Estimation of spinal joint centers from external back profile and anatomical landmarks

Agathe Nerot, Wafa Skalli, Xuguang Wang

To cite this version:

Agathe Nerot, Wafa Skalli, Xuguang Wang. Estimation of spinal joint centers from external back profile and anatomical landmarks. Journal of Biomechanics, 2018, 70, pp.96-101. 10.1016/j.jbiomech.2017.11.013 . hal-01737338

HAL Id: hal-01737338

https://hal.science/hal-01737338

Submitted on 19 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Estimation of spinal joint centers from external back profile and anatomical landmarks

A. NEROT $\dagger \ddagger$, W. SKALLI \ddagger, X. WANG \dagger
† Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, UMR_T9406, LBMC, F69622, Lyon, France
\ddagger Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers ParisTech, 75013 Paris, France

Invited Papers-Berlin Workshop

Keywords: Joint centers prediction, External inputs, Biplanar X-rays, 3D reconstruction, Subject-specific human model

Corresponding author:

Agathe Nérot
Institut de Biomécanique Humaine Georges Charpak
151 boulevard de l'hôpital, 75013 Paris
Email: agathe.nerot@ensam.eu
Phone: +33 0144246141
Words count: 1992

Introduction: 468
Material and methods: 761
Results: 228
Discussion: 535

Abstract

Defining a subject-specific model of the human body is required for motion analysis in many fields, such as in ergonomics and clinical applications. However, locating internal joint centers from external characteristics of the body still remains a challenging issue, in particular for the spine. Current methods mostly require a set of rarely accessible (3D back or trunk surface) or operator dependent inputs (large number of palpated landmarks and landmarks-based anthropometrics). Therefore, there is a need to provide an alternative way to estimate joint centers only using a limited number of easily palpable landmarks and the external back profile. Two methods were proposed to predict the spinal joint centers: one only using 6 anatomical landmarks (ALs) (2 PSIS, T8, C7, IJ and PX) and one using both 6 ALs and the external back profile. Regressions were established using the X -ray based 3D reconstructions of 80 subjects and evaluated on 13 additional subjects of variable anthropometry. The predicted location of joint centers showed an average error $9.7 \mathrm{~mm}(\pm 5.0)$ in the sagittal plane for all joints when using the external back profile. Similar results were obtained without using external back profile, $9.5 \mathrm{~mm}(\pm 5.0)$. Compared to other existing methods, the proposed methods offered a more accurate prediction with smaller number of palpated points. Methods have to be developed for considering other postures than standing such as seated one.

Introduction

Accurate estimation of intervertebral joint centers is of primary importance to precisely define the kinematic chain of subject-specific models for posture and motion analysis. However, few solutions have been proposed to predict joint centers using easily measurable external characteristics as inputs. The geometric model in Snyder et al. 1972 has been widely used (Kennedy 1982, Choi et al. 2007, Reed et al.1999). It provides twelve regression equations for the norm and direction of the vectors joining skin markers, located on six palpated spinous processes, to six spinal joint centers. However regressions were developed from only 19 male subjects' radiographic data of bones and surface markers and, to our knowledge, no validation has been published yet. Other studies proposed prediction equations using additional measurements such as anthropometric dimensions (body height and weight), L4 skinfold and difference of L1-S1 skin distraction during maximal forward bending (Lee et al. 1995, Chiou et al. 1996) in addition to palpated landmarks. However skinfold measurements might show high inter-operator variability (Klipstein-Grobusch et al. 1997, Wang et al. 2000) and accuracy might depend on skin thickness and skinfold compressibility (Himes et al., 1979). Palpationbased methods are also subject to inter-operator variation (Harlick et al. 2007) and could be time consuming if there are a high number of points to be palpated. Therefore ideally, the prediction
https://doi.org/10.1016/j.jbiomech.2017.11.013
Journal of Biomechanics
method should require only a small number of easily palpated bony landmarks. Bryant et al. 1988 proposed an original geometric method aiming at predicting the distance between the internal spine curvature and the external back profile while using only two palpated landmarks (T1 and L5) as inputs. The curvilinear abscises of joint centers were estimated along the internal spinal profile. But the proposed method could not fully locate the spine in the sagittal plane. Moreover, only a small sample of 13 subjects from 13 to 17 years was used.

Recently a PCA-based method was proposed to predict internal pelvic landmarks and spine joint centers location using trunk 3D surface (Nérot et al. 2016). The study was based on a database of 3D reconstructions of bones and envelopes from low dose biplanar radiographs (Dubousset et al. 2010). The main advantage is that the proposed method requires almost no palpation. However, the full trunk skin surface is needed. A scanning device is not always a standard lab equipment. Furthermore, the whole trunk surface may not easily be scanned due to the obstruction by environmental objects for some applications, for example a seated person in a seat.

Using the existing database of 3D reconstructions of both internal skeleton and external body shape used in Nérot et al (2016), the objective of this study was to propose alternative methods for the prediction of intervertebral joint centers without using the full trunk surface scan but only a small amount of easily accessible input data.

Material and Methods

Data

With the approbation of the Ethics committee (CPP 06036) and signature of informed consents, biplane radiographs of 93 subjects were collected with a low dose EOS system (EOS Imaging, France) (46 females/47 males, age: [18, 76 years], height: [1.52, 1.97m], weight: [45, 103kg]). Participants were asked to adopt a free standing position (Steffen et al. 2010). These subjects were divided into two groups, a group of 80 persons for the development of the predictive methods (40 females/40 males, height: [1.52, 1.88 m], weight: [$48,103 \mathrm{~kg}]$), and a second group of 13 subjects of variable anthropometry for their validation (6 females/7 males, height: [1.53, 1.97 m], weight: [45, 102kg]). From these two views, 3D reconstruction of the lowers limbs, pelvis, spine and the external body envelope were performed (Nérot et al. 2015). Subject-specific 3D reconstructions were based on the deformation of parameterized and regionalized generic models on radiographic contours, allowing us to isolate the thoracic region (Figure 1) and to automatically extract following internal and external parameters.

Journal of Biomechanics

- Internal parameters: Coordinates of 18 joint centers from C7/T1 to L5/S1, calculated as the middle points of the segments joining the barycenters of the two adjacent vertebrae endplates (Humbert et al. 2009). Internal spine profile was approximated by a cubic spline passing through the joint centers from C7/T1 to L5/S1.
- External parameters: anatomical landmarks (ALs) on the skin surface by virtual palpation including posterior (PSIS) superior iliac spines, incisura jugularis (XJ), xiphoid process (XP) and spinous processes. Bony landmarks were extracted from the parametrized subject-specific bones models and their closest points on the envelope reconstruction were considered as an estimation of the regular palpated landmarks. The external back curvature (or back profile) was also approximated by a cubic spline passing through the spinous processes from C7 to L5 and limited at the PSIS midpoint.

Figure 1. Definition of external back (black) and internal spinal (red) profiles which are both approximated by a cubic spine passing through external spinal processes and internal joint centers respectively. 6 palpable AL (two PSIS, T8, C7, IJ, PX) required for the methods proposed in the present study are also illustrated.

Journal of Biomechanics

Proposed predictive methods

The predictive methods proposed in the present study were similar to that of Bryant et al. 1988 (Figure 2): first the internal spinal profile is predicted in a spine local coordinate system; secondly the two extreme joint centers C7/T1 and L5/S1 need to be predicted; lastly the position of all other joint centers can be located if their curvilinear coordinates are known.

The spine local coordinate system (LCS) $\left(\mathbf{t}_{0}, \mathbf{d}, \mathbf{t}\right)$ in the sagittal plane was defined with the origin \mathbf{t}_{0} at C 7 palpated spinous process, \mathbf{t} the axis directing from C 7 to the midpoint between the two palpated PSIS (Figure 2.1). \mathbf{d} was the perpendicular axis to \mathbf{t} and directed forward. The internal and external spinal profiles were characterized by their local coordinated [$d_{i}{ }^{\text {int }}, t_{i}$] and [$d_{i}{ }^{\text {ext }}, t_{i}$]] for t_{i}. The coordinates along \mathbf{t} were normalized by the distance between PSIS and C7 in order to compare individuals of different corpulence.

Inputs used for methods with (and without) external back profile
Body weight, Body height
Back profile coordinates $\mathbf{S}^{\text {ext }}$ for the method using back profile coordinates
Palpated ALs position: C7, T8, IJ, PX, PSIS
Mean point between PSIS: Mid PSIS
Distances: $\mathrm{d}_{\text {C7-IJ }}, \mathrm{d}_{\mathrm{C7} \text { _T8 }} \mathrm{d}_{\text {T8_PX }},\left(\mathrm{d}_{\text {T8_MidPSIS }}, \mathrm{d}_{\text {C7_MidPSIS }}, \mathrm{d}_{\text {MidPSIS_C7 }}\right)$
Axis $\mathbf{t}=\mathbf{C 7}-\mathrm{Mid}_{\text {PSIS }}$
$\mathrm{t}_{\mathrm{i}} \leftarrow$ normalized coordinates along $\left.\mathrm{t}, \mathrm{i}=[0: 10]\right)$

1. Internal spine profil estimation with (left) and without (right) back profile

a. $\mathrm{S}^{\text {int }} \leftarrow$ Cubic spline passing through $\left[\mathrm{D}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right]$ (Table 1) or $\left[\mathrm{d}_{\mathrm{i}}^{\text {int }}, \mathrm{t}_{\mathrm{i}}\right]$ (Table 2$)$

2. T1/T2 to L4/L5 estimation using mean ratios

Figure 2. Successive steps for computing joint centers position using the two prediction methods
https://doi.org/10.1016/j.jbiomech.2017.11.013
Journal of Biomechanics

Using the existing database, the regression equations were obtained for all variables required for predicting the internal spinal profile, two extreme joint centers C7/T1 and L5/S1 and curvilinear coordinates of other joint centers. Two methods for predicting internal spinal profile were proposed, one based on the distance $d_{i}^{\text {int }}$ from the \mathbf{t} axis, one on the distance $D_{i}\left(=d_{i}^{\text {int }}-I_{i}{ }^{\text {ext }}\right)$ from the external back profile (Figure 2.1).

For the internal spine profile, best predictors were searched among anthropometric dimensions (e.g. stature, weight, waist circumference etc.) and distances between ALs. Pearson tests were conducted to find the most correlated variables with D_{i} or $d_{i}{ }^{\text {int }}$. For instance, based on a priori assumption, thoracic depth related measurements, such as body weight, C7-IJ distance, T8-PX distance, were considered as candidate predictors. Thoracic length related parameters such as T8 to PSIS, C7 to T8 distances etc. were also considered in the Pearson test (Drerup et al. 2014). A stepwise regression method was performed on different combinations of 2 to 6 candidates to find the most powerful combination of predictors. Using the same statistical method, the t coordinates of C7/T1 and L5/S1 along the 2D spinal profile were supposed to be dependent on spine curvature descriptors (Figure 2.2). Finally, the mean curvilinear coordinates of joint centers were calculated to estimate the relative position of joint centers along the internal spine estimate (Figure 2.3).

Evaluation

Root mean square errors (RMSE) were calculated between estimated (regression) and reference (EOS based reconstructions) joint centers coordinates in the sagittal plane to assess the two proposed predictive methods. First, the data from 80 subjects, from which the regression equations were obtained, were used. Then an additional sample of 13 subjects was also considered for validation.

Results

Internal spine profile prediction

Up to eleven equal-distanced points along C7 to PSIS axis (t axis, Figure 2.1), with $t=[0,0.1, \ldots, 1]$, were used to characterize both external and internal spine profiles. Tables 1 and 2 provide the predictors for $d_{i}^{\text {int }}$ and D_{i}. The distance D_{i} from the external back profile showed smaller RMS errors than the distance $d_{i}{ }^{\text {int }}$ from the t axis.

Journal of Biomechanics

Table 1. Regression equations (and associated RMSE errors and coefficients of determination) of
the distances from the external back to internal spinal profiles $\left(D_{i}\right)$ for the 11 equal distanced points along the along the t axis. We recommend using points for $i=[0,1,2,5,6,8,9,10]$ with smaller RMSE.

D_{i}	Regression equations	RMSE (mm)	$\mathbf{R}^{\mathbf{2}}{ }_{\text {adj }}$
D_{0}	$0.19 * \mathrm{~d}_{\mathrm{C7-T8}}+0.28 * \mathrm{~d}_{\mathrm{C7-1/}}+0.30 * \mathrm{~d}^{\text {ext }}{ }_{0.6}-10.18$	4.8	0.7
$\mathrm{D}_{0.1}$	$0.48 * \mathrm{~d}_{\text {c7-ı }}+0.86 * \mathrm{~d}^{\text {ext }}{ }_{0.1}-6.00$	4.9	0.8
$\mathrm{D}_{0.2}$	$0.40 * \mathrm{~d}_{\text {C7-1 }}+0.23 * B W+0.98 * \mathrm{~d}^{\text {ext }}{ }_{0.2}-0.53 * \mathrm{~d}^{\text {ext }}{ }_{0.4}-11.29$	5.7	0.6
$\mathrm{D}_{0.3}$	$0.47 * d_{\text {C7-ı }}+1.17 * d^{\text {ext }} 0.3-0.94 * d^{\text {ext }} 0.4-4.20$	6.6	0.4
$\mathrm{D}_{0.4}$	0.52*BW+34.34	6.7	0.6
$\mathrm{D}_{0.5}$	$0.15 * d_{\text {T8-PX }}+0.34 * B W+20.45$	6.4	0.6
$\mathrm{D}_{0.6}$	$0.17 * \mathrm{~d}_{\text {T8-Px }}+0.45 * B W+14.70$	6.5	0.6
$\mathrm{D}_{0.7}$	$0.15 * \mathrm{~d}_{\text {T } 8-\mathrm{PX}}+0.63 * \mathrm{BW}+12.00$	7.0	0.7
$\mathrm{D}_{0.8}$	$0.12 * \mathrm{~d}_{\text {T8-Px }}+0.69 * \mathrm{BW}+19.40$	6.1	0.7
$\mathrm{D}_{0.9}$	$0.74 *$ BW +44.40	6.9	0.6
D_{1}	$0.68 *$ BW + 44.19	9.3	0.4

Note: $\mathrm{d}_{\mathrm{CT-II}}$: $\mathrm{C7}$ to IJ distance, $\mathrm{d}_{\mathrm{ixt}}^{\text {ext }}$: distance of the back profile from the $\mathrm{C7}^{\text {ext }}$ to $\mathrm{PSIS}{ }^{\text {ext }}$ axis at $\mathrm{t}_{\mathrm{i}}, \mathrm{d}_{\mathrm{T} 8-\mathrm{PX}}$: $\mathrm{T8}$ to PX distance, $\mathrm{d}_{\mathrm{C7}-\mathrm{T8}}$: C 7 to T 8 distance, body weight in Kg .

Table 2. Regression equations (and associated RMSE errors and coefficients of determination) of the distances from the $\mathbf{C 7}^{\text {ext }}$ to PSIS $^{\text {ext }}$ axis to the internal spinal profiles for the $\mathbf{1 1}$ equal distanced points along the along C7 ${ }^{\text {ext }}$ to PSIS ${ }^{\text {ext }}$ axis. $d^{\text {int }}{ }_{0.3}$ is not indicated as no external predictor for $\mathbf{d}^{\text {int }}{ }_{0.3}$ was found by the Pearson test (mean value: $\mathbf{3 0 . 6 5 \mathrm { mm } , \text { RMSE, } 1 1 . 6 \mathrm { mm } \text {). We recommend using }}$ points for $i=[0,1,2,5,6,8,9,10]$ with smaller RMSE.

$d_{\mathrm{i}}^{\text {int }}$	Regression equations	RMSE (mm)	$\mathbf{R}^{\mathbf{2}}{ }^{\text {adj }}$

Journal of Biomechanics

$\mathrm{d}_{0.8}$	$-0.81 * \mathrm{~d}_{\text {C7-T8 }}-1.14 * \mathrm{~d}_{\text {T8-MIdPSIS }}+0.95 * \mathrm{~d}_{\text {C7-MidPSIS }}+0.70 *$ BW +76.41	7.1	0.5
$\mathrm{d}_{0.9}$	$-0.21 * d_{\text {T8-MidPSIS }}+0.84 *$ BW +101.58	7.0	0.5
$\mathrm{d}_{1.0}$	$-0.16 * d_{\text {C7-MidPSIS }}+1.00 *$ BW +99.61	8.5	0.5

Note: $\mathrm{d}_{\mathrm{C7-IJ}}$: C 7 to IJ distance, $\mathrm{d}_{\text {T8-PSIs: }}$ Distance bewteenT8 and PSIS midpoint, $\mathrm{d}_{\mathrm{C7} \text {-PsIs: }}$ Distance between C7 and PSIS midpoint, $\mathrm{d}_{\mathrm{T8} \text { - } \mathrm{Px}}$: 78 to PX distance, $\mathrm{d}_{\mathrm{C7}-\mathrm{T8}}$: $\mathrm{C7}$ to 78 distance,

C7/T1 and L5/S1 prediction

The regression equations to predict the vertical distance $\mathrm{C} 7 / \mathrm{T} 1$ and $\mathrm{L} 5 / \mathrm{S} 1$ from t_{0} on $\mathrm{S}^{\text {int }}$ are listed in Table 3.Estimation of $L 5 / S 1$ showed a higher error than $C 7 / T 1$. $d_{C 7 / T 1}$ and $d_{L 5 / S 1}$ were defined at the intersection of $\mathrm{t}_{\mathrm{C} 7 / \mathrm{T} 1}$, respectively $\mathrm{t}_{\mathrm{L} 5 / \mathrm{S}_{1}}$, and $\mathrm{S}^{\text {int. }}$

Table 3. Predictors and regression coefficients to predict the spine extremities C7/T1 and L5/S1
from spine shape descriptors and anthropometrics

	Regression equations	RMSE (mm)	$\mathbf{r}^{\mathbf{2}}$
$\mathrm{t}_{\mathrm{C} 7 / \mathrm{T} 1}$	$-(-1.02 * \mathrm{R}+0.07 * \mathrm{Ch}+0.99) * \mathrm{R}$	10.5	0.5
$\mathrm{t}_{\mathrm{L} / \mathrm{s} 1}$	$-\left(0.49 * \mathrm{CL}_{\mathrm{h}}+0.92\right) * \mathrm{R}$	18.3	0.4

Note: R, C_{h} and C_{h} are described in Figure 3, height in mm , body weight (BW) in Kg . $\mathrm{d}_{\mathrm{C7} \text {-נ: }}$: C 7 to IJ distance, $\mathrm{d}_{\mathrm{C7} \text {-т8 }}$: C 7 to 78 distance

Mean curvilinear coordinates of the joint centers

The relative positions (curvilinear abscises normalized by the curvature length) of the joint centers along the internal spinal profile were observed quite invariant among the subjects (SD<5 mm, Table 4).

Table 4. Mean position of intervertebral joint centers along $S^{\text {int }}$ normalized by the developed length of internal spline. Standard errors in percentage and in mm are indicated.

	Mean	SD (\%)	SD (mm)
C7/T1	0	0	0

Journal of Biomechanics

T1/T2	4	0	1.57
T2/T3	9	1	2.4
T3/T4	13	1	3.11
T4/T5	18	1	3.13
T5/T6	23	1	3.54
T6/T7	28	1	3.94
T7/T8	33	1	4.23
T8/T9	38	1	4.52
T9/T10	43	1	4.83
T10/T11	49	1	4.75
T11/T12	55	1	4.76
T12/L1	61	1	4.69
L1/L2	69	1	4.68
L2/L3	76	1	4.68
L3/L4	84	1	4.46
L4/L5	92	0	2.99
L5/S1	100	0	1.82

Evaluation

2D distance between estimated and reference joint centers using both methods showed very similar errors, respectively $9.7 \mathrm{~mm}(\pm 5.0)$ and $9.5 \mathrm{~mm}(\pm 5.0)$ with or without using the external back profile (Table 5).

Table 5. Root mean square errors (RMSE) in x (antero-posterior), y (medio-lateral) and 2D distance between reference and estimated joint centers using methods with or without using the external back profiles ($\mathbf{m m}$) on the training group of $\mathbf{8 0}$ subjects. Standard deviations are provided.

	Using the external back profile			Without using the externanl back profile				
	2D distance RMSE			2D distance RMSE				
	x	y	mean	SD	x	y	mean	SD
C7/T1	6.8	5.5	8.7	4.5	4.0	5.5	6.8	3.5
T1/T2	4.7	5.6	7.3	3.3	4.7	5.1	6.9	3.2
T2/T3	5.1	5.7	7.7	3.3	5.5	4.8	7.4	3.6
T3/T4	5.4	5.8	7.9	3.4	6.8	4.7	8.2	4.1
T4/T5	5.8	5.7	8.2	3.6	7.7	4.5	8.9	4.5
T5/T6	6.3	6.1	8.8	3.8	8.9	4.7	10.0	4.7
T6/T7	6.7	6.4	9.3	4.1	9.8	4.9	11.0	5.1
T7/T8	6.8	6.6	9.5	4.4	9.8	5.1	11.1	5.2

Journal of Biomechanics

T8/T9	6.8	6.8	9.6	4.7	8.9	5.2	10.3	5.1
T9/T10	6.8	7.0	9.8	5.0	7.5	5.5	9.3	4.7
T10/T11	6.8	7.1	9.8	5.2	6.6	5.8	8.8	4.5
T11/T12	6.9	7.2	10.0	5.4	6.2	6.1	8.8	4.5
T12/L1	7.0	7.6	10.3	5.8	6.3	6.7	9.2	4.7
L1/L2	7.2	8.2	10.9	6.1	6.9	7.4	10.2	5.4
L2/L3	6.9	9.0	11.3	6.1	7.4	8.2	11.0	6.0
L3/L4	6.0	9.3	11.1	5.4	7.4	8.2	11.0	6.0
L4/L5	6.7	9.8	11.9	5.6	6.7	9.1	11.3	5.6
L5/S1	8.0	9.9	12.7	5.9	7.2	9.5	11.9	5.3
Total			9.7	5.5			9.5	5.0

Note: Equations showing larger RMS errors ($\mathrm{d}^{\text {int }}{ }_{0.4}, \mathrm{~d}^{\text {int }}{ }_{0.7}$ and respectively $D_{0.3,} \mathrm{D}_{0.7}$) were not used for the least square estimation of internal spine.

As the most precise regression equations were found with the method using the external back profile (Table 1), this method was applied for predicting joint centers location over the validation cohort of 13 subjects. Mean error was $10.2 \pm 5.6 \mathrm{~mm}$ (Table 6).

Table 6. Mean error on 3D distance and standard error (SD) between estimated end reference joint centers on the validation group of additional 13 subjects (mm) using the back profile. A third orthogonal axis was added to the 2D local system and additional medio-lateral joint coordinates were supposed to be aligned with the t axis so that joint i was located with respectively ($d, 0, t$) antero-posterior, medio-lateral and vertical coordinates.

	Mean	SD
C7/T1	7.0	3.9
T1/T2	9.5	5.4
T2/T3	11.5	5.9
T3/T4	10.7	6.6
T4/T5	9.6	6.2
T5/T6	9.5	5.7
T6/T7	10.0	5.8
T7/T8	10.6	5.8
T8/T9	10.3	5.5
T9/T10	9.5	5.1
T10/T11	8.8	5.9
T11/T12	9.7	5.7
T12/L1	10.4	5.3

Journal of Biomechanics

L1/L2	11.2	5.0
L2/L3	11.5	5.3
L3/L4	12.1	5.9
L4/L5	10.9	6.4
L5/S1	10.6	5.7
Total	10.2	5.6

Discussion

Two methods requiring a small amount of easily accessible inputs to predict all thoracic and lumbar intervertebral joint centers location were compared. A focus was given on the sagittal plane where the main variation in spine shape occur for asymptomatic subjects. Only small differences were obtained between the methods either using only 6 ALS or using both 6 ALs and the external back profile.

Both methods were able to predict all the 18 thoracic and lumbar joint centers while most existing geometrical models usually enabled to predict lumbar joint centers (Sicard et al. 1993, Lee et al. 1995, Chiou et al. 1996) or a few joints, e.g. C2/C3, C7/T1, T4/T5, T8/T9, T12/L1, L2/L3 and L5/S1 (Snyder et al. 1972). The mean error of $10.2 \pm 5.6 \mathrm{~mm}$ was lower than the PCA-based method in Nérot et al. 2016 $(12.8 \pm 5.0 \mathrm{~mm})$. This might be due to the pre-selection phase of candidate predictors at the areas with thinner layers of soft tissues. Conversely the PCA method took into account the entire trunk surface and associated shape variation, like in the belly region, which are probably independent to spine joints location.

Extending Snyder et al.'s method for all joint centers was also considered. This alternative method requires the estimation of 2 unknowns for each joint: the distance to its orthogonal projection on the back profile and the curvilinear abscissa of this projection. But higher prediction errors may result from higher number of unknowns. Moreover normal vectors to the back surface were hardly reproducible depending on the quality of acquisition and the smoothing method. The advantages of the current methods are to estimate a smaller number of unknown variables and to robustly define a unique direction for calculating the spine coordinates in the sagittal plane.

L5/S1 estimated only using C7 and PSIS landmarks showed higher error compared to the PCA method in Nérot et al. (2016) using the whole trunk surface including the pelvic region. This might highlight the importance of considering some pelvic anatomical descriptors for L5/S1 prediction. For example, a simple method for predicting the L5/S1 from pelvic landmarks was proposed in Peng et al. 2015. When
https://doi.org/10.1016/j.jbiomech.2017.11.013
Journal of Biomechanics
considering our methods while imposing the true position of L5/S1, errors on joint location were reduced by 1 to 5 mm on average, confirming the importance of L5/S1 accurate prediction to precisely locate the rest of the spine joints.

The major limitation of this method is that it is based on a standing posture and may not be applicable to different posture involving different spinal curvatures (such as seating or supine). Furthermore, as virtual palpation was performed, the influence of palpation errors on these regression methods needs to be tested on a cohort of volunteers in future work.

Conclusion

This study proposed two geometric models allowing to predict spine joint centers form C7/T1 to L5/S1 with much less data than existing methods while improving the prediction precision. The methods are adapted to current methodology in motion analysis and compliant with minimal lab equipment. Prediction of L5/S1 using predictors from the pelvis could improve the results. Work is ongoing to change the standing position to a desired posture such as seated one in order to enlarge the possibility of applications.

Acknowledgment

The authors thank the ParisTech BiomecAM chair program on subject-specific musculoskeletal modeling, and in particular COVEA and Société Générale, as well as IFSTTAR for the PhD grant.

References

Aubert B., Vergari C., Ilharreborde B., Courvoisier A., Skalli W. 3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach. Computer Methods in Biomechanics, 2014

Bryant J.T., Gavin J., Smith B.L., Stevenson J.M., Reid J.G., Smith B.L., Stevenson J.M. Method for determining vertebral body positions in the sagittal plane using skin markers. Spine, 14(3):258-65, 1988

Chiou W.K., Lee Y.H., Chen W.J., Lee M., Lin Y.H. A non-invasive protocol for the determination of lumbar spine mobility. Clinical Biomechanics, 11(8):474-480, 1996.

Choi H.Y., Kim K.M., Han J., Sah S., Kim S.H., Hwang S.H., Lee K.N., Pyun J.K., Montmayeur N., Marca
https://doi.org/10.1016/j.jbiomech.2017.11.013
Journal of Biomechanics
C., Haug E., Lee I. Human Body Modeling for Riding Comfort Simulation. In: Duffy V.G. (eds) Digital Human Modeling. ICDHM 2007. Lecture Notes in Computer Science, vol 4561. Springer, Berlin, Heidelberg

Drerup B. Rasterstereographic measurement of scoliotic deformity. Scoliosis, 9(1):22, 2014.
Dubousset J., Charpak G., Skalli W., Deguise J., Kalifa G. Eos : a New Imaging System With Low Dose Radiation in Standing Position for Spine and Bone \& Joint Disorders. Journal of Musculoskeletal Research, 13(01):1-12, 2010.

Harlick J.C., Milosavljevic S., Milburn P.D. Palpation identification of spinous processes in the lumbar spine. Manual therapy, 12(1):56-62, 2007

Himes J.H., Roche A.F., Siervogel R.M. Compressibility of skinfolds and the measurement of subcutaneous fatness. Am. J. Clin. Nutr. 32:1734-1740, 1979

Humbert L., De Guise J. A., Aubert B., Godbout B., Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Medical Engineering \& Physics, 31(6):681_7, 2009.

Kennedy K.W. Workspace Evaluation and Design: USAF Drawing Board Manikins and the Development of Cockpit Geometry Design Guides, Anthropometry and Biomechanics: Theory and Application, Easterby, R.K., K.H.E. Kroemer and D.B. Chaffin (Eds.), Plenum Press, New York, USA, pp. 205-213, 1982. Klipstein-Grobusch K., Georg T., Boeing H. Interviewer variability in anthropometric measurements and estimates of body composition. International Journal of Epidemiology. 26 Suppl 1(1):S174-80, 1997

Lee Y.H., Chiou W.K., Chen W.J., Lee M.Y., Lin Y.H. Predictive model of intersegmental mobility of lumbar spine in the sagittal plane from skin markers. Clinical Biomechanics, 10(8):413-420, 1995.

Lohmann T.G., Roche A.F., Martorell R. Anthropometric Standardization Reference Manual. Human Kinetics. Champaign, IL. Anthropometry in Body Composition An Overview J., 1988

Mitton D., Deschênes S., Laporte S., Godbout B., Bertrand S., de Guise J.A., Skalli W. 3D Reconstruction of the pelvis from bi-planar radiography.pdf. Computer Method in Biomechanics and Biomedical Engineering, 9(1):1_5, 2006.

Nérot A., Skalli W., Wang X. A principal component analysis of the relationship between the external body shape and internal skeleton for the upper body. J Biomech. 3;49(14):3415-3422, 2016

Nérot A., Choisne J., Amabile C., Travert C., Pillet H., Wang X., Skalli W. A 3D reconstruction method of the body envelope from biplanar X-rays : Evaluation of its accuracy and reliability. Journal of Biomechanics, 48(16):4322_6, 2015.
https://doi.org/10.1016/j.jbiomech.2017.11.013
Journal of Biomechanics

Peng J., Panda J., Van Sint Jan S., Wang X. Methods for determining hip and lumbosacral joint centers in a seated position from external anatomical landmarks. Journal of Biomechanics, 48(2):396-400, 2015.

Reed M.P., Manary M.A., Schneider L.W. Methods for measuring and representing automobile occupant posture. SAE International, 108(724):1-14, 1999.

Sicard C., Gagnon M. A geometric model of the lumbar spine in the sagittal plane. Spine, 18(5):646-58, 1993.

Snyder R.G., Chaffin D.B., Schutz R.K. Link system of the human Torso. Aerospace Medical Research Laboratory, Wright-Patterson Air Force base, Ohio.1972.n.p., 41(3):1974, 1972.

Steffen J.S., Obeid I., Aurouer N., Hauger O., Vital J.M., Dubousset J., Skalli W. 3D postural balance with regard to gravity line: An evaluation in the transversal plane on 93 patients and 23 symptomatic volunteers. European Spine Journal, 19(5):760-767, 2010.

Wang J., Thornton J.C., Kolesnik S., Pierson R.N. Anthropometry in body composition. An overview. Ann N Y Acad Sci.904:317-26, 2000
https://doi.org/10.1016/j.jbiomech.2017.11.013
Journal of Biomechanics

