which is given in Appendix A. O

We have the following well-posedness result for the governing equations of phase 1. The Riemann
problem (S7)-(33) differs from the Riemann problem in the two phase case in [12, Prop. 4.4] only by the
value of the source term Zl]iz 7} Opay. Hence, the proof follows from similar steps as the proof of [12,
Prop. 4.4].

Proposition 3.4. Assume that the parameter ay is such that 7'1 >0 and 7'1 r>0. Then the Riemann
problem (S1)-(33) admits a unique solution the intermediate states of which are defined by:

t *
Uy
unp —amn Wy wi
U1,R + Q1T1,R
Wiz Wir
x
oy =arr, 7 =Tt ai-d), W =ui, T =T
. . (34)
O‘i’- = Q1R, 71 :Tl,R_i(uT_ul)v uii— = uf, T TR,
where
1 N
ut = b ( )Aoy (35)
! (o1, + a1,R) ; :
The intermediate densities p; and pf are positive if and only if
ui,, — a7, < uy < ui,r+ aiTi R (36)
Moreover, this unique solution satisfies the following energy equation in the usual weak sense:
N
O (np1&1) + 0z (cupr&rur + aqmiug) +uf Y o T Oy = 0. (37)
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Proof. The proof consists in solving a system with the unknowns W; and Wf‘ All the fields are lin-
early degenerated. The components of these state vectors are linked to each other through the Riemann
invariants of the uj-wave. The quantity Zl]i2 7 0z0y is a given source term in the right hand side of
the Rankine-Hugoniot relation associated with the momentum equation for this wave. W and Wy ;, are
connected through the Riemann invariants of the {u; — a;m }-wave. Wf and Wy g are connected through
the Riemann invariants of the {u; 4+ a;71 }-wave. We refer to [12, Prop. 4.4] for more details. O

The expression of uj given in equation (35) defines the function .#[Wp, Wg;a;] introduced in (29),
since u} is expressed as a function of IT* = (73, .., 7% ) € RV 1. A convenient reformulation of (35) is the
following:

N N
S omidog =Y 7 Aoy — 01 (u}), (38)
=2 =2
where
01(u}) = ar (anr + a1p) (uf —ul). (39)

3.1.4 Second step of the fixed-point procedure: solving phase k, for k =2,.., N

In this second step, the transport velocity u] of the phase fractions ay is assumed to be known, while the
vector of interface pressures II* = (73,..,7%) € RN~1 defining the non-conservative products 70,0 =
T Aoygdo(x — uit) is an unknown that must be calculated by solving the N — 1 independent Riemann
problems for (Sg), for k = 2,.., N with the initial condition

Wi(z,t =0) =

{Wk,L if  2<0, (40)

Wk,R if z >0,

where Wy, = (o, appr, agpruk, oprTr) denotes the state vector for phase k, and (Wy 1, Wy, r) are the
restriction of the complete initial data (Wz, Wg) to the phase k variables. System (Sy) is the exact same
system as [12, System (4.20)] encountered in the two phase flow framework, and the resolution of the
corresponding Riemann problem follows from the exact same steps. Here again, we only state the main
results and the reader is referred to [12, Section 4.5] for the detailed proofs.

Once the resolution is done, applying Rankine-Hugoniot’s jump relation to the momentum equation
of (Sy) gives the expression of 7} Aay.

Proposition 3.5. For every k = 2,..,N, system (Si) admits four real eigenvalues that are up — apTy,
ug, ur + apTr and uj. All the fields are linearly degenerate and the system is hyperbolic if, and only if

\uk — Uf{’ 75 ATk .
Proof. The proof is similar to that of Proposition 3.1 which is given in Appendix A. O

We search for Riemann solutions which comply with the subsonic relative speed constraint (28). Such
solutions are of three types depending on the relative wave ordering between the eigenvalues uj and uj:

"
Uy ot
A}
A}

syt U + a7 Uk R+ QKT — U + agT
Uk, — akTk,L Wy ot T ORTRR e  — apTe,L Roft T ORI Ry — apry, . Wy kR T Cklk R
W, .
WL Wer Wi r . Wi r
Wave ordering uy > uy Wave ordering uy < ug Wave ordering ux = u1

12



We denote & — Wy (& Wy, Wy, g) the self-similar mapping defining this solution and we may now
recall the following result stated in [12, Prop. 4.8] in the framework of the Baer-Nunziato two phase flow
model.

Proposition 3.6. Assume that ay, is such that 7']3 >0 and 7']3 g > 0 and define for (v,w) € R% xR the
two-variable function:

1[1+w? 1 14+ w?\? 1\? 4
w1 (L (1 1) () (1 2Y 1) m

which can be extended by continuity to w =1 by setting My(v,1) = 0.

e The Riemann problem (S)-(40) admits self-similar solutions & — Wy (&; Wy, 1, Wy, r) with the sub-
sonic wave ordering uy — apT < u] < up < U + axTk, if and only if

ui —u] >0 and ui — akTg L <uj. (42)

These solutions are parametrized by a real number M and the intermediate states are given by:

. 1—M;j _ X . -
T, = T,E’Lil — ./\/lk’ uy = uy + apMt, T = Th.L,
14+ M;
+ _ k + % + + _
T T LT F M uy = uy + vgapgMm, T = Ter, (43)
M — M .
Tk,Rx = Tg,R + Tlg,L 1]17%/\4 y Uk,Rx = Uyt VkakMle, T.rx = Ti,R-
i * X
a up —u 1— M
where v, = —2L M=k 7 L and M waries in the interval (0, Mo (v, wy)] where wy = ———F.
Ok R aKTy 1, 1+ Mk

These solutions satisfy the foliowz’ng enerqy identity:
O (ke pi€i) + Oz (aprliur + apmpug) — uiTOpay, = — Qp(ul, Wi, Wg)do(x — uit), (44)

where Qi (uj, Wr, Wg) > 0. When M = Mq(vg,wy) one has Qr(uf, W, Wgr) = 0 and when
0 < M < Mo(vg,wr) one has Qp(uj, Wr, Wg) > 0.

e The Riemann problem (Sk)-(40) admits solutions with the subsonic wave ordering uy — a7y < up <
uj < ug + a7k, if and only if

ui —u} <0 and u,ﬁC - am’,& L <uj. (45)

By the Galilean invariance of system (Sy) written in the mowing frame of speed ui (see [12, System
(4.33)]), such a solution is given by & — VW, (2ui — & VWy, g, VW, 1) where the operator V changes
the relative velocities uy, — uj into their opposite values

V(s Qs kit o Tie) = (ks ol i (201 — ue), e Tr) -
The solution also satisfies an energy identity similar to (44).

o The Riemann problem (Sk)-(40) admits solutions with the subsonic wave ordering uy — apTy < up =
uj < ug + a7k, if and only if

wh —uf =0, (46)

The intermediate states are obtained by passing to the limit as Mj — 0 in the expressions given in
the case of the wave ordering uj < uy. The solution also satisfies an energy identity similar to (44).
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Proof. The proof consists in solving a system with the unknowns W, and W;’ and Wy, g, (or Wy, 1,). All
the fields are linearly degenerated. The components of W, and W;: are linked to each other through the
Riemann invariants of the uj-wave. W, and Wy, ;, are connected through the Riemann invariants of the
{up — ap7L }-wave. WZ‘ and Wy, g, are connected through the Riemann invariants of the uj-wave. Wy, g,
and Wj, p are connected through the Riemann invariants of the {uy + a7y }-wave. We refer to [12, Prop.
4.8| for more details. O

Remark 3.6. As mentioned in Remark 3.4, taking Qx(u}, Wr, Wr) > 0 may be necessary when an initial
phase fraction oy, 1, or oy g s close to zero, in order to ensure the positivity of all the intermediate states
densities. In the case of the wave ordering up — apm, < u] < ur < up + ap7Tr for instance, ensuring
the positivity of Ty r« in the regime vy, >> 1 (ie. appr — 0) may require taking 0 < M < Mo (vg,wr)
which implies Qp(ui, W, Wg) > 0. The precise choice of M in the interval (0, Mo (vk,wy)) made in [12,
Section 4.5.2] to ensure the positivity of T rs« s still valid and will not be detailed here.

Now that the solution of the Riemann problem (Sk)-(40) has been computed, we may apply Rankine-
Hugoniot’s jump relation to the momentum equation of (Sg) in order to determine the expression of
the non-conservative product m; Aay, with respect to the given parameter uj, thus defining the function
G Wr, Wg; (ak)k=2,.. n] introduced in (30). We obtain the following expression which is directly taken
form [12, Eq. (4.51)]):

T Aay, = 7t Aay, + O (ud), (47)
where the function 6y is defined by:
Or(u}) = ar, (on,r + ok ) (u] — uf)
k,L M* ith * ui—u’f if i > 0k
akLTkLMO er 1+M* , wit M’C_W if uy, > wuf,
1 2g2 ’ (48)
g kR Mk . % uuk—ui‘ . # %
oszTkR./\/lo an 1+./\/l* , with Mk:m if uy, <wuj.

Remark 3.7. This function 0y, corresponds to an energy preserving solution (with Q(ui, W, Wg)=10)
assuming all the intermediate densities are positive. If one has to dissipate energy in order to ensure the
positivity of the densities, function 0y must be slightly modified (see [12, Section 4.5.2] for more details).

3.1.5 Solution to the fixed-point problem

Solving the fixed-point (31) amounts to re-coupling phase 1 with the other phases which have been decou-
pled for a separate resolution. This is done by equalizing the two expressions obtained for Z]kVZQ T Aay
in the first step (38) on the one hand and in the second step (47) (after summation over k = 2,..,N) on
the other hand. We obtain that u] must solve the following scalar fixed-point problem :

N
Z - 7Tk )Aay, (49)
k=2

where the function © is defined by ©(u) = 61(u) + .. + On(u).

We have the following theorem which states a necessary and sufficient condition for the existence of
solutions to the Riemann problem (17)-(23). One important fact is that this condition can be explicitly
tested against the initial data (W, Wg).
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Theorem 3.7. Let be given a pair of admissible initial states (W, Wg) € Qw X Qw and assume that
the parameter ay, s such that T]z . >0 and Tk r >0 forallk =1,.,N. The Riemann problem (17)-(23)
admits solutions in the sense of Deﬁmtzon 3.1 if, and only if, the followmg condition holds:

N
@( - ) < ' A, < @( i ) 50
kg}axN {ug,r —apmir} kz_;(ﬂl ;) Aay, kflunN {ug,r + armi R} (50)

The intermediate states of this solution are given in Propositions 3.4 and 3.6 where uj is the unique real

number in the interval (kn}aXN {upr —armi L}, nlunN {ug r + arTy R}) satisfying (49).

Remark 3.8. When simulating real industrial applications, the relaxation Riemann solver used for the
convective effects will be associated with another step for the treatment of zero-th order terms enforcing the
return to pressure, velocity (and possibly temperature) equilibrium between the phases. Hence, the pressure
disequilibrium between the phases in the initial states is usually expected to be small, which yields small
values of the quantities ﬂtli — ﬂ]ti. Hence, in most applications, condition (50) is expected to be satisfied.
However, even away from pressure equilibrium, it is easy to observe that assumption (50) is always satisfied

if the parameters (ay)r=1,.. N are taken large enough. Indeed, denoting a = (a1, ..,an), one can prove that:

@( max {uhL —aka,L}> S —CL‘aP,

k= 7"7N |a|—>+oo

N

S —mh)Aa, = O(lal),

P la| =400

of ) 2 cun
knllfl}N{ukRJraka R} > Cglal?,

|a| =400
where Cp, and C are two positive constants depending on (W, Wg).

Proof of Theorem 3.7. In order to ease the notations, let us denote

or =, max {urr—athr}, and cg= min {urp+arTip}-
Let us prove that each of the functions 6 is a continuous and strictly increasing function on the open
interval (cr,cr). The function 6y defined in (39) is clearly continuous and strictly increasing on this
interval. Let us now consider 6 for some k € {2,..,N}. We only consider the energy preserving case for
which 0y, is defined in (48) (see Remark 3.7 and [12, Section 4.6.2] for the general case). For u} € (cr,cr),
we have M} € (—1,1) (see (48) and Remark (3.5)) and therefore wy = (1 — M3)/(1 + M) € (0,400).
The function w — M (v, w) defined in (41) is continuous on R , which implies that the function ), defined
n (48) is continuous on the interval (cr,cr). Let us now differentiate 6y,.

ﬁ * *
_ 1—
For uj € (CL,u,ﬁg) we have, denoting vy, = e, , M = Lﬁul, Wy = 7/\4’:;
X OM dwr  dM;
0, (u}) = ag (kL + arr) + 2az QgL T’nga—w(”’“’“k) . v . du’{k
d 2 1 2 dM;; 1
with wk* = — g = —( + W) and 'A/ik = — . Hence, we obtain:
1 X oM
() = 1+ v+ 1L+ ) == (v, ).
ap Ok R w
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It is not difficult to prove that the rlght hand side of this equality is positive which implies that 6 is
strictly increasing on the interval (cr,, uk) Actually this exact computation has already been done in the
framework of the Baer-Nunziato model (see [12, Eq. (4.65)] for the details). A similar computation proves
that ¢} is also positive on the interval (ui, cr). We obtain that all the functions 6 are continuous and
strictly increasing on the open interval (cr,cr) and so is © = 61 + .. + Oy. The result of Theorem 3.7

follows from the intermediate value theorem.
O

3.2 The relaxation finite volume scheme and its properties

We now derive a finite volume scheme for the approximation of the entropy weak solutions of a Cauchy
problem associated with system (1). For simplicity in the notations, we assume constant positive time and

space steps At and Axz. The space is partitioned into cells R = U]eZ i where C; = [a:j_ 1,541 [ with
2 2

Ti1 = (j+ §)Aaz for all j in Z. We also introduce the discrete intermediate times ¢ = nAt, n € N. The
2

approximate solution at time ¢" is a piecewise constant function whose value on each cell C; is a constant
value denoted by U}. We assume that At and Ax satisfy the CFL condition :

At 1

Ay max, I;laZX max {|(ur — ar7i) |, |(wr 4+ armie)jyq |} < 3 (51)

The Finite Volume relaxation scheme reads (see [12] for more details):
Urtt =07 - A p-qunun,,) - B Uy 52
; A P, Up) — PO, ) (52)

where the numerical fluxes are computed thanks to the exact Riemann solver Wgiem (&; W, Wg) con-
structed for the relaxation system:

F~(U.,Ug) = Pg (WRiem (0_; A (Up), %(UR))) + D" (# (Uy), #(Ug)) 1{“T<0}’
F+([UL, [UR) = ,@g (WRiem (0+; .//(UL), %(UR))) - @D* (%(UL), .//(UR)) ]l{u’l‘>0}'

The non-conservative part of the flux D*(Wy, Wg) is defined in Definition 3.1 and the mappings .# and
& are given by:

QU — QW

M N—1
(%i)i=1,.3N-1 +— (331751727--75173N—175171751727--7$N—171_Zizl iL"z>

QW — Q[U
P

{ (xi)z'zl,..AN—l —  (x1,22,.., 23N _1).
At each interface z; 1 the relaxation Riemann solver Wriem (&; . (U7), .# (U}, ,)) depends on the
family of relaxation parameters (ay)g=1,. n which must be chosen so as to ensure the conditions stated in
the existence Theorem 3.7, and to satisfy some stability properties. Observe that one might take different
relaxation parameters (ay)g=1,. n for each interface, which amounts to approximating system (1) by a
different relaxation approximation at each interface, which is more or less diffusive depending on how
large are the local parameters. Further discussion on the practical computation of these parameters is
postponed to the appendix B, as well as the detailed description of the computation of the numerical
fluxes F* (U, Ug).
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Remark 3.9 (The method is valid for all barotropic e.o.s.). The Riemann solution Wgiem(&; W, Wg)
only depends on the quantities uﬁk, 772, T,E’L and T]z7R defined in (32) and on the left and right phase
fractions oy 1, and oy g for k =1,..,N. Indeed, the solution of the fized-point problem (49) only depends
on these quantities and so do the intermediate states (see (34) and (43)). Therefore, the dependence
of the Riemann solution Wgiem(&; Wr, Wg) on the barotropic equation of state occurs only through the
computation of mg(7x,L, Tk,L) and (7R, Tk,r). For (Wp,Wg) = (A4 (U}), # (U}, ,)), we have Ty 1 =

(78)}, and Te.r = ()74 and thus (kL Te,r) = Pe((pk)}) and 7k (TR, Th,r) = Pe((pk)}41) for all
k=1,..,N. These quantities can be computed for any barotropic e.o.s. at the beginning of each time step.

We may now state the following theorem, which gathers the main properties of this scheme, and which
constitutes the main result of the paper.

Theorem 3.8. The finite volume scheme (52) for the multiphase flow model has the following properties:

e Positivity: Under the CFL condition (51), the scheme preserves positive values of the phase frac-
tions and densities: for all n € N, if (U} € Qu for all j € Z), then 0 < (Ozk)”"'l < 1 and

appe)” Tt >0 forallk=1,..,N and all j € Z, i.e. (U € Qy for all j € 7).
j j

e Conservativity: The discretizations of the partial masses agpr, k = 1,.., N, and the total mixture
momentum Z]kvzl appruE are conservative.

e Discrete energy inequalities. Assume that the relaxation parameters (ak) ,k=1,..,N satisfy

Whitham’s condition at each time step and each interface, i.e that for all k = 1,. ,N,neN, jeZ,
(ak)j+l is large enough so that
2

(@)}, ) > =2, (53)

for all Ty in the solution & — Wriem (&; 4 (U} ), # (U} ,,)). Then, the values UY, j € Z, n € N, com-
puted by the scheme satisfy the following discrete energy inequalities, which are discrete counterparts
of the energy inequalities (9) and (10) satisfied by the exact entropy weak solutions of the model:

At
(1p1En)(UFH) < (1p1 En)(UF) Az ((041P151U1 tarmu)i s~ (aprrun + 0417T1ul);‘_%>
N
At
——1 ui)” )" a))” — (o))"
Ar {(u’{)?%zo}( 1)]_% ;( l)]_% (( l)g ( l)] 1)
At ol
~ e, o) (g 2Dy (@0 = ),
Vipd= 1=2
(54)
and fork=2,..,N :
At
(OékPkEk)(UgH‘l) < (OékPkEk)(U?) Az ((akpkgkUk + akﬂkuk)?+% — (apprErur + akﬂkuk)?_%)
At *\ 7 *\ 7 n n
TR {oay 120}(u1)j‘% (mi)j_ g (@) = (o))
-2
At o . .
+A—$1{(u1)7} <0 (U1)j+1 (Wk)jJr% ((ak)j+1 - (ak)j) )
T2
(55)

where for j € Z, (aprp€ruy + apmpug)” = = (agprErur + opmrug) <WRiem(0+; ///(U?),///(U?H)))
is the right hand side trace of the phasic energy flux evaluated at Tji1
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Proof. A classical reformulation of the approximate Riemann solver allows to see that U?'H is the cell-
average over C; of the following function at ¢t = L
=Tl

Uapy(0:8) = 3 Wit (bt A (U]),cA(0310) ) Ly, (0 (56)

JEZ

Hence, the positivity property on the phase fractions and phase densities is a direct consequence of Theorem
3.7 and Definition 3.1 which states the positivity of the densities in the relaxation Riemann solution. For
this purpose, energy dissipation (27) across the wuj-contact discontinuity may be necessary for enforcing
this property when the ratio % (or its inverse) is large for some j € Z.
i+l

The conservativity of the discretization of the mass equation is straightforward. That of the discretiza-
tion of the total momentum is a consequence of the fact that uj is the solution of the fixed-point problem
(49).

Let us now prove the discrete energy inequalities (55) for phases k = 2,.., N satisfied by the scheme
under Whitham’s condition (53). Assuming the CFL condition (51), the solution of (17) over [z ;

J—%’ijr%]X
[t",t"T1] is the function

r— X,

Wie.t) = W, (S A ) ) 1y

$—$]+2 . .
W\ s AU, AU ) Loy (@) (57)

According to Definition 3.1, this function satisfies the phase k energy equation:
Oy (akpr€r) + Ox (o pr&iur + cgmpuy)
= (um)? s ()] = (r)r) do (v =,y = ()7 s (2 — 1)
— (i) () = (n)}) do (v —ppy = ()7, (2= 1)

—(Qu)7 100 (=g = (i) s (=) = (Qu)2, 100 (2 =y — (i), 1 (E=17))
(58)
where for i € Z, we have denoted (Q)? 1 = Qy (( AR Z‘_Q,///(U?)). Integrating this equation
-2 2

over |z._1,x. 1[x[t",t"] and dividing by Az yields:
J=5"i+s3

1
2

L /x”%(akpkgk)(w($,tn+l))d$ < (awpii) (A4 (U7))

Az L
e At
—E(akpk&guk + apmrug) (WRiem (0_;//([[}?), //([USL_H)))
At n "
+A—$(O‘kpkgkuk + amgti) (Wricam (0732 (U}_y), 4 (U})))
At * K\ n n
+A_;p]l{(u;)’? 1>o}(u1 mi)j-y (@) = (n)i-a)
At -
B0 flupy, o) (11 (005 = (0],
it+3
(59)
because (Qk);z ; >0 and (Qk) s > 0. Since the initial data is at equilibrium: W(z,t") = .#(U7}) for
2
all x € Cj (i.e. (Tg)j is set to be equal to (73)7) one has (aprEk) (A (U})) = (axprEr)(U}) according
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to Proposition 3.2. Applying the Rankine-Hugoniot jump relation to (58) across the line {(z,t),z =
Tip1,t> 0}, yields:
2

(arpr€rur + armrug) (Wriem (0754 (U), .4 (U},)))

= (pr€rur + opmpug) (Wriem (0754 (U}), 4 (U} 4))) + (Qk)y+2 {(u*)n :0}.

Hence, since (Qk)?+1 > 0, for the interface x taking the trace of (ayprEpur + agmruy) at 07 instead of
2

it+3’
0~ in (59) only improves the inequality. Furthermore, assuming that the parameter ay, satisfies Whitham’s
condition (53), the Gibbs principle stated in (22) holds true so that:

1 T 1
A_:E/ J Q(OkakEk)(Uapp(x7tn+l dz < A_/ akpkgk (W(x’tn+l))d$'
Tj

1
2

|
NI

Invoking the convexity of the mapping U — (axprEx)(U) (see [18]), Jensen’s inequality implies that
n+1 1 ijr% n+1
(o Er) (U5™) < <~ (arprEy) Uapp(z, t"77)) da,
T. 1
i-3

which yields the desired discrete energy inequality for phase k. The proof of the discrete energy inequality
for phase 1 follows similar steps. O

4 Numerical results

In this section, we present three test cases on which the performances of the relaxation scheme are il-
lustrated. We only consider the three phase flow model (i.e. N = 3). In the first two test cases, the
thermodynamics of the three phases are given by ideal gas pressure laws for k =1,2,3 :

pr(pr) = ki), (60)

and we consider the approximation of the solutions of two different Riemann problems. In the third test
case, we consider the simulation of a shock tube apparatus, where a gas shock wave interacts with a lid
of rigid particles. This third case is also simulated with the three phase flow model although it is a two
phase flow. The thermodynamics of the particle phase is given by a barotropic stiffened gas e.o.s..

We recall that the scheme relies on a relaxation Riemann solver which requires solving a fixed-point

problem in order to compute, for every cell interface T, the zero of a scalar function (see eq. (49)).
2

Newton’s method is used in order to compute this solution. Usually, convergence is achieved within three

iterations.
4.1 Test-case 1: a Riemann problem with all the waves

In this test-case, the thermodynamics of all three phases are given by barotropic e.o.s. (60) with the
parameters given in Table 1. The wave pattern for phase 1 consists of a left-traveling rarefaction wave,

(k1,71)  (K2,72)  (K3,73)
1,3) (10,1.4) (1,106)

Table 1: E.o.s parameters for Test 1.

a phase fraction discontinuity of velocity w; and a right-traveling shock. For phase 2 the wave pattern
is composed of a left-traveling shock, the phase fraction discontinuity, and a right-traveling rarefaction
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. us + c3
h
1
1
UL X [UR
X

Figure 1: Structure of a Riemann solution, notations for the intermediate

states.

Region L Region — Region + Region R
ay 0.9 0.9 0.4 0.4
o9 0.05 0.05 0.4 0.4
p1 2.5 2.0 2.06193 1.03097
uy | —0.56603 0.3 0.3 —1.62876
02 0.2 1.0 1.00035 1.25044
ug | 6.18311 0.2 0.28750 1.14140
03 0.5 1.0 1.19853 .59926
uz | 0.31861 —0.5 0.13313  —0.73119

Table 2: Test-case 1: left, right and intermediate states of the exact solution.

wave. Finally, the wave pattern for phase 3 is composed of a left-traveling shock, the phase fraction
discontinuity, and a right-traveling shock. The ui-contact discontinuity separates two regions denoted —
and + respectively on the left and right sides of the discontinuity (see Figure 1).

The relaxation scheme is compared with Rusanov’s scheme, which is the only numerical scheme
presently available for the three-phase flow model (see [6]). In Figure 2, the approximate solution com-
puted with the relaxation scheme is compared with both the exact solution and the approximate solution
obtained with Rusanov’s scheme (a Lax-Friedrichs type scheme). The results show that unlike Rusanov’s
scheme, the relaxation method correctly captures the intermediate states even for this rather coarse mesh
of 100 cells. This coarse mesh is a typical example of an industrial mesh, reduced to one direction, since
100 cells in 1D correspond to a 10%-cell mesh in 3D. It appears that the contact discontinuity is captured
more sharply by the relaxation method than by Rusanov’s scheme for which the numerical diffusion is
larger. In addition, the velocity of the contact discontinuity is not well estimated for the phase 2 vari-
ables with such a coarse mesh. We can also see that for the phase 2 and phase 3 variables, there are
no oscillations as one can see for Rusanov’s scheme: the curves are monotone between the intermediate
states. The intermediate states for the phases 2 and 3 are not captured by Rusanov’s scheme whereas
the relaxation scheme gives a rather good estimation, even for the narrow state in phase 3 between the
contact discontinuity and the right-traveling shock. These observations assess that, for the same level of
refinement, the relaxation method is much more accurate than Rusanov’s scheme.

A mesh refinement process has also been implemented in order to check numerically the convergence
of the method, as well as its performances in terms of CPU-time cost. For this purpose, we compute the
discrete L'-error between the approximate solution and the exact one at the final time T}ax = NAt = 0.05,
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normalized by the discrete L'-norm of the exact solution:

_ Zj ‘(bév - (b@x(xﬁTmax)’Ax
E(Ax) - Z] ’(bex(xj;Tmax)‘Ax )

where ¢ is any of the non-conservative variables (a1, a9, p1,u1, p2, us, p3,us3). The calculations have been
implemented on several meshes composed of 100 x 2™ cells with n = 0,1,..,10 (knowing that the domain
size is L = 1). In Figure 3, the error E(Az) at the final time T = 0.05, is plotted against Ax in
a log — log scale for both schemes. We can see that all the errors converge towards zero with at least
the expected order of Az!'/2. Note that Az'/? is only an asymptotic order of convergence, and in this
particular case, one would have to implement the calculation on more refined meshes in order to reach the
theoretically expected order of Az!'/2.

Figure 4 displays the error on the non-conservative variables with respect to the CPU-time of the
calculation expressed in seconds for both the relaxation scheme and Rusanov’s scheme. Each point of the
plot corresponds to one single calculation for a given mesh size. One can see that, for all the variables
except p1 and uq, if one prescribes a given level of the error, the computational time needed to reach this
error with Rusanov’s scheme is higher than that needed by the relaxation scheme. On some variables, the
gain of time can be spectacular. For instance, for the same error on the phase 1 fraction o, the gain in
computational cost is forty times when using the relaxation method rather than Rusanov’s scheme which
is a quite striking result. Indeed, even if Rusanov’s scheme is known for its poor performances in terms of
accuracy, it is also an attractive scheme for its reduced complexity. This means that the better accuracy
of the relaxation scheme (for a fixed mesh) widely compensates for its (relative) complexity.

4.2 Test-case 2: a Riemann problem with a coupling between a single phase region
and a mixture region

In this test-case, the thermodynamics of all three phases are still given by barotropic e.o.s. (60) with the
parameters given in Table 3.

(k1,m)  (K2,72)  (K3,73)
(1,3)  (10,1.4) (5,1.6)

Table 3: E.o.s parameters for Test 2.

Here, we consider a Riemann problem in which two phases vanish in one of the initial states, which
means that the corresponding phase fractions are equal to zero. For this kind of Riemann problem, the
ui-wave separates a mixture region where the three phases coexist from a single phase region with the
remaining phase.

The solution is composed of a {us — c3}-shock wave in the left-hand side (LHS) region where only phase
3 is present. This region is separated by a uj-contact discontinuity from the right-hand side (RHS) region
where the three phases are mixed. In this RHS region, the solution is composed of a {u; + ¢ }-shock, a
{ug + c2}-shock and a {uz + c3}-rarefaction wave.

In practice, the numerical method requires values of o 1, and ap 1, that lie strictly in the interval (0, 1).
Therefore, in the numerical implementation, we take a7 = ag = 1071%. The aim here is to give a
qualitative comparison between the numerical approximation and the exact solution. Moreover, there is
theoretically no need to specify left initial values for the phase 1 and phase 2 quantities since this phase is
not present in the LHS region. For the sake of the numerical simulations however, one must provide such
values. We choose to set p1 1, u1,1, p2,1, u2,, to the values on the right of the w;-contact discontinuity,
which is coherent with the preservation of the Riemann invariants of this wave, and avoids the formation
of fictitious acoustic waves for phases 1 and 2 in the LHS region. For the relaxation scheme, this choice
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Figure 2: Test-case 1: space variations of the physical variables at the final time T, = 0.05. Mesh
size: 100 cells.

enables to avoid oscillations of the phases 1 and 2 density and velocity in the region where these phases
are not present, as seen in Figure 5. However, some tests have been conducted that assess that taking
other values of (p1,1,,u1,1, p2,1, u2,1,) has little impact on the phase 3 quantities as well as on the phases 1
and 2 quantities where these phases are present.

As expected, we can see that for the same level of refinement, the relaxation method is more accurate
than Rusanov’s scheme. As regards the region where phases 1 and 2 do not exist, we can see that the
relaxation scheme is much more stable than Rusanov’s scheme. Indeed, the relaxation scheme behaves
better than Rusanov’s scheme when it comes to divisions by small values of a; or as, since the solution
approximated by Rusanov’s scheme develops quite large oscillations. Moreover, the amplitude of these
oscillations increases with the mesh refinement !
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E(AX)

10° 10 10° 10 107 10 1073 1072
AX AX

Figure 3: Test-case 1: L'-Error with respect to Ax for the relaxation scheme and Rusanov’s scheme.

Region L Region — Region + Region R
o1 0.0 0.0 0.4 0.4
a9 0.0 0.0 0.2 0.2
p1 — — 1.35516 0.67758
Uy — — 0.3 —0.96764
P2 - - 1.0 0.5
U2 — — 0.3 —2.19213
p3 0.5 1.0 0.99669 1.24587
ug | 2.03047 0.2 0.04917 0.70127

Table 4: Test-case 2: left, right and intermediate states of the exact solution.
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Figure 4: Test-case 1: L!-Error with respect to computational cost (in seconds) for the relaxation
scheme (bullets, red line) and Rusanov’s scheme (squares, blue line).
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4.3 Test-case 3: interaction of a gas shock wave with a lid of rigid particles

In this test-case, we consider a configuration where an incoming gas shock wave hits a cloud of spherical
rigid particles. A sketch of the shock tube apparatus is given in Figure 6. The tube ranges from x = 0m
to x = 3.75m and is closed at both ends. At the initial time ¢t = 0s, the cloud of particles lies between
x =2.97m and x = 3.37m. This test-case is adapted from the experimental setup presented in |7, 8].

S1 SQ 53 S4
r=2.7 z=3.0 x=3.2 r=3.7

L.l |

Low pressure

///1/

/,/’
? High pressure
-

00000000
| I

=0 0.75 297 3.37  3.75

3
8

Figure 6: Test-case 3: sketch of the experimental shock tube apparatus at ¢t = 0.

A gas pressure disequilibrium is initiated at = 0.75m. This initial pressure disequilibrium produces
a left going gas rarefaction wave and a right-going gas shock wave. The rarefaction wave is soon reflected
by the left wall while the shock first hits the lid of particles (producing a small left-going wave) and is
then reflected by the right wall after crossing the lid of particles. In order to retrieve this behavior, four
pressure transducers are located at stations S, for n =1,..,4 (see Figure 6).

We decide to simulate this experiment with Rusanov’s scheme and the relaxation scheme for the
barotropic three-phase flow model. The particle phase has label 1 while the gas phase has label 2. Phase
3 is an “absent” phase, the statistical fraction of which is set to az = 1070 everywhere. At time t = 0,
the particle phase is residual outside the lid of particles and we set oy = 1071 for = ¢ (2.97,3.37). In the
lid of particles, i.e. for x € (2.97,3.37) we set ag = 0.0104. At the initial time, all phases are at rest and
in relative pressure equilibrium, with a space pressure disequilibrium at x = 0.75m, thus for k =1, ..,3:

up(z,t =0) =0m.s~ 1,

(2.t = 0) = 7.10° Pa, for x < 0.75m,
PEL,E=Y)=19 1105 Pa, for x > 0.75m.

The particle phase follows a barotropic stiffened gas equation of state:

p1(p1) = cip1 + Pirer,

with ¢; = 1500m.s~ ! and P ver < 0 is such that pi(p1 rer) = 10° Pa where P1ref = 103 kg.m™3. The gas
phase follows a barotropic ideal gas pressure law:

p2(p2) = ’{2p327

with 75 = 7/5 and k2 is such that pa(parer) = 10° Pa where pg o = 1.27 kg.m~3. In the computations,
the same e.o.s. is chosen for the residual phase with label 3.

Figure 7 displays the numerical approximations on the time interval (0,0.01) of the total mean pressure
P= Zzzl apr at stations S, for n = 1,..,4. The obtained computations are run with a 5000 cell mesh
with both the relaxation scheme and Rusanov’s scheme. For both schemes, the observed curves reflect the
expected behavior of the total mean pressure. At station Si, the pressure first jumps to a value P* when
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Figure 7: Test-case 3: Mean pressure signals (in Pa) w.r.t time (in s) at stations S,, n =1, ..,4.

the right-going gas shock wave reaches x = 2.7m around time t = 0.0037 s. The pressure at this location
then remains steady until the reflection of the left-going rarefaction wave meets this position around time
t = 0.0058 s which causes a decrease of the pressure until a second jump occurs (around time ¢ = 0.0088 s)
due to the reflection of the right-going gas shock wave which has hit the right wall boundary after crossing
the lid of particles. Similar features are observed at stations Sy and S3 with the (expected) difference
that the more rightward the station is located, the later the first pressure jump occurs and the sooner
the second pressure jump occurs. If we now turn to station Sy, a first pressure jump to the value P*
is recorded around time ¢ = 0.0056 s due to the right-going gas shock wave, soon followed by a second
pressure jump (around ¢ = 0.0059s) to a value P** due to the reflection of this wave on the right wall
boundary. The pressure then remains steady until the location of station .Sy is reached by the reflection
of the left-going rarefaction wave on the left wall boundary, causing a decrease in the pressure.

In Table 5, we compare the values of P* and P** obtained respectively in the experiment [7, 8|, to
those obtained with Rusanov’s scheme and with the Relaxation scheme. We can see that the pressure
values obtained with the barotropic three-phase flow model are slightly over estimated, a behavior that
has already been observed in [6] on the same test-case.

Experiment Rusanov’s scheme Relaxation scheme
P* (x10° Pa) ~ 2.4 2.78 2.78
P**( x10° Pa) ~ 5.0 6.85 6.85

Table 5: Total mean pressure behind the right-going gas shock P* and behind the reflection of this
shock wave on the right wall boundary P**.

5 Conclusion

We have extended to the N-phase compressible model developed in [17] the relaxation finite volume scheme
designed in [12] for the barotropic Baer-Nunziato two phase flow model. The obtained scheme inherits
the main properties of the scheme designed for the two phase framework. It applies to general barotropic
equations of state (see Remark 3.9). It is able to cope with arbitrarily small values of the statistical phase
fractions. The approximated phase fractions and phase densities are proven to remain positive and a
discrete energy inequality is proven under a classical CFL condition.
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For N = 3, three test cases have been implemented which assess the good behaviour of the relaxation
scheme. For the same level of refinement, the relaxation scheme is shown to be much more accurate than
Rusanov’s scheme, and for a given level of approximation error, the relaxation scheme is shown to perform
much better in terms of computational cost than Rusanov’s scheme. Moreover, contrary to Rusanov’s
scheme which develops strong oscillations when approximating vanishing phase solutions, the numerical
results show that the relaxation scheme remains stable in such regimes. Given that Rusanov’s scheme is
the only numerical scheme presently available for the considered three phase flow model, the present paper
therefore constitutes an improvement in this area.

Several natural extensions to this work can be considered. First of all, the scheme can be easily extended
to the multidimensional framework. Indeed, the multidimensional version of the N-phase model (see [6]
for the multi-D three phase model) is invariant under Galilean transformation and under frame rotation.
Thus, the one-dimensional relaxation Riemann solver can still be used to obtain a finite volume scheme
on two and three dimensional unstructured grids. An update of the cell unknown is obtained through a
convex combination of 1D updates associated with the cell faces. These 1D updates are computed with
the relaxation 1D scheme by considering local 1D Riemann problems in the orthogonal direction to the
grid faces. Thanks to the convex combination, the positivity and entropy properties of the scheme are
still valid for the multidimensional scheme under a natural CFL condition. We refer to [23| where this
extension is detailed for the Baer-Nunziato two phase flow model, and where 2D-test cases have already
been conducted. Another natural generalization is the extension of the scheme to higher order. A formally
order two scheme can be obtained by considering a classical minmod reconstruction on the symmetrizing
variable and a second order Runge-Kutta time scheme (see [13] for the two phase model). Such a procedure
however does not ensure the preservation of the discrete energy inequality. Designing entropy satisfying
second order numerical schemes is an open topic which is still under investigation. Finally, the extension
of the relaxation numerical scheme to the multiphase flow model with non barotropic equations of state
will be considered in a forthcoming paper. The key property of the relaxation scheme which allows this
relatively simple extension is the existence of the discrete energy inequalities (54)-(55). Thanks to these
and to the second principle of thermodynamics which connects the phasic energies and the transported
phasic entropies, one is able to extend the present Riemann solver to the full model with general e.o.s.
through minor adaptations. This work has already been done for the Baer-Nunziato two phase model in
[11]. The obtained scheme was shown to compare well with two of the most popular existing available
schemes, namely Schwendeman-Wahle-Kapila’s Godunov-type scheme [24] and Tokareva-Toro’s HLLC
scheme [27].

A Eigenstructure of the relaxation system

Proposition A.1. System (17) is weakly hyperbolic on Qyy in the following sense. It admits the following
AN —1 real eigenvalues: o1 (W) = .. = on_1(W) =uy, on_146(W) = ug — ar7i, oon—146(W) = ug + ap7i
and osN—14x(W) = uy for k = 1,..,N. All the characteristic fields are linearly degenerate and the
corresponding right eigenvectors are linearly independent if, and only if,

ap#0, Vk=1,..N and |lug — ug| # agme, VEk=2,..,N. (61)

Proof. Denoting W = (aw, .., an, p1,u1, T1, -, pv, un, Tav) T, the smooth solutions of system (1) satisfy the

following equivalent system:

W + A (W)9,W =0,
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where o7 (W) is the block matrix:
(A 0 \

By Cn
We write 7y, instead of 7 (7%, Ti) in order to ease the notations. Defining My = (ux — u1)/(ag7y), for
k = 2,..,N, the matrices A, By,..,By and Ci,..,Cy are given as follows. Aisa (N —1) x (N —1)

diagonal matrix with u; on the diagonal. By,.., By are 3 X (N — 1) matrices and C1,..,Cy are 3 x 3
matrices defined by:

N
1
B, = Z(m — )02 041,k ,
a1p1 3= 1<i<3
1<j<N-1
(P MyarT o o B
Bk = (70% 5171 5]_‘_17]@) 1<i<3 5 fOl“ k’ = 2, ) N,
1<j<N-1
ug Pk 0
Ok = aiTg Uk (p;c(n) + ai)’r]f 5 for k = 17 0y N7
0 0 Uk

where ¢, , is the Kronecker symbol: for p,q € N, §,, = 1 if p = ¢ and 9, , = 0 otherwise. Since A is
diagonal and Cj, is R-diagonalizable with eigenvalues uy — a7 and uy + ax7 and g, the matrix o7 (W)
admits the eigenvalues u; (with multiplicity N), w3 — a171, u1 + a171 and ug — a7k, up + a7, and uy for
k =2,..,N. In addition, o/ (W) is R-diagonalizable provided that the corresponding right eigenvectors
span R* =1 The right eigenvectors are the columns of the following block matrix:

(4] 0
Bl [

By C

where A’ is a (N — 1) x (N — 1) diagonal matrix defined by A’ = diag(1 — M3,..,1 — M%). B}, .., By are
3 X (N — 1) matrices and C1,..,C}y are 3 x 3 matrices defined by:

N
B! = — 1 — M;)6;q16 ,
1 ( 041a1712 Z (e — m1)( )01 741, k>

k=2 1<i<3
1<j<N-1
M2 p Mi.ayT
r_ Pk o Mypagty o ' _
By, = << ” 0i,1 ” 51,2) 5]+1,k> 1<i<s for k=2,..,N,
1<j<N—1
Pk pr 0
Co=|-arm axme 0], fork=1,.N.
0 0 1

The first N — 1 columns are the eigenvectors associated with the eigenvalue u;. For k = 1,.., N, the
(N +2(k — 1))-th, (N 4 (2k — 1))-th and (N + 2k)-th columns are the eigenvectors associated with
Ug — ATk, Uk + a7 and uy respectively. We can see that R(W) is invertible if and only if M} # 1 for all
k=2,.,N ie. if and only if |up —u1| # ag7g for all k =2, .., N. In particular, if for some k = 2,.., N, one
has uy = ui, R(W) is still invertible. Denote (R;(W))i<j<an—1 the columns of R(W). If 1 <j < N —1,
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we can see that the (N + 1)-th component of R;(W) is zero. This implies that for all 1 < j < N —1
R;(W) - Vyy(ur) = 0. Hence, the field associated with the eigenvalue u; is linearly degenerated. Now we
observe that for all k =1,..,N:

Rn+2t—1)W) - Vw(ug — ap) = 0,
Rn+2k—1)W) - Vw(ug + ap) = 0,

RyvaryW) - Viw(ug) = 0.

This means that all the other fields are also linearly degenerated. O

B Practical computation of the numerical fluxes

B.1 Computation of the relaxation parameters (ag)i—1_  n

In the numerical scheme (52), at each interface T;, 1, one must determine the relaxation parameters
2

(ak)k=1,. n in order to compute the Riemann solution Wgiem (§; Wi, Wr) where Wy, = A (U}) and Wg =
M ([U;‘ +1)- The parameters (ag)g—1,..,n, must be chosen large enough so as to satisfy several requirements:

e In order to ensure the stability of the relaxation approximation, a; must satisfy Whitham’s condition
(53). For simplicity however, we do not impose Whitham’s condition everywhere in the solution of
the Riemann problem (17)-(23) (which is possible however), but only for the left and right initial
data at each interface:

for k=1,..,N, ap > max(pirck(pr,L) Pr,r ck(Pr,L)) (62)

where ci(pg) is the speed of sound in phase k. In practice, no instability was observed during the
numerical simulations due to this simpler Whitham-like condition.

e In order to compute the solution of the relaxation Riemann problem, the specific volumes T]z ;, and

7',5  defined in (32) must be positive. The expressions of 7',3 ;, and 7',3  are second order polynomials
in a,;l whose constant terms are respectively 74, and 74, g. Hence, by taking a; large enough, one

i

can guarantee that 77 ; > 0 and T}i g > 0, since the initial specific volumes 7, ;, and 74, g are positive.

e Finally, in order for the relaxation Riemann problem (17)-(23) to have a positive solution, the
parameters (ay)g=1,. n must be chosen so as to meet condition (50) of Theorem 3.7. As explained in
Remark 3.8, assumption (50) is always satisfied if the parameters (aj)x=1,. n are taken large enough.

Thereafter, we propose an algorithm for the computation of the parameters (aj)r=1,. n at each interface.
We begin with choosing 1 a (small) parameter in the interval (0,1). In our numerical computations, we
took n = 0.01.
e For k= 1,.., N initialize a:

ag := (1+n) max (pg, 1, cx(ok,L); Pk, R Ck(Pk,R))-
e Fork=1,..,N:

do {ax := (1 + n)ax} while (T]g . <0or T,ER <0).
e Do {for k=1,..,N, aj, := (1+n)ay} while (not (50)).

This algorithm always converges in the sense that there is no infinite looping due to the while-
conditions. Moreover, this algorithm provides reasonable values of (aj)g=1, n, since in all the numerical
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simulations, the time step obtained through the CFL condition (51) remains reasonably large and does
not go to zero. In fact, the obtained values of (ay)x=1,. n are quite satisfying since the relaxation scheme
compares favorably with Rusanov’s scheme, in terms of numerical diffusion and CPU-time performances
(see Figure 4).

B.2 Construction of the solution to the Riemann problem (17)-(23)

Now, given (Wr, Wg) € Qw and (ag)r=1,. 5 such that the conditions of Theorem 3.7 are met, we give the
expression of the piecewise constant solution of the Riemann problem (17)-(23):

£ — Wriem (§; Wr, Wg).

We recall the following notations built on the initial states (Wy, Wg) and on the relaxation parameters
(ak)k=1,. N, which are useful for the computation of the solution. For k =1,.., N:

1 1
ub = 3 (k. + uk,R) — ar (7&(Tk,R> Tk,R) — Tk (Th,L> ThoL)) 5
# 1 Qg
=5 (76 (Tk, R, The,R) + Tk (The, 1> Tho1)) — 3 (uk,rR — Uk.L)

L (63)
Tht = T+ o (0~ k)
kL — Tk,L ax Uy, — Uk, L),

1
TIE,R = Tk,R — a—k(ulﬁg — Uk, R)-

The relaxation Riemann solution Wgiem (§; Wz, Wg) is determined through the following steps:

1. Define the function 6; by:
91(u) =a (al,L + al,R) (u— ug)

2. Define for (v,w) € R} x R% the two-variable function:

1 (14w 1 14+ w?\? 1\? 4
Morw) =35 1_w2<1+;>‘\/<1_w2> o) =)

which can be extended by continuity to w = 1 by setting My(v, 1) = 0.

3. For k = 2,.., N define the function 0 by:

Hk(u) = ay (ak,L + Oékﬂ) (u — uﬁk)

x #
# apr 1-Mj . . up—u . §
L T Mo 5 Toag ) With MG = P if uy >,
2 ,
+ 2ay;
* #
f <akR 1_Mk) . * up—u ..
ap rT. p M ’ k with M7 = if u; <.
k,RTk R 0 oL TFM; )0 k aw,ﬁ,R A

4. Define the function © by:
O(u) = 61(u) + ... + On(u).
5. Assuming (50), use an iterative method (e.g. Newton’s method or a dichotomy (bisection) method)
to compute the unique u] in the interval (kH}aXN {ug,r, —apmi L}, i HlliHN {ug,r + akaﬂ}) that

=1,.., =1,..,

satisfies:

N
Oui) = > (x} — m})Aay. (64)
k=2
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6. The intermediate states for phase 1 are given by:

where:

t
ar ay
UL L — 1T i) oy
1,L — G1T1,L 3 L
Uy Uyq
L
alr
T1L
U1, L
Ti,L

U1,R + A1T1,R

- _ - _ 1f 1 * i
Q) = 0,L, T =Tt a(ul —uj),
atf =a =t —(u*—uﬁ)

1 — %LR 1 —'",R™ o \™1 1/s

There are three possibilities for the wave configuration of phase k depending

T
+ _ - _

Uq —UT, 7-1 _7-1,L7
+ _ + _

uy = uj, T =Tk

on the sign of ui —uj:

1-M;

o If u,ﬁC > ui, defining v, = oy, /o, g, M} = (u,ﬁc — u“{)/(am’,g’L) and My = M, (l/k, m), the

intermediate states for phase k are given by:

* —
Uy 3 up =up =ul
+
AY
S0 %
FrS Ty Qk, Rox

TEope Uk,R + arpTk,R

Uk, R+

Tk, R

Uk, I, — QkTk,L

Wave ordering uy > uq

where:
*
- - ﬂ 1 - Mk? - _ -
o = Qg L, T, = kl’m’ U, = UT + akMka s 774: = 77457[/,
1+ Mg
+ _ + k + _ + +
Ofk = Qk R, T, = T]§7Lm, 'LLk = UT + VkakMka s 77(; = 727,[/,
*
o 4 # Mk—l/k./\/lk . + B
QkRx = Qk Ry, ThRx =Tppt+ T ;> UkRx = U]+ vkapMp7, Ti R« = Tk R
* 3 * kR k,L 1+ VkMk: ) * 1 ko *
o If uf < u*, defining v, = o /a M: = —(uji —ul)/(a . ) and My, = Mo (v =M
k 1 g Vg = Qk,R/OF,L, k — k 1 k kR k= 0 ks I+M; )

the intermediate states for phase k are given by:

t ur
* __ ,0— __ .t 1
up =u, = U
" )
A} «
k
\
ap Ly, Tk o
ThLe ok 4+ UkR+ RTKR
Uk, — QkTk,L e \‘ uk_ "+
Tk, L+ k

v
A Y

QgL
Tk,L
Uk, L

Ti.L

Ak, R
Tk,R
Uk, R
Tk.r

Wave ordering uy < uq
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where:
L _ ot 1M +

a,j:ak,R, Ty =T RT 77 Uy, :u’f—ak./\/lkT;, 7;:—:774’3,
1 — My
*
— _ ﬁ 1+Mk‘ _ * — —
o, =gl T, =T, p————— u, = uj — vpapMgT T, =Tk
k Lo k k,R1+VkMk7 k 1 k> k R
# MZ—VkMk

Ok Lx = Ok L, ThLs = T,§7L + TMW’ Uk, s = U] — VpapMyT, Teone = TiL-

o If uﬁk = uj, the intermediate states for phase k are given by:

* ook
Uy = ’U,k t N
‘\
\‘ az
oy T
I k Uk,R + QkTk,R
Uk, — OkTk,L 'k uy,
e N T
Q1L 7—’6 ‘\ QL R
Tk,L ’ Th,R
Uk, L “ Uk, R
Tk.L Ter T

Wave ordering uy = u;

where: . .
Qp =Qgr, T =Tpp, U = up=w, Ty =Tk
+ _ +_ N + _
Qp = QkRr, Tp =T gy Up = up =up, T =Tir

B.3 Calculation of the numerical fluxes

Given the solution & — Wgiem (& Wr, Wg) where Wy, = #(Ur) and Wi = .#(Ugr) of the relaxation

Riemann problem, the numerical fluxes are computed as follows:

i (u))*Aa ]

(u))*Aan_1
a1p1uUl

F* (U, Up) = anpyux (Wriem (0% (U1),-#(UR)) ),

2 (wpt N
apruy + amy + ul—ﬁ{ Yoo T Ay

(up)*

alplu% 4+ aym — T Ao

2 (“I)i £ A
| ANPNUN + ONTN — u TNAQN |

where u] is the solution of the fixed-point problem (64) and for k = 2,.., N, m;Aay, = ﬂiAak + O (uy)
with 71'?€ defined in (63) and ai = ag g — o, . In the above expression of the numerical fluxes, we have
(2)*

denoted (u})™ = max(uj,0), (uf)” = min(u},0) and the functions 2 — “=— are extended by 0 at x = 0.
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