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Abstract

A model combining time-frequency representation, hidden Markov models and multichannel signal processing is developed, for
the characterization of locally oscillatory phenomena in multisensor signals, such as in particular EEG and MEG signals). The
model is based upon a multichannel MDCT transform of the signal; the multichannel MDCT coefficients are modelled by a hidden
Markov chain, that is common to all sensors. The coefficients are distributed according to a multivariate Gaussian distribution (that
depends on the hidden state), with a Kronecker-structured covariance matrix.

Corresponding estimation algorithms are described and demonstrated, on both simulated and real data. The relevance of the
proposed approach is demonstrated on a case study on rest EEG signals, for which it is shown that the model parameters can
discriminate between control subjects and patients with multiple sclerosis.

Keywords: EEG signals, time-frequency representation, MDCT basis, hidden Markov model, Kronecker product

1. Introduction

This paper is concerned with a new approach for the de-
scription, modeling and detection of oscillatory patterns in
multi-trial, multichannel signals. Prototypes of such signals
are electro-physiological signals (such as EEG, MEG...), which
often feature components that are localized simultaneously in
time, frequency and spatial domains. In other words, they often
involve short oscillatory rythms, that are most visible on spe-
cific sensors or scalp areas.

The joint localization in time and frequency domains is often
described in terms of time-frequency or time-scale representa-
tions (such as short time Fourier or wavelet transforms). The
latter are generally used as alternative representations of the
signals, from which relevant features are extracted, and vali-
dated using statistical techniques. The synthesis aspect of time-
frequency/scale transforms, i.e. the fact that signals can be syn-
thesized from suitably chosen time-frequency or time-scale co-
efficients is more rarely exploited. The approach we develop
here is somewhat different, in the sense that we introduce an ex-
plicit modeling of the signals under consideration, that involves
time-frequency-space localization, together with a latent (hid-
den) time dependent variable, aiming at describing some under-
lying (time varying) state that generate different signal shapes.
The model is a probabilistic model, which allows us to use the
machinery of maximum likelihood estimation techniques.

More precisely, the model we propose is written directly in
the time-frequency domain. Starting from a multichannel sig-
nal, the coefficients of a corresponding time-frequency-channel
transform are modelled as multivariate Gaussian vectors, whose

characteristics (means, covariance matrices) depend upon some
unobserved latent state (in EEG/MEG signals, the latent state
aims at accounting for some underlying cerebral state). The
latter state is time-dependent, and its time evolution is gov-
erned by a Markov chain, characterized by (unknown) transi-
tion probabilities (i.e. probabilities for jumping from a state to
another at a given time). Such model architectures are known
under the name of HMM (Hidden Markov Models), and meth-
ods and algorithms for solving the corresponding estimation
problems have been thoroughly studied in various application
domains. The contribution of the current paper is to extend
such models and estimation algorithms to specific multichan-
nel time-frequency signal representations. The corresponding
covariance matrices involve frequency and channel degrees of
freedom, which generally result in high dimensional problems.
To cope with the curse of dimensionality, we also introduce co-
variance matrices of a specific type, namely Kronecker products
of frequency and channel covariance matrices. This requires an
adaptation of the estimation methods and algorithms.

This paper is organized as follows. Mathematical tools (time-
frequency, Markov models, algorithms) are described in Sec-
tion 2, where the main aspects of the estimation problem and
corresponding algorithms are explained. Results of numerical
simulations are also given there. Numerical results on real data
are given in Section 3, where we describe in some details a case
study on rest EEG signals originating from both control sub-
jects and multiple sclerosis patients. We show in that section
that the proposed approach is able first to detect automatically
alpha rythms bursts and estimate their statistical characteristics,
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and second, to discriminate between patients and controls, us-
ing a measure of desynchronization between left and right sen-
sors. More technical aspects are given in the appendix.

Preliminary results of this work have been presented at the
Eusipco’10 conference [14].

2. Mathematical tools and methods

Throughout this paper, we shall be concerned with finite-
dimensional real vectors. We denote by u, v ∈ RN → 〈u, v〉 =

uT v the inner product of two (column) vectors (’T ’ denoting
matrix transposition). The Frobenius norm ‖M‖F of a matrix is
defined as the square root of the sum of its squared elements.
Given a vector v labelled by a time index t, we shall make use
of the notation vt1:t2 to denote the sequence {vt1 , . . . vt2 }.

Multichannel signals will be denoted generically using un-
derlined symbols, for example x = {xc, c = 1, . . .Nc}. We shall
use the letters c, t, f to label respectively channels, time and fre-
quency indices. When several realizations (trials) of the same
signal are available, we shall label them using the letter r.

We shall also use the symbols P and E for probabilities and
expectations, and denote by P{X|Y} conditional probabilities.

2.1. Time-frequency transforms
Time-frequency and time-scale transforms (see for exam-

ple [3, 7, 10]) have been used for quite a long time for an-
alyzing signals featuring non-stationary oscillatory behaviors.
Such transforms also belong to the standard biosignal analysis
toolkits (such as for example the EEGLAB toolbox [5]). For
tasks such as signal analysis, pattern detection/recognition, pa-
rameter estimation, redundant transforms such as continuous
wavelet transform or short time Fourier transform are often pre-
ferred, since they yield (at least in principle) better resolution.
Among the alternatives, let us also mention various versions of
the sparse regression techniques such as matching pursuit and
variants (multichannel, multi-trial) or multichannel basis pur-
suit denoising [9].

We shall rather concentrate here on discretized versions
of time-frequency representations, namely MDCT transforms,
which are very popular in the domain of signal coding (in par-
ticular audio coding). MDCT is actually an expansion with re-
spect to an orthonormal basis of modulated windows, which can
be implemented through fast algorithms. The time-frequency
resolution that can be achieved using MDCT is weaker than the
time-frequency resolution of redundant transforms (because of
a coarser sampling of the time-frequency plane, and of limita-
tions on the analysis window). Nevertheless, the MDCT trans-
form of a signal is in one to one correspondence with the signal,
which will be important in our approach.

For the sake of simplicity, we limit the current discussion to
the practically realistic case of discrete, finite duration signals,
of length N. It has been shown (see [16, 10] for a review) that
for suitable choices of a window function w ∈ RN , the family of
waveforms B = {ut f , t = 0, . . .Nt − 1, f = 0, . . .N f − 1} defined
by

ut f [n] =

√
2
L

w[n − tL] cos
(
π( f + 1/2)

n − tL
L

)
, (1)

Figure 1: A few examples of MDCT atoms, with various locations and frequen-
cies.

is an orthonormal basis of RN . Here t = 0, . . .Nt − 1 (resp.
f = 0, . . .N f − 1) denotes time (resp. frequency) index, and Nt

and N f are such that NtN f = N. Therefore, any signal x ∈ RN

is characterized by its MDCT coefficients

y[t, f ] = 〈x, ut f 〉 =

N−1∑
n=0

x[n]ut f [n] ,

through the inversion formula

x =

Nt−1∑
t=0

N f−1∑
f =0

y[t, f ] ut f .

Examples of MDCT atoms with various values of time and fre-
quency indices are displayed in Figure 1

We are actually interested in vector-valued (i.e. multichan-
nel) discrete signals x = {xc, c = 0, . . .Nc − 1} of fixed duration
N, which we shall represent by a family of multichannel MDCT
coefficients y = {yc, c = 0, . . .Nc − 1}

x =

Nt−1∑
t=0

N f−1∑
f =0

y[t, f ] ut f , yc[t, f ] = 〈xc, ut f 〉 . (2)

In other words, the same basis is used for all signal channels.
The coefficients are therefore organized in the form of a three-
way array. In the model described below, this three-way array is
reshaped as a matrix with N f ×Nc rows and Nt columns. A sig-
nal model of the form (2) will be called harmonic signal model.
A random version in which the coefficients are modeled by a
hidden Markov chain (HMC) was developed in [11], under the
name harmonic hidden Markov model (HHMM). In the multi-
channel case considered here, we shall talk about multichannel
harmonic hidden Markov model (MHHMM).

2.2. Multichannel harmonic hidden Markov model

In order to model the piecewise stationarity and local oscilla-
tory properties of the signals, we now introduce a probabilistic
model for the MDCT coefficients in the expansion (2). We de-
note by y

t
= {yc[t, f ], f = 0, . . .N f − 1, c = 1, . . .Nc} the vector
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of fixed time MDCT coefficients (i.e. a column of the reshaped
y matrix). The model assumes that the vectors y

t
are dependent

random vectors, whose distribution is governed by a latent (hid-
den) state Xt ∈ {1, . . .Ns}, which models the subject’s cerebral
state at a given time. The dynamics of cerebral states is itself
modeled by a Markov chain (see [12] for a review).

More precisely, we assume Ns possible cerebral states. The
details of the model are as follows:

1. When the latent state Xt is set to state s, the vector y
t

is a multivariate Gaussian random vector with zero mean
and covariance matrix Σs. In more mathematically precise
terms, conditional to X = {st, t = 0, . . .Nt − 1} the vectors
y

t
are mutually independent Gaussian vectors, with density

Φs

(
y
)

=
exp

{
− 1

2

〈
y,Σ−1

s y
〉}

√
(2π)NcN f det(Σs)

, y ∈ RNcN f . (3)

2. The latent states (which depend on the time index only,
and are common to all channels) are random variables, that
form a Markov chain, characterized by its transition matrix
π and the vector of initial probabilities ν. More precisely,
the transition matrix is the matrix of conditional probabil-
ities

πss′ = P
{
Xt+1 = s′|Xt = s

}
, s, s′ = 1, . . .Ns ,

and the initial probabilities are defined by

νs = P{X0 = s} , s = 1, . . .Ns .

In order to control the curse of dimensionality when the number
of channels Nc is large (for example, when channels coincide
with sensors -from 32 to 64 sensors are usually used in EEG),
we shall be particularly concerned with models in which covari-
ance matrices take the form of Kronecker products of frequency
and channel matrices.

Σs = Σ(c)
s ⊗ Σ

( f )
s , s = 1, ..,Ns , (4)

in other words, denoting by Yc
t f the random coefficients, and

dropping the time index for the sake of simplicity,

E
{
Yc

f .Y
c′
f ′
}

= Σ
(c)
cc′Σ

( f )
f f ′ .

This is very much in the spirit of [1, 2], where Kronecker
products and sums of Kronecker products were considered for
time-scale covariance matrices. Our approach assumes (condi-
tional) independance of fixed-time coefficient vectors, and does
not assume stationarity, therefore correlations between fixed-
frequencies coefficient vectors are introduced. Notice that such
a Kronecker product form is not unique, i.e. given Σs, Σ

(c)
s and

Σ
( f )
s are defined up to a multiplicative factor. This fact has to be

taken care of in the estimation procedure, by enforcing a nor-
malization constraint on one of the covariance matrices.

The classical hidden Markov model inference techniques
have to be modified in order to account for such a particular
structure. More details are given below.

2.3. Estimation and algorithms

We are interested in the following situations. We assume we
are given Nr realizations (trials) x(r), r = 1, . . .Nr of a MHHMM
signal as above, each having its own sequence of hidden states
X(r). The problem at hand is the following:

• Estimate from the observations the model parameters: the
channel and frequency covariance matrices Σc and Σ f , as
well as the transition matrix π and the vector of initial
probabilities ν.

• Estimate the sequence of latent states X(r)
t , t = 1, . . .Nt for

each trial r.

The parameter estimation problem does not require the knowl-
edge of the latent states, and can be solved using a single trial, or
several trials. The hidden states estimation requires the knowl-
edge of the model parameters (either from the estimation pro-
cedure, or from a prior training stage), and is to be performed
for each trial independently.

We outline below the main stages of the estimation proce-
dure, details are given in the appendix.

2.3.1. Parameter estimation
The parameter estimation problem is solved using fairly clas-

sical tools, that are adapted to the present situation. First, start-
ing from the observed signals (trials) x(r), r = 1, . . .Nr, corre-
sponding MDCT coefficients y(r);c[t, f ] = 〈x(r);c, ut f 〉 are com-
puted. This is done using the freely available matlab toolbox
LTFAT [13].

We use the EM algorithm to perform the parameter estima-
tion. EM is an efficient iterative procedure to compute the Max-
imum Likelihood (ML) parameter estimate in the presence of
latent data. We outline here the main points of the algorithm.
The so-called forward and backward variables are instrumental
in the algorithm. They represent respectively the normalized
distribution of the latent state Xt conditional to the observed co-
efficients y0:t:

αs
t = P

{
Xt = s|y0:t

}
× Lt (5)

where Lt is the likelihood of the observations until time t, and
the backward variables βs

t are the likelihoods of the observa-
tions y(t+1):(Nt−1) conditional to Xt = s for s = 1, . . .Ns and
t = 0, . . .Nt − 1.

βs
t = P

{
y(t+1):(Nt−1)|Xt = s

}
. (6)

Given the model parameters, the forward and backward vari-
ables can be computed recursively (see the Appendix), and
yield the likelihood of the parameters, which in turn can be op-
timized.

More precisely, each iteration of EM involves two steps.

• In the E-step (Expectation), the log-likelihood of the ob-
served data (for each trial) is estimated given the current
estimate of the model parameters, using the so-called for-
ward and backward equations described in the appendix.
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• In the M-step, the global likelihood function (involving
all trials) is maximized leading to the so-called Baum-
Welch re-estimation formulas. This yields new estimates
for the parameters of the multivariate Gaussian distribu-
tions (i.e. the covariance matrices), and the parameters of
the Markov chain (transition and initial probabilities).

Convergence is ensured since it may be shown that the algo-
rithm is guaranteed to increase the likelihood at each iteration.

2.3.2. Estimation of the hidden states sequence
Giving the estimated MAP parameters, we use the Viterbi dy-

namic programming algorithm to find the most likely sequence
of hidden states

XMAP
0:(Nt−1) = arg max

`0:(Nt−1)

P
{
X0:(Nt−1) = `0:(Nt−1)

∣∣∣ y0:(Nt−1)

}
. (7)

This task is classically achieved using dynamic programming
techniques (see [12] for a detailed account). This procedure is
also linear in t but requires numerical evaluation of probabil-
ity densities, i.e. inversion of covariance matrices. Therefore,
when N f and Nc are large, using tensor product decompositions
yields more stability in the numerical evaluation.

2.4. Numerical simulations
EM and Viterbi algorithms are standard and well established

tools for statistical inference in hidden Markov models. The
situations we want to face in electro-physiological signals how-
ever correspond to models with large dimensional observations,
which raise important identifiability questions. The goal of the
present section is to validate the modification of the algorithms
induced by the Kronecker type matrices, and show that they
yield more precise estimates than the classical algorithms.

To this end, we simulated signals following the Kronecker
model and tested both the standard and Kronecker estimation
procedures, for several parameter choices. Given the alpha
waves case study we shall be interested in below, we limited
ourselves to Ns = 2 hidden states and generated frequency co-
variance matrices similar to the estimated matrices for the real
EEG signals studied in section 3.2 (see Figure 6), and artificial
channel covariance matrices that exhibit topographically dis-
tinct sources for the two states (see Figure 2).

We display here the results obtained using 8 channels, single
trial (Nr = 1) 40 seconds long signals, sampled at 256 Hz. The
MDCT transform was tuned so as to generate 32 frequency bins
(of bandwidth 4 Hz) for each channel, with a Gauss like win-
dow. Out of these, we selected N f = 8 frequency bins so as to
cover a sufficient spectrum to deal with the oscillatory patterns
of interest for us.

A reference transition probability π11 = P{Xt = 1|Xt−1 = 1} =

0.85 was chosen (corresponding to a typical value for alpha
waves duration, i.e. 700ms), simulations were run for various
values of π00 = P(Xt = 0|Xt−1 = 0) in the interval [0.75; 0.95]
(100 runs per value of π00), and relative errors were computed,
defined as

Err =

∥∥∥Σ̂ − Σ
∥∥∥

F

‖Σ‖F
.

Figure 2: Channel covariance matrices for state ’non-alpha’ (left) and ’alpha’
(right)

The results, displayed in Figure 3, clearly show that the Kro-
necker product based estimate outperforms the classical one in
terms of accuracy (for comparable running time). As expected,
when π00 grows, the average length of zero-state regions in-
creases, and the accuracy of the estimate of Σ0 (resp. Σ1) grows
(resp. decays). The hidden state identification error rates are
displayed in Figure 4. The error rates are very comparable for
the two methods and always remain at an extremely low level
(less than 0.5%). The accuracy of the identification seems to de-
cays when π00 increases. One can also see that the error rate is
higher when Viterbi algorithm is based on the Kronecker form
parameters. We have no simple explanation for these phenom-
ena, nevertheless the error rates remain very low in all consid-
ered cases.

Figure 3: Evolution of the estimation relative errors as a function of the transi-
tion probability π00

Numerical simulations using several trials lead to similar re-
sults, increasing the number of trials leading to better precision
estimates.

3. A case study: alpha waves based characterization of
multiple sclerosis

We now turn to results obtained on real data, more particu-
larly to the problem of detection of alpha waves in rest EEG sig-
nal. Notice however that the proposed approach can be adapted
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Figure 4: Evolution of the hidden states identification error rates as a function
of the transition probability π00

to much more general situations, namely whenever local oscil-
lations show up (apparently randomly) in multichannel signals.

Alpha waves are short duration time-localized oscillations
(with frequency around 10 Hz) which appear in EEG signals in
some specific situations, and can naturally be accounted for by
time-frequency representations. They predominantly originate
from the occipital lobe, and are therefore topographically local-
ized in specific sensors located in posterior regions of head. The
alpha wave occurrence may be considered a non-stationary ef-
fect, i.e. a departure from a stationary background signal. This
therefore motivates the use of hidden Markov models as de-
scribed above.

3.1. Problem statement and data

Alpha waves detection. Our first goal is the automatic detec-
tion of alpha waves, more precisely the segmentation of the
signal into time epochs where alpha waves are present (state
1) or absent (state 0). Alpha waves detection is generally con-
sidered easy, and can be achieved using many signal process-
ing techniques. Among these, a simple one would amount to
band pass filter signals to the appropriate frequency band, and
make a decision based upon the energy within specified time
frames. In any case, such strategies would require choices for
time frame length, thresholds, channels,... The MHHMM we
have described here provides a more systematic approach.

The main goal of the current study is to use the model in an
unsupervised manner, in order to test its ability to blindly detect
alpha waves. The case study below provides a positive answer.
In other situations though (i.e. with more complex signals),
supervised training may be necessary in order to obtain accurate
detection.

For the problem under consideration, we use the model with
two instances for the latent states: alpha (s = 1)/non-alpha (s =

0) whose parameters are

• the initial hidden state distribution ν, with components
νs = P{X0 = s}

• the transition matrix of the Markov Chain π where πs,s′ =

P
{
Xt+1 = s′

∣∣∣Xt = s
}
,

• the channel and frequency covariance matrices corre-
sponding to the two states Σ

( f )
0 ,Σ

( f )
1 ,Σ(c)

0 ,Σ(c)
1 .

Figure 5: MDCT coefficients for a fixed sensor (top) and hidden states sequence
estimated (from all sensors) using Viterbi algorithm (bottom)

We shall consider two different situations. In the subject by
subject case, parameters will be estimated independently for
each subject (in this case, a single trial will be used for the
estimation), and a sequence of hidden states will be inferred
for each subject too. In the multi-subject case, we shall assume
that the model parameters are common to all subjects, a hidden
states sequence being estimated for each individual subject.

Given the model parameters, the hidden states sequences are
estimated for all subjects. These sequences will be the main in-
gredients for the case study described below, as they represent
the bursts in the time-frequency images which corresponds to
alpha waves. As an example, we can clearly see in Figure 5
that values equal to one correspond to time domains whose cor-
responding MDCT coefficients take significantly larger values
in the alpha band.

Data and calibration of the time-frequency parameters. The
approach was applied to EEG data originating from the
CODYSEP dataset, designed to study the impact of sclerosis
in inter-hemispherical transfer. The dataset consists in 31 pa-
tients (hereafter termed SEP) and 20 controls (TEM); 17 chan-
nels EEG signals were collected at a 256 Hz sampling rate.

A subset of 14 subjects and 16 controls was selected, namely
those exhibiting sufficiently similar time-frequency contents, in
particular in the 8-12 Hz range. The calibration of the time-
frequency analysis (for us, the length of the analysis window,
also called hop size) is a crucial issue. Indeed, if the window
is too large, the time resolution can be insufficient to properly
describe alpha bursts, while short windows may not yield suf-
ficient frequency resolution to distinguish alpha waves. To set
a reasonable trade-off between time and frequency resolution,
we set the hop size to N f = 32 samples (i.e. a time resolu-
tion of 125 ms), resulting in a moderate frequency resolution
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(each MDCT basis function having a bandwidth of approxi-
mately 4Hz).

This choice, which is obviously questionable, was motivated
by the need of focusing on the same phenomenon (i.e. with the
same time-frequency patterns) for all retained subjects. Other
choices were of course tested, the corresponding results were
of lower precision. It is worth noticing that using Gabor frames
rather than MDCT bases would yield more freedom in the cali-
bration, without eliminating the need of a time-frequency trade-
off, which results from Heisenberg’s uncertainty.

A subset of sensors was also selected that correspond to rel-
evant scalp locations for observing alpha waves.

3.2. Estimation results

Corresponding MDCT transforms were computed, and the
model parameters (for a two-state model: alpha and non alpha
states) were estimated using the above algorithms. Examples of
covariance matrices for the two states are displayed in Figure 6
and 7. The frequency covariance matrices shown in Figure 6
are almost diagonal, which indicates a decorrelation of the fre-
quency bands. The main difference between the two matrices
appears for the frequency band 8-12Hz (matrix element (3,3)),
which is significantly bigger in ’alpha’ state. This state there-
fore succeeds to capture alpha waves. The channel covariance
matrices in Fig 7 are also significantly different for some chan-
nels: in particular, channels O1 and O2 (matrix elements (4,4)
and (11,11)) are overactivated in ’alpha’ state. Again this is
coherent, since those sensors correspond to regions where al-
pha wave signals are most visible. This phenomenon is even
more obvious on the graphical representation of topographies
(Figure 8), actually representing the diagonals of matrices of
Fig 7 on which the relevant sensors O1 and O2 are clearly more
“energetic” in ’alpha’ state.

Figure 6: Frequency covariance matrices for state ’non-alpha’ (left) and ’alpha’
(right)

After completion of parameter estimation, a maximum like-
lihood estimate for the sequence of latent states is obtained via
the Viterbi algorithm. An example is provided in Figure 5.

3.3. A study of alpha wave desynchronization

Let us now turn to a more specific case study in the
CODYSEP dataset, namely the study of alpha wave desynchro-
nization between left hand and right hand sensors. We will test
the assumption that multiple sclerosis can affect the left-right

Figure 7: Channel covariance matrices for state ’non-alpha’ (left) and ’alpha’
(right)

Figure 8: Representations of the channels variances for state ’non-alpha’ (left)
and ’alpha’ (right)

synchronization in the alpha band, by estimating, for each sub-
ject, the hidden states sequences in left and right sensors sep-
arately, and comparing them. The assumption is supported by
known physiological results, and losses in synchronization be-
tween EEG signals in left and right hemispheres have been re-
ported in the literature. For instance, [4] states : “in multiple
sclerosis, both axonal damage and demyelination occur. There-
fore it can be expected that the connectivity between the differ-
ent regions in the brains of MS patients will be impaired com-
pared to healthy controls.” In the literature, desynchronization
between signals is ofted detected and assessed using correlation
type measures, such as coherence. The MHHMM method de-
scribed here is an alternative natural candidate for testing and
evaluating such desynchronization effects.

To test the desynchronization assumption, hidden states se-
quences were estimated for all subjects in the dataset, separately
for left sensors and right sensors. The latter sequences take the
form of sequences of zeros (non-alpha state) and ones (alpha
state). For each subject, the Hamming distance between the left
sensors X(L)

t and right sensors X(R)
t sequences was computed

D =
∑

t

∣∣∣X(L)
t − X(R)

t

∣∣∣
and the empirical distributions of the so-obtained distances
were compared using a non parametric test. The figure 9 shows
the boxplots of the two families (SEP and TEM) of distances,
and seems to indicate a significant difference: SEP data exhibit
a larger left-right assymetry, in accordance with the above men-
tioned desynchronization hypothesis. To assess statistically the
significance of the result, we performed a Mann-Whitney test.
The corresponding P-value was found to equal P = 0.0384,
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which confirms quantitatively the hypothesis of two distinct dis-
tributions.

Figure 9: Boxplots of the Hamming distances between left and right hidden
states for SEP (left) and TEM (right)

For the sake of comparison, we also computed a correspond-
ing version of the coherence between left and right sensors.
More precisely, we compute an MDCT version of the coher-
ence function, for a specific frequency band: given the MDCT
coefficients y1[t, f3] and y2[t, f3] (for the most significant sen-
sors O1 and O2) for the frequency range f3 ∼ 8 − 12Hz, we
computed the quantity

C =
|〈y1[·, f3], y2[·, f3]〉|
‖y1[·, f3]‖ ‖y2[·, f3]‖

,

for all subjects (SEP and TEM) under consideration. The re-
sults are summarised by a boxplot in Figure 10, where it can
be seen that even though TEM subjects tend to have a larger
“left-right” coherence, the difference is absolutely not signifi-
cant. We tested several similar coherence measures, with essen-
tially the same results. The sequences of hidden states provided
by our model yields the most significant decision between SEP
and TEM datasets.

Figure 10: Boxplots of the coherences between left and right hidden states for
SEP (left) and TEM (right)

Remark: a multi-subject study. As stressed before, the ap-
proach developed here can also cope with multitrial signals, as-
suming that all trials share the same parameter set (covariance
matrices and transition probabilities), but not necessarily the
same latent variable sequences. Numerical simulations produce
results similar to the results in the previous section in terms of
accuracy. Such extensions can be of interest in some situations,

for instance when several epochs are available (for example in
BCI protocols).

Although the model presented in section 2.2 has been defined
as a multitrial model, it is also interesting to test it in a multi-
subject situation, for example as a test of the inter-subject vari-
ability of the model parameters. Indeed, if the intersubject vari-
ability is weak enough, applying our approach to multi-subject
data can yield improved parameter estimations. In addition, one
may think of using the model parameters learnt from a training
set of subjects to estimate hidden states sequences for a test set.

We attempted such an approach on the Codysep dataset, pro-
cessing independently the two (SEP and TEM) groups. For
each group, we considered the whole signals as independent
and identically distributed realisations of the same Multichan-
nel Harmonic Hidden Markov Model. This boiled down to
choose Nr = 16 trials for the first group (SEP) and Nr = 14
trials for the second one (TEM). Unfortunately, numerical tests
were not conclusive as they yielded irrelevant parameters and
hidden states sequences for the problem of alpha waves detec-
tion.

To interpret such a negative conclusion, we display in Fig-
ure 11 two time-frequency images associated to two patients
from the SEP group. These images clearly examplify the inter-
subject variability which dominates the intrinsic variability of
the alpha and no-alpha regions. Indeed, the two subjects present
very different time-frequency profiles. For the first one, the pre-
vailing activity deals with the alpha band (8-12 Hz) whereas the
second subject exhibits some more scattered activity with large
coefficients associated with very low frequencies (from 0 to 4
Hz). Such differences explain the fact that the estimation al-
gorithms (EM + Viterbi) do not lead to automatic alpha waves
detection.

Figure 11: MDCT coefficients computed from sensor 01 for two subjects from
group SEP
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4. Conclusions and perspectives

We have described in this paper a new model for the study
of multi-trial, multi-channel signals exhibiting oscillatory pat-
terns. Time-frequency representations are clearly relevant to
account for such features, and we defined models for the time-
frequency coefficients rather than the signals themselves. The
use of MDCT basis allows us to extend the structure of hid-
den Markov models and enable us to model explicitly the non-
stationarity of such signals. In order to get tractable algorithms
on realistic data (in terms of length, time-frequency resolution
and number of channels...), we proposed an adaptation to the
case where covariance matrices take the form of Kronecker
products of smaller matrices gathering respectively topographic
and frequency correlations. We extend the classical algorithms
(EM, Viterbi) to tackle this new problem of parameters estima-
tion and test them on simulated data. We validated the esti-
mation procedure on numerical simulations, and tested the al-
gorithms developped on a case study devoted to alpha rythms
characterization and detection from EEG signals. While the al-
gorithms described here are not new, the model itself and its
adaptation to EEG type data is original. Furthermore, the case
study clearly shows the relevance of the model for real data pro-
cessing, since it yields a biologically relevant result.

In this work, fixed-time vectors of MDCT coefficients were
modeled as multivariate Gaussian vectors whose distribution is
governed by a hidden state representing some mental state of
the subject. Such Gaussian mixtures can also be used to ac-
count for different cerebral activities. Thus, this model can po-
tentially be used to deal with various problems of similar nature
(i.e. detection and characterization of non-stationary features)
as long as the signals of interest exhibit oscillatory features that
are different enough in terms of channels and frequency local-
izations. Further work will concern the validation of this ap-
proach to different types of EEG detection and characteriza-
tion problems. Applications to BCI (brain computer interfaces)
problems (namely, beta rebounds detection) are currently under
study.

From a more fundamental point of view, the approach de-
veloped here strongly relies on the fact that the time-frequency
transform corresponds to an orthonormal basis (extensions to
other bases than the MDCT can also be considered). How-
ever, MDCT bases are known for having important limitations
in terms of time-frequency resolution. It would therefore be
desirable to turn to better quality time-frequency expansions,
such as Gabor frames (see [6, 8] for a detailed account of the-
ory and algorithms). Gabor frames yield expansions of multi-
channel signals in the form xc =

∑
t, f yc

t fφt f , where the φt f are
the Gabor atoms (time-frequency shifted copies of a reference
window function φ), and the coefficients

(
yc
λ

)
are synthesis co-

efficients, to be modelled. This raises two major difficulties:
first, a choice has to be made for synthesis coefficients (which
are generally not unique), which also have to be estimated from
the input signals. In [15] we propose an algorithm in the spirit
of Majorization-Minimization methods to solve this problem
when the vectors yt f are supposed to be generated by a mul-
tivariate Gaussian mixture. Second, the non-orthogonality of

Gabor atoms complicates the use of Markov models and the
task of inference since standard algorithms won’t be applicable
without complex structural refinements. Such an issue will be
sought in a forthcoming study.

Another important problem that has to be dealt with when
such approaches are applied to multichannel signals is the curse
of dimensionality. Using large dimensional Gaussian vectors
often leads to numerical instabilities, which can be better con-
trolled when dimension is reduced. A first way to do that is to
use Kronecker-structured covariance matrices, as we did in this
work. Other complementary approaches could also be investi-
gated. For example, dimension reduction techniques (principal
component analysis, or more sophisticated techniques) could be
applied in the channel space. One may also think of construct-
ing the channel dimension reduction so as to favour discrimina-
tion between states, or develop a state dependent dimension re-
duction scheme. The latter problem, which is probably very rel-
evant (in EEG signals, different states generally correspond to
different sources in the cortex and appear most significantly in
different sensors) would however require major modifications
in the model and the estimation procedure.

A last extension that could also be envisioned from our cur-
rent work would be the coupling with inverse problem ap-
proaches, to introduce the modelling directly in the source do-
main. Again, that would require important modifications in the
estimation algorithms.
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Appendix A. EM algorithm for Kronecker structured co-
variance matrices

We provide here details on the estimation algorithms and for
implementations. EM is a fairly classical tool in computational
probability and statistics, we focus on the modifications neces-
sary to adapt the algorithm to Kronecker structured covariance
matrices.

Appendix A.1. Expectation:

Within this subsection, we consider any realization (trial) x =

x(r) of the model. Each trial gives rise to a family of forward
and backward variables α(r)

t and β(r)
t . Throughout the current

subsection Appendix A.1 we drop the trial label “r” for the
sake of simplicity. We recall that for t ∈ 0, ..,Nt − 1, the vectors
of MDCT coefficients between time t1 and time t2 is denoted by
yt1:t2 = {y[t, f ], t = t1, . . . t2, f = 0, . . .N f − 1}.

The forward variables defined in (5) are computed recur-
sively for t = 1, . . .Nt −1, while the backward variables defined
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in (6) are obtained by recursion too, operating on decreasing
indices t = Nt − 1 down to 0:

αs
t+1 = Φs(yt+1)

Ns∑
s′=1

πs′ sα
s′
t , (A.1)

βs
t =

Ns∑
s′=1

πss′Φs′ (yt+1)βs′
t+1 . (A.2)

Thanks to these recursive equations, the complexity of the com-
putation is linear in t, which makes the algorithm extremely ef-
ficient.

Given the forward and backward variables, the distribution
of the transition (Xt, Xt+1) for t = 0, . . .Nt − 2 conditional to the
observations up to final time Nt − 1 reads

P
{
Xt = s, Xt+1 = s′

∣∣∣ y} =
1
L
αs

t πs,s′Φs(yt+1
)βs′

t+1 (A.3)

where the constant L is the likelihood of the observations until
final time L = LNt−1, obtained as

L = LNt−1 =

Ns∑
s=1

αs
t β

s
t (A.4)

for every considered time t.
As a consequence, the distribution of any hidden state Xt,

0 ≤ t ≤ Nt − 2 conditional to the observations up to final time
Nt − 1 satisfies

P
{
Xt = s | y0:Nt−1

}
=

1
L
αs

t β
s
t (A.5)

Remark 1. In order to avoid underflow potentially caused by
very small values of the probabilities, normalized versions of
the forward and backward variables α and β have to be used.
In this work we used the normalization proposed by Rabiner
in [12], to which we refer for more details.

Appendix A.2. Maximization:
Given the forward and backward variables α(r);s

t and β(r);s
t as-

sociated with any trial x(r) and state s, the maximum likelihood
estimates for the parameters of the Markov chain are obtained
as follows. We denote generically û the new estimate, obtained
from a previous value u (in the iterative algorithm, the result of
the previous iteration). Denoting by L(r) the final likelihood of
trial r,

ν̂s =
1
Nr

Nr∑
r=1

α(r);s
0 βs

0

L(r) (A.6)

π̂s,s′ = πs,s′

∑Nr
r=1

1
L(r)

∑Nt−2
t=0 α(r);s

t β(r);s′

t+1 Φs′ (yt+1)∑Nr
r=1

1
L(r)

∑Nt−2
t=0 α(r);s

t β(r);s
t

, (A.7)

where equations (A.3) and (A.5) are used for numerator and
denominator, respectively.

Given the Kronecker structure of the covariance matrices, the
corresponding re-estimation procedure is an alternating mini-
mization procedure: consider yc

t = (yc
t, f , f = 0, . . .N f − 1) and

yt f = (yc
t, f , c = 1, . . .Nc) and iterate the following steps

• Estimation of Σ
(c)
s given Σ

( f )
s : define

M(r),s
t (c, c′) = 〈(Σ( f )

s )−1y(r),c
t , y(r),c′

t 〉

and set

Σ̃
(c)
s =

1
N f

∑Nr
r=1

∑Nt−1
t=0 P

{
X(r)

t = s
}
M(r),s

t∑Nr
r=1

∑Nt−1
t=0 P

{
X(r)

t = s
} (A.8)

• Normalization: set

Σ̂
(c)
s = Σ̃

(c)
s /

∥∥∥∥∥Σ̃(c)
s

∥∥∥∥∥
F
, (A.9)

‖ · ‖F denoting the Frobenius norm.

• Estimation of Σ
( f )
s given Σ̂

(c)
s : define

P(r),s
t ( f , f ′) = 〈(Σ(c))−1y(r)

t f , y
(r)
t f ′〉

and set

Σ̂
( f )
s =

1
Nc

∑Nr
r=1

∑Nt−1
t=0 P

{
X(r)

t = s
}
P(r),s

t∑Nr
r=1

∑Nt−1
t=0 P

{
X(r)

t = s
} (A.10)

These estimators are obtained by alternate optimization of the
log-likelihood with respect to Σ

(c)
k and Σ

( f )
k respectively. The

normalization step described here above enables us to solve
the indetermination since Σ

( f )
k and Σ

( f )
k are defined up to a con-

stant. Strictly speaking, this corresponds to a GEM algorithm
for which the convergence to local minimum is still ensured by
the fact that each step increases the likelihood of the observa-
tions with respect to the model.

Remark 2. As an alternative, the full covariance matrix Σ can
also be estimated classically, the channel and frequency covari-
ances being estimated afterwards by factorization, i.e. by min-

imizing a mean square error
∥∥∥∥Σk − Σ

(c)
k ⊗ Σ

( f )
k

∥∥∥∥2

F
under the con-

straint
∥∥∥Σ(c)

k

∥∥∥
F = 1.
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gaussiennes temps-fréquence pour le débruitage des signaux. In: Proceed-
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