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We analyze theoretically and experimentally the wake behind a horizontal cylinder of
diameter d horizontally translated at constant velocity U in a fluid rotating about the vertical
axis at a rate �. Using particle image velocimetry measurements in the rotating frame,
we show that the wake is stabilized by rotation for Reynolds number Re = Ud/ν much
larger than in a nonrotating fluid. Over the explored range of parameters, the limit of
stability is Re � (275 ± 25)/Ro, with Ro = U/2�d the Rossby number, indicating that
the stabilizing process is governed by the Ekman pumping in the boundary layer. At low
Rossby number, the wake takes the form of a stationary pattern of inertial waves, similar
to the wake of surface gravity waves behind a ship. We compare this steady wake pattern
to a model, originally developed by Johnson [E. R. Johnson, J. Fluid Mech. 120, 359
(1982)], assuming a free-slip boundary condition and a weak streamwise perturbation. Our
measurements show quantitative agreement with this model for Ro � 0.3. At larger Rossby
number, the phase pattern of the wake is close to the prediction for an infinitely small
line object. However, the wake amplitude and phase origin are not correctly described by
the weak-streamwise-perturbation model, calling for an alternative model for the boundary
condition at moderate rotation rate.

DOI: 10.1103/PhysRevFluids.3.034801

I. INTRODUCTION

Since the celebrated work of Taylor [1], it has been known that a solid object in slow horizontal
motion in a fluid rapidly rotating about the vertical axis tends to drive with it a vertical column of
fluid circumscribing the object, as if they were forming together a solid body. The fluid outside of this
“Taylor column” flows around it, remaining in the same horizontal plane. This is consistent with the
Taylor-Proudman theorem, which states that linear and inviscid fluid motions associated with time
scales much longer than the global rotation period must be vertically invariant [2]. Another major
feature of rotating fluids is their ability to propagate a specific class of waves, called inertial waves,
which are both anisotropic and dispersive [2]. Here we study the flow around a two-dimensional
(2D) horizontally invariant cylinder in horizontal translation. This geometry is of interest because the
Taylor-column solution is prevented by mass conservation even in the limit of large rotation rate (the
fluid cannot flow around the cylinder), so only the inertial wave solution is expected for the wake. The
aim of this paper is to compare velocity measurements in this configuration with a theoretical approach
based on an approximation of weak streamwise perturbation, originally proposed by Johnson [3].
Although this approximation may seem unnatural for nonslender bodies, it can be shown to apply
in the limit of strong background rotation and is indeed found to compare well with our measured
wake patterns in this regime.
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The general problem of an object moving horizontally in a fluid under rotation has received a
great deal of attention [3–12]. Several flow regimes have been reported depending on the relative
importance of rotation, nonlinearities, and viscous effects, characterized by the Rossby number
Ro = U/2�L and the Reynolds number Re = UL/ν, but also on the object height relative to the
fluid depth h/H and the object aspect ratio h/L (� is the rotation rate, U the object velocity, and
L its size in the streamwise direction). In the strong rotation limit Ro � 1, the flow can be of two
kinds, depending on the geometry: either (i) a geostrophic (nearly) vertically invariant horizontal
flow, i.e., the Taylor-column flow [4–7], which cannot be decomposed in terms of inertial waves,
or (ii) a wake of inertial waves [3,5–12]. This second kind, akin to the wake of gravity surface
waves behind a ship [13,14], is expected when the fluid flows, at least partially, over and/or below
the object, locally inducing a vertical velocity perturbation which triggers the emission of inertial
waves. The phase configuration of such wake of inertial waves has been derived theoretically for
infinitely small objects by Lighthill [8] and Redekopp [9] and further explored experimentally for a
sphere by Hide et al. [5] (dye observations) and for a cross-stream cylinder by Peat and Stevenson
[10] (schlieren observations). In these works, the question of which region of the wake pattern is
supplied with energy was however not addressed; to do so, it is necessary to model the wave-field
boundary condition close the object.

The duality between the low-Ro Taylor-column solution and the finite-Ro wake of inertial waves
has remained unclear for a long time. An important step was made by Hide and Ibbetson [4], who
predicted and verified experimentally that, for objects of comparable vertical h and horizontal L

sizes, the Taylor column appears when the Rossby number Ro becomes lower than typically h/H

(see also Mason and Sykes [6]). Hide and Ibbetson also exhibited experimentally a reduction of this
Ro threshold when the Ekman number Ek = Ro/Re becomes larger than ∼10−3 due to the growing
role of viscous boundary layers.

A more precise solution to this duality between Taylor column and wake of inertial waves was
proposed for slender bodies (h/L � 1) by Stewartson and Cheng [7], who demonstrated the bimodal
nature of the flow. They predicted theoretically the inviscid flow produced by the horizontal translation
of a thin object by taking the limit Ro � 1 at fixed parameter H Ro/L and linearizing the inviscid
boundary condition using the slender body assumption. Their analysis, though not employing the
term, is quasigeostrophic, replacing the horizontal velocity by its geostrophic value in the acceleration
term of the horizontal momentum equation, therefore implying a long time scale and a large vertical
scale. For an object of comparable horizontal streamwise and cross-stream lengths L, the Taylor-
column flow is dominant when the parameter H Ro/L is small, whereas the wake of inertial waves
dominates when it is large.

Johnson [3] and Cheng and Johnson [11] extended the description of Stewartson and Cheng
[7] to a viscous fluid of arbitrary depth. Johnson [3] studied in particular the case of 2D objects,
invariant along the horizontal cross-stream direction, and showed that in this geometry the inviscid
nonpenetration boundary condition can be simplified even in the case of nonslender objects (h/L ∼ 1)
with the assumption of weak streamwise perturbation. In this geometry, the cross-stream invariance
also prevents the emergence of a Taylor-column flow and therefore leads to a pure wake of inertial
waves down to vanishing Rossby number. The analysis of Johnson also shows how the shape and
finite size of the 2D object modify the wake pattern compared to that of an infinitely small source.

Heikes and Maxworthy [12] tested experimentally the predictions of Johnson [3] by studying the
perturbation of a horizontal flow by a ridge made of a portion of a cylinder. They used aluminium
flakes to highlight shear regions but also to draw flow streamlines on long-exposure images. Their
observations revealed an upstream shift of the oscillations compared to the theory as well as a wake
amplitude smaller than its theoretical prediction. Heikes and Maxworthy did not consider however
viscous dissipation in their model and the reasons (nonlinear effects and viscous effects) for the
discrepancies of their experiments with theory remained unclear.

Since then, the range of validity of the weak-streamwise-perturbation approximation for a 2D
nonslender object has remained an open question. In this article we provide a quantitative test of
this theory by measuring the wake of a horizontal cylinder in a rotating water-filled tank using
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particle image velocimetry. Our theoretical approach retains the weak-streamwise-perturbation and
infinite-depth approximations of Johnson [3], but relaxes the quasigeostrophic approximation, shown
by Heikes and Maxworthy [12] to hold for small Rossby number only (typically below 10−1).
Viscosity effects are considered in the bulk only, while an inviscid free-slip boundary condition is
kept along the object. We also address the stability of the wake in terms of the control parameters
(Reynolds and Rossby numbers). This problem is related to the question of the separation and stability
of boundary layers on nonvertical surfaces in a fluid rotating about the vertical axis.

After recalling the derivation of the phase field of the inviscid wake of inertial waves of a line
object in Sec. II A, we derive in Sec. II B the velocity field of the steady wake of a cylinder of
diameter d using the weak-streamwise-perturbation approximation of Johnson [3]. In Sec. III we
study experimentally the threshold in Reynolds and Rossby numbers above which the wake becomes
unsteady. These data reveal the strong stabilization of the wake by rotation (Sec. III B): We show
that the wake remains steady up to Re ∼ 1000 at Ro ∼ 0.3, a value much larger than the onset of
the von Kármán vortex street in a nonrotating fluid. We show in Sec. III C that the theory of Sec.
II B describes quantitatively the steady wake of inertial waves for Ro � 0.3 and for Re ranging
from order 1 to 103. These measurements show that the inviscid boundary condition associated with
the weak-streamwise-perturbation approximation considered here is valid even for a nonslender
2D object. At larger Rossby numbers, for which the finite size of the object no longer determines
the structure of the wave field, we recover experimentally the wake predicted for a line object.
However, we show that the weak-streamwise-perturbation approximation does not describe correctly
the amplitude and phase origin of the wake. These last observations call for a better understanding
of the nature of the boundary layers on the object at moderate rotation rates.

II. LINEAR WAKE OF A 2D OBJECT IN HORIZONTAL TRANSLATION IN A ROTATING FLUID

We describe here the wake produced by the translation at constant velocity U = Uex of a 2D
object, invariant along ey , in a fluid rotating at rate � about ez. Small perturbations satisfy the
linearized Navier-Stokes equation

∂tu = − 1

ρ
∇p − 2� × u + ν∇2u, (1)

where u = (ux,uy,uz) is the velocity, p the pressure, ρ the fluid density, ν the kinematic viscosity,
and � = �ez.

The perturbation induced by a local source can be formally described by a localized field of rate
of expansion q(x,t) acting via the continuity equation

∇ · u = q. (2)

In the case of an object under translation at velocity U = Uex , one can write q(x,t) = q0(x − Utex).
Such a representation was introduced by Miles [15] and Janowitz [16], among others, in the context
of internal gravity waves; Voisin [17] discussed in this context the appropriate expression for q0 in
the weak and strong stratification limits in the case of a sphere.

Using combinations of derivatives of Eqs. (1) and (2), one can derive the equations of propagation
of inertial waves forced by q,[(

∂

∂t
− ν∇2

)2

∇2 + (2�)2 ∂2

∂z2

]
ux =

[(
∂

∂t
− ν∇2

)
∂

∂x
+ 2�

∂

∂y

](
∂

∂t
− ν∇2

)
q, (3)[(

∂

∂t
− ν∇2

)2

∇2 + (2�)2 ∂2

∂z2

]
uy =
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∂

∂t
− ν∇2

)
∂

∂y
− 2�

∂

∂x

](
∂

∂t
− ν∇2

)
q, (4)[(

∂

∂t
− ν∇2

)2

∇2 + (2�)2 ∂2

∂z2

]
uz =

[(
∂

∂t
− ν∇2

)2

+ (2�)2

]
∂

∂z
q. (5)
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Considering a plane wave of wave vector k and angular frequency σ and equating the left-hand
side of (3) to zero leads to the viscous dispersion relation of inertial waves

σ = σr + iσi, (6)

with

σr = s2�
kz

k
> 0 (7)

and

σi = νk2, (8)

where σr and σi are the real and imaginary parts of σ , respectively, kz = k · ez, k = |k|, and s =
sgn(kz). Fluid particles in such a propagative inertial wave describe circular translations oriented
by −sk in planes normal to k [2]. Because the wave is transverse, the vorticity ω, related to the
shear between planes of different phase, is parallel to the velocity u; the wave has helicity ω · u, of
sign given by −s. We note that such an inertial wave solution, derived here for small perturbations,
is also an exact solution of the full nonlinear Navier-Stokes equation. As a consequence, for finite
Ro and outside the viscous boundary layers, nonlinearities can affect inertial waves only via triadic
interactions [18,19].

A. Inviscid wake of a line object

Before searching for solutions to (3)–(5), we first determine the lines of constant phase of the
linear inviscid wake produced by the translation of a line object. The equations for these lines were
first derived by Lighthill (see, for example, [8]) and by Peat and Stevenson [10] for the case of an
arbitrary motion in a fluid with both stratification and rotation. The method we use here is identical
to the one initially suggested by Lord Kelvin [20] and Havelock [21] to describe the steady wake of
surface gravity waves behind a ship (see also [13,14]).

In the linearized problem, a steady forcing produces a steady wake in the frame moving with the
disturbance. The wake can therefore be described as a superposition of inertial waves that correspond
to steady perturbations in this moving frame. For a plane wave of wave vector k = k(sin θex +
s cos θez) (see Fig. 1), this stationarity condition implies that the angular frequency σ satisfies

σ = k · U = kU sin θ, (9)

where θ ∈ [0; π/2]. From the inviscid dispersion relation (7), the stationarity condition becomes

tan θ = 2�

kU
= 1

Rok

, (10)

where Rok is the Rossby number associated with wave number k. This stationary condition associates
a single angle θ with each wave number.

Assuming that the line object radiates inertial waves of any wave number k, the position C(k,τ,s)
of the wave packet, carrying wave number k and helicity sign −s and produced at time t − τ , relative
to the position B of the line object at current time t , is BC(k,τ,s) = (cg − U)τ , where

cg = 2�

k
sin θ (− cos θ ex + s sin θ ez) (11)

is the group velocity associated with the wave vector k (see Fig. 1) [2]. Using the stationarity
condition, the coordinates of C(k,τ,s) relative to the line object at time t can be written as

X(k,τ,s) = −Uτ (1 + sin2 θ ), (12)

Z(k,τ,s) = sUτ
sin3 θ

cos θ
. (13)
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C(s = +)

C(s = −)

x

z Z
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FIG. 1. Propagation of the two symmetric wave packets, carrying wave number k, emitted at time t − τ by
a horizontal line object (invariant along ey) in translation at constant velocity U = Uex in a fluid rotating at a
rate � = �ez. At time t , the line object is at point B, the upper wave packet at point C(s = +), and the lower
wave packet at C(s = −). At time t − τ , the line object is at point A. At locations C(s = ±), fluid particles
describe a circular translation in planes tilted at an angle θ (k), with orientation given by the vector −sk(s).
This circular translation motion propagates along wave vector k at the phase velocity cϕ = σ/k = U sin θ . Here
(X = x − Ut,Z = z) is the system of coordinates attached to the moving object.

We can define the radiation angle α(k) as the angle along which energy for a given wave number k is
supplied by the disturbance in the moving frame. Writing α = tan−1[|Z(k,τ )/X(k,τ )|] (see Fig. 1),
this angle satisfies

α = tan−1

(
sin3 θ

cos θ (1 + sin2 θ )

)
= tan−1

(
1

2Rok + Ro3
k

)
. (14)

The line at angle α(k) therefore corresponds to a line of constant wave vector k (constant θ and
k). The radiation angle α(k) decreases monotonically with the wave number k from 90◦ to 0◦ [see
Fig. 2(a)]; smaller wavelengths are found closer to the translation axis z = 0. This contrasts with the
case of surface gravity waves, for which α(k) is maximum at a finite wave number, which defines
the famous Kelvin angle of ship wakes [13,22,23].

The phase of the wave at point C(k,τ,s) can be computed as

ϕ(k,τ,s) = ϕe + στ − k · AC, (15)

where ϕe is the phase of the wave when it is emitted and AC = cgτ is the distance traveled by the
wave packet between t − τ and t . The anisotropic dispersion relation of inertial waves imposes that
k · cg = 0, so the equation for a line of constant phase ϕ = ϕ0 + ϕe satisfies

ϕ0 = 2�τ cos θ. (16)

Injecting (16) in (12)–(13) finally provides a parametric representation of the lines of constant phase,

X = −λ0
ϕ0

2π

1 + sin2 θ

cos θ
, (17)

Z = sλ0
ϕ0

2π

sin3 θ

cos2 θ
, (18)
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FIG. 2. (a) Energy propagation angle in the frame of the fluid at rest θ [Eq. (10), blue line] and in the frame
of the moving object α [Eq. (14), red line] as a function of the Rossby number Rok = Uk/2� based on the
wave number. (b) Plot of α as a function of θ .

with λ0 = πU/� the wavelength of the wake along the translation axis. In Fig. 3(a) we plot the lines
of constant phase ϕ0(X,Z) = 2πn for n ∈ [0; 14]. This phase pattern is identical to that predicted by
Lighthill [8] and Mowbray and Rarity [24] for internal waves produced by the vertical translation of
a line or point source in a density-stratified fluid (see also Refs. [25–28]). Note that ϕ0 is the phase
relative to the phase at emission ϕe, which remains unspecified here.

B. Viscous wake of a finite-size object

We now describe the wake of inertial waves of a translating object of finite size, invariant along y,
including viscosity effects. For this, we integrate (3)–(5) accounting for the geometry of the object
by its equivalent field of rate of expansion q(x,t) = q0(x − Utex). The following derivation leads to

-20 -15 -10 -5 0
-10

-5

0

5

10

0

4

8

12

16

20

24

28

X/λ0

Z
/λ

0

ϕ
0

FIG. 3. Lines of constant phase ϕ0 = 2πn [Eqs. (17) and (18)] with n ∈ [0; 14] in the wake of inertial waves
of a line source (of axis ey) translated at velocity U along ex in an inviscid fluid under rotation at a rate � about
ez. Coordinates are normalized by λ0 = Uπ/�, the wake wavelength along the translation axis.
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results similar to those in Refs. [3,7,11,12] but differs in the combination of approximations used:
infinite depth, free-slip boundary, weak streamwise perturbation, and no quasigeostrophy. Their
outcome will be compared to experimental wakes in Sec. III.

We first introduce the 3D spatiotemporal Fourier transform of the field of rate of expansion q(x,t)
invariant along y,

q̂(k,σ ) =
∫

q(x,t)ei(σ t−k·x)dt dx dz, (19)

q(x,t) = 1

(2π )3

∫
q̂(k,σ )e−i(σ t−k·x)dσ dkx dkz, (20)

where k = (kx,0,kz). From Eq. (3)–(5) and using the relation q̂(k,σ ) = 2πq̂0(k)δ(σ − k · U) =
2πq̂0(k)δ(σ − kxU ), which accounts for the stationarity of the forcing in the frame of the translating
object, the velocity field is written

ux(X) = − i

(2π )2

∫
(Ukx + iνk2)2kx

(Ukx + iνk2)2k2 − (2�)2k2
z

q̂0(k)eik·Xdkxdkz, (21)

uy(X) = − 1

(2π )2

∫
2�(Ukx + iνk2)kx

(Ukx + iνk2)2k2 − (2�)2k2
z

q̂0(k)eik·Xdkxdkz, (22)

uz(X) = − i

(2π )2

∫
[(Ukx + iνk2)2 − (2�)2]kz

(Ukx + iνk2)2k2 − (2�)2k2
z

q̂0(k)eik·Xdkxdkz, (23)

with X = x − Ut the position relative to the object.
Let us introduce the Rossby number Rokx

= Ukx/2� and the Reynolds number Rekx
= U/νkx

associated with the horizontal wave number kx . Application of the residue theorem to the integral
over kz allows its evaluation in the low-viscosity limit Rekx

� 1. The integrand has three poles in
the half plane sIm (kz) > 0, with s = sgn(z), picked by Jordan’s lemma. The first two poles

kz = s

(
Ukx ± 2�

ν

)1/2

eiπ/4 = s

√
2�

ν

(
Rokx

± 1
)1/2

eiπ/4, (24)

where

(Ukx ± 2�)1/2 =
√

|Ukx ± 2�| for Ukx > ∓2� (25a)

= i
√

|2� ± Ukx | for Ukx < ∓2� (25b)

correspond to the boundary layer along the object; we note that the modulus of these two poles (24)
tends toward the inverse of the thickness

√
ν/2� of an Ekman layer when the Rossby number Rokx

vanishes. The third pole

kz = kz,r (kx) + ikz,i(kx) (26)

of inviscid real part

kz,r = s
Ukx |kx |

[(2�)2 − (Ukx)2]1/2
= s

|kx |(
1/Ro2

kx
− 1

)1/2 (27)

and viscous imaginary part

kz,i = s
(2�)4νk2

x |kx |
[(2�)2 − (Ukx)2]5/2

= s

Rekx

|kx |
Ro4

kx

(
1/Ro2

kx
− 1

)5/2 , (28)
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where

[(2�)2 − (Ukx)2]1/2 =
√

|(2�)2 − (Ukx)2| when U |kx | < 2� (29a)

= −i
√

|(Ukx)2 − (2�)2| sgn(kx) when U |kx | > 2�, (29b)

corresponds to waves slowly dissipated by viscosity as they propagate away from the object. We
note that the spatial decay factor of the wake component associated with kx

kz,iZ = s
ν

2�

k5
r

k2
x

Z, (30)

where k2
r = k2

x + k2
z,r can be written as νk2

r τ , where τ is the time for the wave-packet carrying wave
vector (kx,kz,r ) to travel from the object to X at the group velocity. This viscous decay could already
have been derived in Sec. II A from the temporal decay due to viscosity of the wave amplitude in the
wave-packet carrying wave number kr . The determination of the complex square roots (25) and (29)
may be seen as the insertion, in the complex kx plane, of branch cuts extending from the singularities
kx = ±2�/U vertically downward.

We note that Eq. (27) is identical to the wave stationarity condition (10), with sgn(z) playing
here the same role as sgn(kz) there. From Eq. (27), it is apparent that horizontal wave numbers kx

larger than k0 = 2�/U in absolute value will not contribute significantly to the wake of inertial
waves since, to leading order in 1/Rekx

, the associated vertical wave number kz is imaginary and
leads to vertically evanescent waves. It is worth noting that, contrary to Stewartson and Cheng [7],
Johnson [3], and Cheng and Johnson [11], but as in Heikes and Maxworthy [12], no quasigeostrophic
approximation of weak vertical derivatives kz � kx (i.e., Rokx

= Ukx/2� � 1) is made here. The
only approximations up to now are the linearization of the Navier-Stokes equation by assuming small
velocity perturbations and low viscosity.

In the experiments reported in Sec. III, we consider the translation of a cylinder of diameter
d associated with Reynolds numbers Re = Ud/ν typically ranging from 10 to 1000 and Rossby
numbers Ro = U/2�d ranging from 10−2 to 1. The Ekman boundary layer on the cylinder, of typical
thickness

√
ν/2� = d

√
Ro/Re, is therefore expected to remain small compared to the cylinder for

most of our experiments and the contribution of the corresponding poles in the integration of (21)–(23)
will be neglected in the following. Retaining only the pole (26)–(28), the velocity field follows as

ux = − 1

4π

∫
U |kx |

[(2�)2 − (Ukx)2]1/2
q̂1(kx)e−kz,i (kx )Zei[kxX+kz,r (kx )Z]dkx, (31)

uy = i

4π

∫
2� sgn(kx)

[(2�)2 − (Ukx)2]1/2
q̂1(kx)e−kz,i (kx )Zei[kxX+kz,r (kx )Z]dkx, (32)

uz = sgn(Z)

4π

∫
q̂1(kx)e−kz,i (kx )Zei[kxX+kz,r (kx )Z]dkx, (33)

where X = x − Ut , Z = z, and q̂1(kx) = q̂0(kx,kz,r (kx)).

1. Far-field limit

In the far-field limit k0|X| � 1, the integrals over kx (31)–(33) may be evaluated asymptotically. In
the inviscid case, the phase of the integrand is real in the range |kx | < k0 of propagating waves and the
stationary phase method may be applied (see Appendix A). The waves are only found downstream,
in the half plane X < 0. There, two opposite stationary points kx = ±k0 cos θ are obtained for each
radiation angle α = tan−1(|Z/X|), the angle θ satisfying the cubic equation

cot3 θ + 2 cot θ − cot α = 0, (34)
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consistent with (14), of real root

cot θ =
⎛
⎝

√
cot2 α

4
+ 8

27
+ cot α

2

⎞
⎠1/3

−
⎛
⎝

√
cot2 α

4
+ 8

27
− cot α

2

⎞
⎠1/3

. (35)

The associated wave vectors are ±ks , with

ks = k0 cot θ (sin θex + s cos θez), (36)

consistent with (10), and we also recover the same phase field as the one described in Sec. II A.
Viscosity adds a small imaginary part to the phase of the integrand in (31)–(33). To leading

order in 1/Re (see Appendix A), the result is a slow exponential decay as exp(−kz,iZ) =
exp[−k0|Z| cos3 θ/(Re Ro sin5 θ )]. The far-field velocity follows as

ux = −H (−X)
sin3/2 θ cos θ√

2 + cos2 θ
exp

(
− k0|Z|

Re Ro

cos3 θ

sin5 θ

)
Re [q̂0(ks)e−iϕs ]√

λ0|Z| , (37)

uy = −H (−X)
sin3/2 θ√
2 + cos2 θ

exp

(
− k0|Z|

Re Ro

cos3 θ

sin5 θ

)
Im [q̂0(ks)e−iϕs ]√

λ0|Z| , (38)

uz = H (−X)
sin5/2 θ sgn(Z)√

2 + cos2 θ
exp

(
− k0|Z|

Re Ro

cos3 θ

sin5 θ

)
Re [q̂0(ks)e−iϕs ]√

λ0|Z| , (39)

where H denotes the Heaviside step function, Re and Im are the real and imaginary parts,
respectively, and

ϕs = k0|Z|cos2 θ

sin3 θ︸ ︷︷ ︸
=ϕ0

−π

4︸︷︷︸
=ϕe

. (40)

In this expression, the first term k0|Z| cos2 θ/ sin3 θ corresponds to the phase field ϕ0 derived in Sec.
II A, while the second term allows us to identify the value of the phase at emission, ϕe = −π/4,
which was left unknown in Sec. II A. The lines of constant phase ϕs = const have the parametric
equation

k0|X| = 1 + sin2 θ

cos θ

(
ϕs + π

4

)
, (41)

k0|Z| = sin3 θ

cos2 θ

(
ϕs + π

4

)
, (42)

consistent with (17) and (18). Johnson [3] pointed out that, as Re decreases to order unity, viscosity
also induces a deformation of these lines. This effect is discussed in Appendix B.

2. Boundary condition model for the object spectrum

We finally introduce a model for the spectrum q̂1(kx) of the equivalent source of inertial waves
induced by the motion of the object. Since we neglect here the Ekman boundary layer on the object
surface, we use an inviscid nonpenetration boundary condition as in Refs. [7,11,12],

(u − U) · n = 0, (43)

where n is the vector normal to the object surface and u − U the fluid velocity in the reference
frame of the object. We consider in the following a symmetric object, of boundary described by
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Z = ±f (X), yielding a boundary condition

uz = ±(ux − U )
df

dX
. (44)

We are here mainly interested in wakes at small Rossby number, for which finite-size effects
are expected (Ro = U/2�d compares the size d of the object to the characteristic wavelength
λ0 = πU/� of the inviscid wake for a line object). In this regime, the horizontal wave numbers of the
order of kx ∼ 2π/d, which are associated with small Rokx

= Ukx/2�, are expected to dominate the
wake. From Eq. (27), the leading spectral components verify |kz,rZ| � Rokx

|kxZ| � 1 for |Z| � d.
Accordingly, the phase of the dominant components in the integrand of (31)–(33) shows weak
variations over the vertical extent |Z| � d of the object, so it is justified to apply the boundary
condition (44) at Z = 0± instead of Z = ±f (X).

In the following, we consider an object invariant along y, of aspect ratio of order 1 in the
vertical plane. Still assuming small Rossby number Ro = U/2�d, the stationarity condition (10) [or
equivalently Eqs. (27) and (31)–(33)] suggests that the ratio ux/uz of the axial to vertical velocity
perturbations due to the leading spectral terms of the wake, which is given by 1/ tan θ = Rok � Rokx

,
is small as well. We will therefore assume in Eq. (44) that the horizontal velocity ux is negligible
with respect to uz close to the cylinder, uz being itself assumed to be of order U because of the aspect
ratio 1 of the object; this constitutes the assumption of weak streamwise perturbation at the core of
the present model.

In a nonrotating fluid, the approximation ux � U is relevant only for slender bodies verifying
df/dX � 1. Here it also applies for a bluff body because of the small value of the Rossby number,
provided the body is invariant along y, as first noted by Johnson [3] and Heikes and Maxworthy [12].
This can be understood by eliminating the pressure term in the expressions of the 4D spatiotemporal
Fourier transform of the inviscid and linearized Navier-Stokes equation, which leads to

ûx = i
kz

k
ûy − i

ky

k
ûz, (45)

ûy = −i
kz

k
ûx + i

kx

k
ûz. (46)

For small Rossby numbers Rokx
, the wave stationarity condition gives kz/k � Rokx

and kx/k �
O(1). Equations (45) and (46) therefore show that ux/uz = O(Rokx

) if ky = 0, whereas ky ∼ kx and
ux/uz = O(1) for a 3D object of aspect ratio of order 1.

Under these approximations, the boundary condition (44) is simply written

uz = ∓U
df

dX
at Z = 0±. (47)

This velocity discontinuity implies a rate of expansion

q0(X,Z) = [uz(X,Z = 0+) − uz(X,Z = 0−)]δ(Z) = −2Uf ′(X)δ(Z), (48)

leading to

q1(X) = −2Uf ′(X), (49)

which is consistent with Eq. (33) applied at Z = 0±. In the following, we consider a cylinder of
diameter d = 2R such that f (X) = H (R − |X|)√R2 − X2, where H is the Heaviside step function.
The boundary condition is written

uz(X,Z = 0±) = ±U
X√

R2 − X2
H (R − |X|), (50)
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FIG. 4. (a) Vertical velocity profile uz(X)/U at Z = 0+ used as the boundary condition (50) in the weak-
streamwise-perturbation approximation. (b) Corresponding spectrum Im [q̂1(kx)]/RU [Eq. (51)]. We report
with vertical dashed lines the critical horizontal wave-vector component k0 = 1/Ro d , above which waves are
vertically evanescent for three values (Ro = 0.01, 0.1, and 1) of the Rossby number Ro = U/2�d .

yielding the representation

q1(X) = 2U
X√

R2 − X2
H (R − |X|), q̂1(kx) = −2iπRUJ1(kxR), (51)

where J1 is the Bessel function of the first kind of order 1.
Figure 4 shows the vertical velocity at the boundary (50) and the corresponding spectrum q̂1(kx)

[Eq. (51)]. In Fig. 4(b) we show with vertical dashed lines the critical horizontal wave-vector
component k0 = 1/(Ro d), above which waves are vertically evanescent for three values of the
Rossby number (Ro = 0.01, 0.1, and 1); only the portion of the spectrum q̂1(kx) at wave numbers
kx smaller than k0 contributes to the wake.

The wake structure, computed from Eqs. (31)–(33) using a fast Fourier transform (FFT) algorithm,
is shown in Fig. 5 for two Rossby numbers Ro = 0.02 and 0.20 and two Reynolds numbers Re =
26 and ∞. In the low-Rossby-number case [Fig. 5(b)], we observe the concentration of energy
along a set of radiation angles αn

extr corresponding to the extrema of the Bessel function (kn
x,extrR �

1.84,5.33,8.54, . . .), separated by angles αn
zero along which no energy is present (highlighted with

dash-dotted lines) corresponding to its roots (kn
x,zeroR � 3.83,7.02,10.17, . . .). These oscillations

are the interference pattern due to the finite size of the object. According to Eqs. (14) and (27), the
specific angles αn

extr and αn
zero decrease with the order n and with the cylinder Rossby number Ro.

In Fig. 5(b), in each angular sector between successive αn
zero, we observe good agreement between

the computed velocity field and the lines of constant phase (41) and (42) predicted for a line object;
however, we observe a sign change of the velocity perturbation at each αn

zero along the line of constant
phase of the line object associated with the corresponding sign change of q̂1(kx). Looking now at
Fig. 5(a) for the same Rossby number as in Fig. 5(b) but for Re = 26, we see that, except for the
beam corresponding to the first and largest minimum of q̂1(kx) (at k1

x,extrR � 1.84), all the beams are
rapidly damped by viscosity, leading to a wake of typical angle α1

extr (�82◦ here for Ro = 0.02) and
to a significant discrepancy with the lines of constant phase of the line object.

For Ro = Roc ≡ 1/2k1
x,zeroR � 0.13, the radiation angle α1

zero associated with the first zero of
the spectrum reaches 0◦, while the zero itself k1

x,zeroR � 3.83 matches the critical wave number
k0R = 1/2Ro above which inertial waves are evanescent. As Ro further increases above Roc, a
smaller portion of the spectrum kx < k0 (<k1

x,zero) contributes to the wake, containing no zero.
Considering, for example, the wake at Rossby number Ro = 0.20 > Roc in Figs. 5(c) and 5(d),
we see that the two Reynolds numbers considered here, Re = 26 and ∞, lead this time to similar
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FIG. 5. Wake structure computed from the weak-streamwise-perturbation model (31)–(33) for a cylinder
of diameter d , invariant along the y direction. Arrows show the in-plane velocity components (ux,uz) in the
reference frame of the cylinder and the colormap the vertical velocity component uz normalized by U . White
lines show the projection of streamlines in the vertical plane. In (a) and (b) the dash-dotted lines show the
radiation angles αn

zero, associated with the first roots kn
x,zeroR of the spectrum, along which no energy is present.

In (c) and (d) these angles of zero amplitude do not exist since the roots of the spectrum q̂1(kx) correspond to
evanescent waves. In (a)–(d) we also show with dashed lines a few lines of constant phase of the far-field wake
(37)–(39). We actually plot the parametric curve (41) and (42) for ϕs + π/2 = π,2π,3π,4π, . . . ,9π (from right
to left) corresponding to the local maxima and minima of uz in the far-field theory (39) for the spectrum (51)
[the spectrum (51) being imaginary introduces the +π/2 phase shift].

wake structures which match well the lines of constant phase for a line object (41) and (42). We
can conclude that, in this weak-streamwise-perturbation model, Roc = 1/k1

x,zerod � 0.13 stands as
an approximate threshold for the appearance of finite-size effects in the wake of a cylinder. We
finally note that, in the finite-Re cases of Figs. 5(a) and 5(c), the wake is damped by viscosity more
efficiently as the wake angle α = tan−1(|Z/X|) becomes smaller. Recalling that the decay factor for
a propagating wave is exp(−νk2τ ), this result is consistent with the prediction of a decreasing wave
number k with α [Eq. (14)] made in Sec. II A for an infinitely small object. We also note that the
wake in Figs. 5(a) and 5(c) is progressively damped along a given direction α, in agreement with the
fact that it corresponds to an increasing propagation time τ at constant wave number k.

Finally, for the sake of comparison with the full model (31)–(33), we show in Fig. 6 the velocity
field predicted in the far-field approximation (37)–(39), still using the weak-streamwise-perturbation
spectrum of the cylinder (51), for the same values of Ro and Re as in Fig. 5. One can see that for
Ro = 0.2 the far-field wake in Figs. 6(c) and 6(d) and the one of the full model in Figs. 5(c) and 5(d)
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FIG. 6. Wake structure, for the same values of Ro and Re as in Fig. 5, predicted in the far-field approximation
(37)–(39) of the weak-streamwise-perturbation model [spectrum (51)] for a cylinder of diameter d , invariant
along the y direction. The layout is the same as in Fig. 5.

are almost identical for distances from the cylinder larger than typically its diameter. On the other
hand, comparing now Figs. 6(a) and 6(b) and Figs. 5(a) and 5(b) at Ro = 0.02 reveals significant
differences up to distances much larger than the cylinder diameter, with a much thinner “main
beam,” the nearly vertical beam found around the wake angle α1

extr � 82◦. We note in particular that
the absence of flow perturbation upstream, that is, for X > 0, in the far-field model constitutes a
significant discrepancy with the full model at low Ro.

The absence of upstream flow perturbation in Fig. 6 is a manifestation of the nonuniformity of
the expansion (37)–(39) at the wave front X = 0; there, diffraction takes place, requiring the switch
to a uniform expansion valid for all X and involving Fresnel functions. The mathematical origin
of the nonuniformity and the derivation of the uniform far-field expansion are briefly discussed in
Appendix C. The uniform expansion gives to the wave field some extension upstream, however
still smaller than with the full model. Another noticeable feature of expansion (37)–(39), visible in
Fig. 6, is an unphysical vertical shift of the streamlines between their original position upstream and
their final position downstream. The uniform far-field expansion (C1)–(C3) presented in Appendix
C reduces the vertical shift for most streamlines (see Fig. 16), however not for those close to the
cylinder at low Ro (i.e., for Ro = 0.02). The origin of this vertical shift of the streamlines is related
to a wrong estimation by the far-field expansion of the velocity perturbation in the near-field region
close to the cylinder (which increases in size as Ro decreases) as well as in the region close to the
axis X = 0 for the nonuniform expansion (37)–(39).
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FIG. 7. Experimental setup. A motor coupled by a belt to a translation rail drives a horizontal cylinder, of
diameter d and length 65 cm, at a constant velocity Uex in a parallelepipedic water-filled tank mounted on a
platform rotating at a rate � about z. The PIV measurements are performed in the rotating frame, in a vertical
region of 47 × 35 cm2 (green area). Here Lx = 150 cm, Ly = 80 cm, and H = 65 cm.

Overall, the comparison of Figs. 5 and 6 shows that the full model (31)–(33) should be preferred
to fully describe the cylinders’ wake for Rossby numbers below typically 0.1.

III. EXPERIMENTS

A. Experimental setup

The experimental setup is sketched in Fig. 7. A horizontal cylinder, 65 cm long in the y direction,
is towed horizontally along x at constant velocity U between 0.6 and 83 mm s−1 using a stepper
motor coupled to a translation rail by a belt. The translation motion, 70 cm long, takes place in
a parallelepipedic tank, of base Lx × Ly = 150 × 80 cm2 and height 65 cm, filled with 50 cm of
water. We have used four cylinder diameters d = 4.1, 10.1, 20.6, and 40.2 mm. The whole system
is mounted on a 2-m-diam platform rotating at a constant rate �, in the range 2–20 rpm, about the
vertical axis z. The rotation of the platform is set at least 20 min before the cylinder translation to
avoid transient spin-up recirculations. The ranges of Reynolds and Rossby numbers explored here,
shown in Fig. 8, are 0.01 � Ro � 20 and 2 � Re � 3500.

The two components (ux,uz) of the velocity field are measured in the vertical plane y0 � Ly/3
normal to the cylinder axis using a particle image velocimetry (PIV) system mounted in the rotating
frame (y = 0 is the tank front face, Fig. 7). The fluid is seeded with 10-μm tracer particles and
illuminated by a laser sheet generated by a corotating 140-mJ Nd:YAG pulsed laser. Images of
particles are acquired with a 2360 × 1776 pixel camera in a region of interest of 47 × 35 cm2. Each
PIV acquisition consists of 200–500 images recorded at a rate between 0.5 and 29 Hz depending
on the amplitude of the velocity perturbation induced by the cylinder translation. Cross correlation
between successive images, performed over windows of 16 × 16 pixels with 50% overlap, produces
velocity fields sampled on a grid of 295 × 222 vectors with a spatial resolution of ∼1.6 mm. Image
acquisition starts after 25 cm of translation, such that a steady wake regime is reached, and the
following ∼40 cm of translation is recorded.

B. Steady vs unsteady wake

We first determine the nature of the wake as a function of the two control parameters
Re and Ro. For each experiment, we remap the velocity field in the frame moving with the
cylinder (X = x − Ut,Z = z) and subtract the cylinder velocity Uex . From these movies (see the
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FIG. 8. Stability diagram of the cylinder wake in the (Re,Ro) plane: ◦, steady wake; �, periodic vortex
shedding; and �, turbulent wake. The solid line delimits the transition to unsteadiness, Ro = 275/Re. The
vertical dash-dotted line shows the classical instability threshold in a nonrotating fluid, Re = 47.

Supplemental Material [29]) we classify the wakes in three categories, summarized in Fig. 8: steady,
unsteady with periodic vortex shedding, and turbulent.

The most remarkable effect of the global rotation is the stabilization of the steady wake: In a
nonrotating fluid (Ro = ∞), the wake becomes unsteady for Re > Rec(∞) � 47 through the von
Kármán vortex shedding phenomenon [30,31], whereas here steady wakes are found up to Re � 1000
for the largest rotation rate. It is worth highlighting that a similar stabilization of the wake is observed
for a horizontal cylinder translated horizontally in a linearly stratified fluid [32,33].

An approximate Rossby-number dependence of the critical Reynolds number for unsteadiness
can be inferred from our data, Rec = (275 ± 25)/Ro, indicating that the stability of the wake is
governed here by the combination Re Ro. This stability criterion suggests the following scenario. In
a nonrotating fluid, stability is ensured by viscous diffusion: Separation of the boundary layer and
subsequent instability of the detached layer occur when the inertial time scale τi = d/U becomes
shorter than the viscous time scale τv = d2/ν, yielding τd/τi = Re as the natural control parameter.
In a rotating fluid, Ekman pumping, here at the surface of the cylinder, provides an effective diffusion
mechanism on a shorter-time scale, given by the Ekman time scale τEk = d/

√
ν2� [2]. Balancing

τEk and τi now yields τEk/τi = √
Re Ro as the new control parameter, in good agreement with our

data.
Close-up views of the flow near the cylinder, as shown in Fig. 9, confirm the inhibition due

to rotation of the separation of the viscous boundary layers from the cylinder. Although the PIV
resolution (1.6 mm) is of the same order of magnitude as the thickness of the Ekman boundary
layer δ � √

ν/2�, good insight into the nature of the flow is provided by plotting the streamlines,
computed here from the in-plane velocity components. Note that the real streamlines are helicoidal.
The streamlines shown here actually correspond to the in-plane projection of the 3D streamlines (due
to the invariance of our problem along the out-of-plane direction). We find that the streamlines closely
follow the back of the cylinder up to the critical Reynolds number Rec = (275 ± 25)/Ro, whereas in a
nonrotating fluid, separation occurs at Re � 3–4, well before the wake instability at Rec � 47. Here,
above the critical Reynolds number, the boundary layer detaches and directly becomes unstable.

When crossing the transition line Re Ro � 275, the wake actually transits directly from steady to
turbulent. The nature of the wake close to the transition line Re Ro � 275 is illustrated in Fig. 10
for eight values of (Re,Ro), four below and four above the transition. The steady wakes, shown in
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FIG. 9. Close-up view of the experimental wake of a cylinder for (a) Ro = 2.4, Re = 105, (b) Ro = 0.32,
Re = 460, (c) Ro = 0.01, Re = 52, and (d) Ro = 0.08, Re = 410, for which the wake is steady. Each panel
reports the time-averaged velocity field in the cylinder reference frame: Arrows show the in-plane velocity
components (ux,uz) and the colormap shows the vertical velocity component uz normalized by U . White lines
show streamlines of the in-plane velocity field.

Figs. 10(a), 10(c), 10(e), and 10(g), have a structure in good agreement with the predicted lines of
constant phase for a line disturbance (41) and (42); systematic comparisons with the model developed
in Sec. II B are provided in Sec. III C. The unsteady wakes in Figs. 10(b), 10(d), 10(f), and 10(h)
show a combination of turbulent vortices, confined in a ±20◦ angular sector centered on the wake
axis, and a steady component similar to the steady wake of inertial waves but of weak amplitude.
Interestingly, this steady component of the unsteady wakes is still reasonably well described by the
predicted phase lines for a line disturbance. It however rapidly vanishes as Re Ro increases, as can
be seen in Fig. 11.

At large Rossby number, the unsteady wake resembles a von Kármán vortex street but
progressively becomes more and more turbulent as Ro decreases at constant Re (see Fig. 11 for
Re = 840 and corresponding movies in the Supplemental Material [29]). A regular pattern with
periodic vortex shedding such as in Fig. 11(a), typical of a nonrotating von Kármán vortex street, is
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FIG. 10. Instantaneous fields of the vertical velocity component uz normalized by U for several couples
(Re,Ro) close to the onset of nonstationarity: (a), (c), (e), and (g) steady wakes and (b), (d), (f), and (h) unsteady
wakes. We show as dashed lines theoretical lines of constant phase (41) and (42) of the far-field wake (37)–(39)
for ϕs + π/2 = π , 2π , 3π , and 4π , from right to left.
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FIG. 11. Instantaneous fields of the vertical velocity component uz normalized by U for a fixed Reynolds
number Re = 840 and a decreasing Rossby number: (a) Ro = 19.7, (b) Ro = 4.92, and (c) Ro = 1.97. The
cylinder diameter is d = 10 mm.

actually observed only for Rossby numbers larger than about 5 (closed markers in Fig. 8). For these
experiments, the shedding frequency f yields Strouhal numbers St = f d/U in the range 0.15–0.20,
in good agreement with typical values found in nonrotating fluids [30].

C. Steady wake of inertial waves

In the following we focus on the range of Reynolds and Rossby numbers (Re,Ro) for which the
wake is stationary. Snapshots of such wakes are shown in Fig. 12, for increasing Ro in the range
0.01–0.75, with Reynolds numbers kept nearly constant (21 � Re � 52). Although the wakes are
steady, a temporal average in the reference frame of the cylinder is applied to filter out residual
unsteady fluid motions which are not related to the wake; these unsteady contributions, of the order
of 1 mm s−1, mainly originate from residual thermal convection and from a weak precession motion
due to the coupling of the platform rotation with the earth rotation [34].

For Rossby numbers typically larger than 0.15 [Figs. 12(d)–12(f)], the structure of the wake is in
excellent agreement with the predicted phase lines (41) and (42) for an infinitely small object, shown
as dashed lines. As the Rossby number is decreased below 0.15 [Figs. 12(a)–12(c)], the wake pattern
is no longer correctly described by these lines of constant phase: The wake becomes more vertically
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FIG. 12. Experimental wake for increasing Ro and nearly constant Re (21 � Re � 52). Each panel shows
the time-averaged velocity field in the reference frame of the cylinder: Arrows show the in-plane velocity
components (ux,uz) and the colormap shows the vertical velocity component uz normalized by U . White lines
are streamlines of the in-plane velocity field; assuming the flow invariance along y, these lines are the projection
in the vertical plane of the real streamlines. Dashed lines are the predicted lines of constant phase (41) and (42)
of the far-field wake for ϕs + π/2 = π , 2π , 3π , 4π , and 5π .

invariant than predicted by the theory for a line object (note that these snapshots contain additional
wave beams that correspond to reflections on the free surface and the bottom of the tank). This
discrepancy between the measured wake and the theoretical lines of constant phase (41) and (42),
which is larger as Ro is decreased, originates from the growing influence of the size of the cylinder.
This is natural since, when Ro = λ0/2πd becomes lower than ∼0.15, the characteristic wavelength
along the axis of the theoretical wake of a line object, λ0 = πU/�, becomes smaller than the cylinder
diameter d. This is also in agreement with the theoretical results of Sec. II B, which have revealed
the finite-size effects to become significant below typically Ro ∼ 0.1. These observations illustrate
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as a function of X/d for several values of (Ro,Re) for the experiments (black lines) and for the prediction based
on the weak-streamwise-perturbation approximation (red lines, denoted by WSP in the legend).

the need to consider the model (31)–(33) accounting for the shape and finite size of the cylinder to
describe the experimental wake at low Ro. This comparison is further provided in Figs. 13 and 14.

This nearly vertically invariant wake observed at low Ro [Figs. 12(a) and 12(b)], of width of the
order of the cylinder diameter, is essentially composed of a slice of downward fluid motion below the
“bow” of the cylinder followed by a slice of upward fluid motion below the “stern” of the cylinder.
Although this increasing vertical invariance is consistent with the Taylor-Proudman theorem, this
flow is not a Taylor column, which is prohibited in the case of a 2D object (invariant along y). In
the limit of very small Rossby number, the wake stationarity condition in the frame of the cylinder
implies that low-frequency waves compose the wake in the frame of the fluid at rest. Then the only
fluid motions allowed by the wave dispersion relation are circular translations in vertical planes.
Accordingly, here, in the frame of the fluid at rest, any fluid particle at a given x must describe,
during the transit of the cylinder, one circular translation in the vertical plane (y,z), oriented by ex

(ex · U > 0) below the object and by −ex above. Time symmetry of the wave dynamics then implies
that the fluid particle must return to its initial position after the transit of the cylinder; this explains
why the upstream-downstream nonsymmetric separated wake flow, typical in nonrotating fluids,
tends to be inhibited at small Rossby number here, in good agreement with the streamlines reported
in Fig. 9.

In order to compare the experiments with the theory of Sec. II B, i.e., Eqs. (31)–(33), we report
in Fig. 13 the measured and predicted axial profiles of the normalized vertical uz/U and axial
ux/U velocity components at height Z/d = −3 for increasing Rossby number and various Reynolds
numbers. In the experimental profiles at Ro � 0.1, the unexpected oscillations behind the cylinder,
observed in the region where the theoretical profiles are essentially flat, are due to the reflection of
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FIG. 14. (a) Amplitude �uz/U of the maximum vertical velocity oscillation at Z/d = −3 as a function
of Ro for all the experiments with 15 � Re � 100. For each data point (squares), the prediction based
on the weak-streamwise-perturbation approximation for the same (Ro,Re) values is reported with a circle.
(b) Corresponding ratio �ux/�uz of the axial to vertical maximum velocity oscillation at Z/d = −3. The
straight line shows the expected asymptotic behavior at low Ro, �ux/�uz � k1

x,extrd Ro. In both figures, the
dashed and dash-dotted lines show the theoretical predictions of the weak-streamwise-perturbation model for
Re = 15 and Re = 100, respectively.

the wake at the bottom of the water tank and at the fluid free surface. Focusing on the distances X

where a nonflat profile is predicted, we observe quantitative agreement between the experimental
data and the model for Ro typically lower than 0.30, i.e., when significant finite-size effects are
present. For larger Ro, we note an increasing wake amplitude and upstream phase shift compared
to the prediction. Such an upstream phase shift was also found by Heikes and Maxworthy [12] for a
ridge made of a portion of a cylinder, but with a weaker wave amplitude. They attributed this weaker
wave amplitude to viscous damping, which was not included in their model. In any case, at Rossby
numbers similar to those in Ref. [12], we observe quantitative agreement between the model and our
experiments.

To provide further comparison with the model, we consider the variation with Ro of the amplitude
of the main oscillation behind the cylinder. In Fig. 14(a) we plot the difference �uz/U between
the maximum and minimum vertical velocity in the wake at Z/d = −3 for all the experiments
with 15 � Re � 100 (this range is chosen in order to limit the dispersion due to viscosity while
keeping a significant number of data points). Experimental data are shown with square markers
and the corresponding model predictions with circles; the predictions for the two limiting values
Re = 15 and Re = 100 are shown with dashed and dash-dotted lines, respectively. For Ro � 0.3,
we observe excellent agreement between theory and experiment, while for Ro > 0.3, the measured
wake amplitude becomes larger than the prediction, up to a factor 4 for Ro = 3. We cannot test the
evolution of the discrepancy between the steady wake theory and the experiments at Ro > 3 because
it corresponds here to the largest Rossby number at which a stable wake is observed (see Fig. 8).

We finally show in Fig. 14(b) the ratio �ux/�uz of the axial to vertical maximum velocity
oscillations at Z/d = −3 for the experiments and the model as a function of Ro. We observe good
agreement between the experiment and the model up to Ro � 0.8. In addition, one can note that
the linear behavior observed at very small Ro simply follows from the stationarity condition (10),
yielding �ux/�uz = Uk/2�, where k is the local wave number. Indeed, at small Rossby numbers,
when finite-size effects are important, the dominant wave number in the wake scales as k ∼ kx ∼
2π/d. Using the first extrema of the cylinder spectrum (51) to estimate this dominant wave number,
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we recover the observed linear behavior �ux/�uz � k1
x,extrd Ro � 3.68 Ro. We finally note that,

for Ro � 0.30 for which the model describes quantitatively the observed wakes, the velocity ratio
�ux/2U remains below 0.2, which provides a justification for the approximation of weak streamwise
perturbation used in the model.

At moderate and large Rossby numbers, the choice of the model for the translating object becomes
unimportant for the global phase pattern, which matches the line object model as shown, for example,
in Figs. 12(e) and 12(f). Nevertheless, understanding the flow close to the object remains decisive
in describing the wake amplitude and phase origin (Figs. 13 and 14). In this context, it is clear that
for the moderate Rossby numbers in the range 0.3 � Ro � 3, the weak-streamwise-perturbation
boundary condition does not describe well the actual boundary condition for the wave field, calling
for a more accurate description of the viscous boundary layer on the cylinder.

IV. CONCLUSION

In this article we have studied experimentally the wake produced by the horizontal translation
at constant velocity of a horizontal cylinder in a fluid rotating about the vertical axis. For steady
wakes, we proposed a model of wake of inertial waves based on an earlier model by Johnson [3]
that retains the weak-streamwise-perturbation and infinite-depth approximations of Johnson but
relaxes the quasigeostrophic approximation. We showed that this model describes the experiments
quantitatively for Ro � 0.3 and for Re ranging from 1 to 103. Our measurements confirm that this
approximation of a weak streamwise perturbation applied in a free-slip boundary condition leads to
an accurate description of the wake even for a nonslender object, provided it is horizontally invariant
in the cross-stream direction. This result follows from the fact that the vertical-to-horizontal velocity
ratio is imposed by the frequency in an inertial wave. Here we showed that this low-Ro prediction
applies even at moderate Rossby number. Our experimental validation of the weak-streamwise-
perturbation model at low Ro opens the way for a theoretical exploration of the influence on the
wake of inertial waves of the object’s shape for arbitrary horizontal 2D bluff body.

At large Rossby numbers, the structure of the wake is expected to become independent of the size
of the object, and we indeed recovered experimentally the wake predicted for a line object by Lighthill
[8] for Ro larger than 0.3. However, our measurements show that the weak-streamwise-perturbation
approximation no longer allows one to predict the correct amplitude and phase origin of the wake
in this regime. These results call for a better description of the viscous boundary layers along the
cylinder at moderate Rossby number.

In this work we also studied the threshold in Reynolds and Rossby numbers above which the wake
becomes unsteady. We found a strong stabilization by rotation of the wake, which remains steady up
to Rec ∼ 1000 at Ro ∼ 0.3, to be compared with the threshold for the appearance of the von Kármán
vortex street, Rec ∼ 50, in a nonrotating fluid. Close-up views behind the cylinder indicate that in
this stabilized regime the boundary layer detachment is inhibited by rotation. The stability criterion
suggested by our experiments, Re < (275 ± 25)/Ro, indicates a competition between the inertial
and Ekman time scales, but no general stability analysis for this problem is available yet.

All these results are for two-dimensional objects, invariant along the cross-stream horizontal
direction. For three-dimensional objects, the prediction of the full velocity field of the wake of inertial
waves implies the identification of a relevant description of the boundary layers on the object, which
is still an open question in the general case. Indeed, the weak-streamwise-perturbation approximation
requires the object to be slender and is no longer valid for 3D bluff bodies. It has been applied to
the calculation of the waves by Cheng and Johnson [11] and compared with experiments involving
spherical caps and vertical pillars by Heikes and Maxworthy [12], who pointed out, in particular, a
lateral deflection that may be caused by the geostrophic flow around the object. The same structure is
also visible in the numerical simulations of Mason and Sykes [6]. One should remember this second
difference with the 2D case treated in this article: As Ro decreases, a Taylor-column vertically
invariant flow [4,7] is expected to appear and finally dominate the wake in fluid domains of finite
depth.
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In geophysical configurations, the stratification of the fluid, characterized by the Brunt-Väisälä
frequency N , plays a significant role in addition to rotation. The problem becomes that of the
horizontal flow at velocity U over a topography of streamwise size L, with the internal Froude
number Fr = U/NL a new parameter. Inertia-gravity waves are generated, composed of transverse
and converging waves contained by a caustic, the streamwise orientation of the transverse and
converging waves being reversed depending on whether N is smaller or larger than 2� [9]. The
weak-streamwise-perturbation approximation has been applied to this configuration by Cheng et al.
[35] for thin topographies.

Geophysical flows usually have low internal Froude numbers, corresponding to strong stratifi-
cation, in association with moderately low Rossby numbers. When only stratification is present,
vertical motion is confined to a small layer of height U/N = L Fr below the top of the topography,
while the fluid below that layer flows horizontally around the topography. The horizontal surface
separating the two layers is called the dividing streamline, or more exactly a stream surface. Since
vertical motion is the primary cause of internal wave motion, only the portion of the topography
protruding above the dividing stream surface contributes to the wave radiation, acting as a thin cutoff
obstacle to which the weak-streamwise-perturbation approximation may be applied. This approach
was evoked by Newley et al. [36], Hunt et al. [37], and Greenslade [38] and then implemented
by Hunt et al. [39], Voisin [17], and Dalziel et al. [40], the latter also presenting experiments
for hemispherical topography. As a result, the weak-streamwise-perturbation approximation turns
out to also be applicable to three-dimensional bluff topography in a stratified flow, so long
as the stratification is strong. Generalization to a rotating and stratified fluid depends on the
deformation that rotation may impose on the dividing stream surface, a topic that deserves further
investigation.
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APPENDIX A: FAR-FIELD EXPANSION OF WEAKLY DISSIPATIVE WAVES

We look for the expansion of integrals of the form

I (λ) =
∫ b

a

g(k)eiλf (k)dk, (A1)

with a and b real, as λ → ∞, in the particular case where

f (k) = f0(k) + iεf1(k), (A2)

with f0(k) and f1(k) real and ε � 1. Such integrals are met when investigating the effect of weak
dissipation on the propagation of waves in the far field, as in [3] and Sec. II B. We assume that
g(k) is regular on the interval of integration and f0(k) has a simple stationary point k0 such
that f ′

0(k0) = 0 and f ′′
0 (k0) �= 0. For ε = 0, the method of stationary phase (see [41], Sec. 2.7)

yields

I (λ) ∼
√

2π

λ|f ′′
0 (k0)|g(k0) exp

[
iλf0(k0) + i

π

4
sgn f ′′

0 (k0)
]
. (A3)

When ε �= 0, to O(ε), the real stationary point becomes a complex saddle point

ks ∼ k0 − iε
f ′

1(k0)

f ′′
0 (k0)

(A4)
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such that f ′(ks) = 0 and at which

f (ks) ∼ f0(k0) + iεf1(k0) ∼ f (k0), (A5)

f ′′(ks) ∼ f ′′
0 (k0) + iε

[
f ′′

1 (k0) − f ′
1(k0)

f ′′′
0 (k0)

f ′′
0 (k0)

]
∼ f ′′(k0) − iεf ′

1(k0)
f ′′′

0 (k0)

f ′′
0 (k0)

. (A6)

The steepest-descent path through this point, oriented towards increasing Re(k), makes an angle
θp = π/2 − arg[if ′′(ks)]/2 (mod π ) with the Re(k) axis, that is,

θp ∼ π

4
sgn f ′′

0 (k0) − ε
f ′′

1 (k0)f ′′
0 (k0) − f ′

1(k0)f ′′′
0 (k0)

2[f ′′
0 (k0)]2

. (A7)

The method of steepest descent (see [41], Chap. 7) yields

I (λ) ∼
√

2π

λ|f ′′
0 (k0)|g(k0) exp[−ελf1(k0)]

× exp

{
iλf0(k0) + i

π

4
sgn f ′′

0 (k0) − iε
f ′′

1 (k0)f ′′
0 (k0) − f ′

1(k0)f ′′′
0 (k0)

2[f ′′
0 (k0)]2

}
. (A8)

Two contributions are added to the phase λf0(k0): one O(ελ), affecting the amplitude of the waves
and which, depending on λ and ε, may be O(1) and hence must be retained, and the other O(ε),
affecting the phase of the waves and expected to be negligible. Accordingly, the dominant effect of
small nonzero ε is obtained by evaluating the disturbed f (k) at the undisturbed stationary point k0,
following (A5).

APPENDIX B: VISCOUS DEFORMATION OF THE LINES OF CONSTANT PHASE

Quasigeostrophy allowed Johnson [3] to consider viscosity at any Reynolds number Re. In the
far field, the steepest-descent method not only confirmed the exponential amplitude attenuation
expected from the group-velocity theory but also revealed a viscous deformation of the lines of
constant phase, which starts to be significant, relative to λ0, the characteristic wavelength of the
inviscid wake, at Re Ro of order unity and makes the lines straighter near the origin. Here, without
quasigeostrophy, an assumption of large Rek0 = U/νk0 = Re Ro had to be introduced to keep the
analysis tractable. Appendix A, with ε = 1/(Re Ro), then predicted the deformation to be negligible.
In the following, we consider this deformation nonetheless, in order to assess its connection with the
work of Johnson [3].

The phase (40) becomes

ϕs = k0|Z|cos2 θ

sin3 θ
− π

4
+ 1

Re Ro

cos θ

sin4 θ

6 + 8 cos2 θ + cos4 θ

4 + 4 cos2 θ + cos4 θ
, (B1)

yielding, for the lines of constant phase, the parametric equations

k0|X| = 1 + sin2 θ

cos θ

(
ϕs + π

4
− 1

Re Ro

cos θ

sin4 θ

6 + 8 cos2 θ + cos4 θ

4 + 4 cos2 θ + cos4 θ

)
, (B2)

k0|Z| = sin3 θ

cos2 θ

(
ϕs + π

4
− 1

Re Ro

cos θ

sin4 θ

6 + 8 cos2 θ + cos4 θ

4 + 4 cos2 θ + cos4 θ

)
. (B3)

The product Re Ro is seen to govern the importance of the deformation. In Fig. 15 we show the lines
of constant phase ϕs + π/2 = (2n + 1)π (for n ∈ [0; 10]) for the three values Re Ro = 1,10,100
and compare them with their inviscid counterpart ϕs(Re Ro = ∞) + π/2 ≡ ϕ0 + π/4 = (2n + 1)π .
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FIG. 15. Lines of constant phase, computed from the viscous model (B2) and (B3) [red lines, for ϕs + π/2 =
(2n + 1)π and for the three values (a) Re Ro = 1, (b) Re Ro = 10, and (c) Re Ro = 100] and its inviscid limit
(41) and (42) [black lines, for ϕs + π/2 = (2n + 1)π and for Re Ro = ∞ in which case ϕs = ϕ0 − π/4], for
n ∈ [0; 10]. The background color shows the vertical velocity of the corresponding prediction by the weak-
streamwise-perturbation model of Sec. II B 2 for a cylinder of diameter d and Rossby number Ro = U/2�d =
0.1.

The background color shows the vertical velocity of the corresponding prediction by the weak-
streamwise-perturbation model of Sec. II B 2 for a cylinder of diameter d and for Rossby number
Ro = U/2�d = 0.1.

Far from the wake axis Z = 0, as α → π/2, the phase reduces to

ϕs + π

4
∼ k0

X2

4|Z| + 3

4

|X|/|Z|
Re Ro

(B4)

and the lines of constant phase, of equation

(4ϕs + π )|Z| ∼ |X|
(

k0|X| + 3

Re Ro

)
, (B5)

reduce to the straightened parabolas derived by Johnson [3], corrected for minor typographical errors.
Close to the wake axis, as α → 0, the phase becomes

ϕs + π

4
∼ k0|X| − 3

2
k0|X|1/3|Z|2/3 + 5

3

(|X|/|Z|)4/3

Re Ro
(B6)

and the lines of constant phase, whose inviscid form exhibits evenly spaced cusps on the axis at
k0|X| = ϕs + π/4, are stretched into curves with a common corner point at the origin. As expected,
the lines of constant phase from the inviscid and viscous models tend to coincide in the limit Re Ro →
∞. At smaller Re Ro, such that the inviscid and viscous lines differ significantly, the FFT evaluation of
the vertical velocity predicted by the weak-streamwise-perturbation model (33) is shown in Fig. 15 to
better coincide with the inviscid lines, thereby showing the viscous correction of the lines of constant
phase to be of purely rhetorical interest.
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APPENDIX C: UNIFORM FAR-FIELD EXPANSION AT THE WAVE FRONT

The far-field expansion (37)–(39), in which the large parameter k0|X| is multiplied by cos θ , is
nonuniform at the wave front X = 0 where θ = π/2. Mathematically, for the integrals (31)–(33),
the nonuniformity is associated with the coalescence of the stationary points kx = ±k0 cos θ with
the singularity kx = 0, at which the phase of the integrand is not analytic owing to the presence of
|kx | in (27) and (28). Changing variables to turn the integrals into semi-infinite ones, over kx > 0,
the problem reduces to the coalescence of a stationary point with an end point. Applying the analysis
of Bleistein [42], we obtain the uniform expansion

ux = − sin3/2 θ cos θ√
2 + cos2 θ

exp

(
− k0|Z|

Re Ro

cos3 θ

sin5 θ

)
1

2
√

λ0|Z|Re

(
q̂0(ks)

×
{[

1 − (1 − i)(C + iS)

(√
2

π
ϕ0

)
sgn X

]
e−iϕs − i

sgn X√
πϕ0

})
, (C1)

uy = − sin3/2 θ√
2 + cos2 θ

exp

(
− k0|Z|

Re Ro

cos3 θ

sin5 θ

)
1

2
√

λ0|Z|Im
(

q̂0(ks)

×
{[

1 − (1 − i)(C + iS)

(√
2

π
ϕ0

)
sgn X

]
e−iϕs − i

sgn X√
πϕ0

})
, (C2)
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FIG. 16. Wake structure predicted in the uniform far-field approximation (C1)–(C3), with the same
parameters and layout as in Figs. 5 and 6.
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, (C3)

with C and S the Fresnel functions (the term
√

2ϕ0/π within parentheses is the argument of C

and S). The angles α and θ vary now between 0 and π but remain otherwise linked by (35). The
modifications associated with Fig. 6 are represented in Fig. 16.
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