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Abstract: Emerging non-volatile memories based on resistive switching mechanisms pull
intense R&D efforts from both academia and industry. Oxide-based Resistive Random
Acces Memories (namely OxRAM) gather noteworthy performances, such as fast write/read
speed, low power and high endurance outperforming therefore conventional Flash memories.
To fully explore new design concepts such as distributed memory in logic, OxRAM
compact models have to be developed and implemented into electrical simulators to assess
performances at a circuit level. In this paper, we present an compact models of the
bipolar OxRAM memory based on physical phenomenons. This model was implemented
in electrical simulators for single device up to circuit level.

Keywords: Compact modeling; OxRAM; design

1. Introduction1

Memory devices based on resistive switching materials are currently pointed out as promising2

candidates to replace conventional non-volatile memory devices based on charge-storage beyond3

2xnm-technological nodes [1–3]. Indeed, as compared to conventional floating gate technologies,4

Resistive RAMs (so-called RRAM) gather fast write/read operations, low power consumption, CMOS5

voltage compatibility and high endurance. Moreover the resistive memory element consists of a simple6

Metal/Insulator/Metal (MIM) stack. In this way, one of the major advantages of resistive switching7
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memories is their capability, whatever the underlying physics is, to be integrated in the back-end-of-line8

enabling NVM solutions to be distributed over CMOS logic. Relying on different based on different9

physical mechanisms, various RRAM technologies are now categorized in the ITRS. The Redox Memory10

category, covered in this study, includes Conductive Bridge RAM (CBRAM) [4] and Oxide Resistive11

RAM (OxRAM) [5] both of whom exhibit a bipolar behavior, (i.e. switching relying on voltage polarity)12

(cf Figure 1a). Conversely, RRAM technologies refered as Thermo-Chemical Memories (TCM)[6], or13

fuse-antifuse memories, are mostly based on nickel oxide (NiO) and exhibit a unipolar behavior (i.e.14

switching relying on voltage amplitude) as show in Figure 1b.15

Figure 1. Typical I–V characteristic of Resistive memories.
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For the OxRAM memory elements addressed in this paper, the MIM structure is generally composed16

of metallic electrodes sandwiching an active layer, usually an oxygen-deficient oxide. A large number of17

resistive switching oxides, like HfO2, Ta2O5, NiO, TiO2 or Cu2O, are reported in the literature [7–10].18

The Valency Change Mechanism (VCM) occurs in specific transition metal oxides and is triggered by a19

migration of anions, such as oxygen vacancies.20

After an initial electroforming step, the memory element may be reversibly switched between a21

High Resistance State (HRS) and a Low Resistance State (LRS). The electroforming stage corresponds22

to a voltage-induced resistance switching from an initial very high resistance state (virgin state) to a23

conductive state. In the case of bipolar switching, bipolar voltage sweeps are required to switch the24

memory element (Figure 1a). Resistive switching in an OxRAM element corresponds to an abrupt25

change between a HRS (RHRS) and a LRS (RLRS). This resistance change is achieved by applying26

specific voltage to the structure (i.e. VSet and VReset). Generally, the electroforming voltage is superior27

to these voltages. However several groups have demonstrated forming-free structures by adjusting the28

stoichiometry of the active layer [11–13].29

In this paper, an compact models of the bipolar OxRAM memory is presented. This model was30

implemented in electrical simulators for single device up to circuit level.31
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2. Compact model for OxRAM cells32

Even if OxRAM technology is still in its infancy, it is broadly accepted that the field-assisted motion33

of oxygen vacancies governs the bipolar resistance switching [14]. The proposed OxRAM modeling34

approach [15–17] relies on electric field-induced creation/destruction of Conductive Filament (CF)35

within the switching layer. The model is based on a single master equation in which both set and36

reset operations are accounted simultaneously and control the radius of the conduction pathway (rCF ).37

Figure 2 depicts the proposed model for the switchable MIM structure.38

Figure 2. Formed and dissolved conductive filament resulting from set and reset operations
respectively in MIM structure.
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The set (resp. reset) process can be described by an electrochemical kinetic equation relying on the
Butler-Volmer equation [18]. In the LRS, where conduction is controlled by the CF, charge transport
is assumed to be ohmic accordingly to previous reports in the literature [19,20]. On the contrary,
HRS is dominated by leakage current within the oxide layer where. To take into account a lot of trap
assisted current (Poole-Frenkel, Schottky emission, Space Charge Limited Current (SCLC)), a power
low between the cell current and the applied bias has been consider. The model assumes an uniform CF
radius and electric field in the cell where temperature elevation (triggered by Joule effect) may accelerate
redox reaction rates. In this way the local temperature of the filament is given by [15]:

T = Tamb +
V 2
Cell

8 · kth
·
(

r2CF
r2CFmax

· (σCF − σOX) + σOX)

)
(1)

where Tamb is the ambient temperature, where VCell is the voltage applied between the top and the39

bottom electrodes, kth is the thermal conductivity and σCF (resp. σOX) is the electrical conductivity of40

the conductive filament (resp. oxide41

The Set operation is modeled based on the Butler-Volmer equation through the electrochemical
reduction rate (τRed):

1

τRed
= ARedOx · e

−
Ea − q · αRed · VCell

kb · T (2)

where kb is the Boltzmann constant.42

Similarly, reset concerns the local dissolution of the CF and accounted by the oxidation rate (τOx):

1

τOx
= ARedOx · e

−
Ea + q · αOx · VCell

kb · T (3)
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where Ea is the activation energy, αRed and αOx are the transfer coefficient (ranging between 0 and
1), ARedOx is the nominal redox rate. Hence, the growth/dissolution of the filament results from the
inter-play between both redox reaction velocity through the following master equation:

drCF
dt

=
rCFmax − rCF

τRed
− rCF
τOx

(4)

where the local CF radius (rCF ) is comprised between zero and a maximal value (rCFmax). To
allow implementation into electrical simulation tools,a discrete writing is required. If the time step
is sufficiently small, τRed et τOx may be assumed as constant. The discrete form of Eq. 4 is then given by
Eq. 5. Solving the differential equation 4 step by step allows a better convergence of simulation tools.

rCFi+1
=

(
rCFi

− τeq
τRed

)
· e

−∆t

τeq +
τeq
τRed

(5)

where τeq =
τRed · τOx
τRed + τOx

43

Figure 3. Program flowchart employed for numerical simulation of OxRAM memory
devices.
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Finally, the total current in the OxRAM includes two components, i.e. one is related to the conductive
species (ICF ) [15] the other concerns conduction through the oxide (IOX):

ICF =
VCell
Lx

·
(
r2CF · π · (σCF − σOX) + r2CFmax · π · σOX)

)
(6)

IOX = AHRS · SCell ·
(
VCell
Lx

)αHRS

(7)

where Lx is the oxide thickness and SCell is the total area of the device. Finally, the total current flowing
through the cell is:

ICell = IOX + ICF (8)

These equations were then implemented within an ELDO compact model following the flowchart44

given in figure 3. At each call of the OxRAM instance during a transient simulation, the previous state45
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of the filament as well as the applied voltage are provided to the model in order to take into account the46

memory effect. The new filament state and the current are then computed as function of these inputs and47

the time step.48

3. Model validation49

The compact model was calibrated on recent electrical data measured on HfO2-based OxRAM devices50

[21]. To validate the proposed theoritical approach, the model was confronted to quasi-static and51

dynamic experimental data extracted from the literature. Figure 4(a) shows quasi-static set and reset52

I(V ) characteristics measured on HfO2-based memory elements. In this study, the memory elements53

consisted in a Ti/HfO2/TiN stack with a hafnium oxide thickness of 10nm. The description of the cell54

manufacture is presented in [21]. Using the set parameters given in Table 1, the present model shows an55

excellent agreement with experimental data for both set and reset operations.56

Table 1. Physical parameters used for Bipolar simulations

rCFmax = 20nm Lx = 10nm

Scell = 1µm× 1µm Tamb = 300K

ARedOx = 1 × 109 s−1 Ea = .95 eV

αRed = 0.85 αOx = 0.85

AHRS = 5 × 10−9A/(V 2) αHRS = 2

σOx = 0.1m · S Kth = 0.8W/(K ·m)

σCF0 = 12.5 × 105m · S

Figure 4. a) Experimental I(V) (�) and b) set and reset voltage as a function of the
programming ramp speed measured on a HfO2-based memory structures presented in [21]
and corresponding simulation results (−).
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Figure 4(b) shows that the proposed model also satisfactorily catches the impact of the experimental57

increase of VSet and VReset with the programming ramp speed. Moreover the effect of the set current58

limitation on the reset current is also taken into account by this compact model (Figure5). It is interesting59

to note that this behavior appears for unipolar and bipolar memory [11]. But in our study, only the bipolar60

structures will be studied.61

Figure 5. Maximum current during the reset operation (IReset) as a function of the maximum
current during the preceding set operation (ICompSet). Experimental data were extracted from
Ref. [5,8,10,22–24].
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Figure 6 illustrates the transient current response of the cell when a voltage ramp is applied to the cell62

[Figure 4(b)]. A significant cell voltage discontinuity is observed during the set operation. This behavior63

highlights the self acceleration of set mechanism. Indeed, when the applied voltage is below the set64

voltage, the resistance continuously decreases. Let us mention that our model, that already includes65

a thermal activation of set operation, should be able to take into account this effect once the parasitic66

capacitances originating from the measurement setup are provided.67

Figure 6. Dynamic measurement of OxRAM (HfO2-based memory) and corresponding
simulation results.
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To fully validate the compact model and its integration into the electrical simulator, Figure 7 gives an68

example of bipolar OxRAM cells simulated at a circuit level, i.e. surrounded by MOS transistors.69

Figure 7. electrical simulation of 2T-1R OxRAM structure
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These models have been successfully used to simulate new MOS-RRAM cells like a NVM flip-flop70

[25], Non-Volatile SRAM[26] and OxRAM memory array [27].71



J. Low Power Electron. Appl. 2013, xx 8

4. Model application72

4.1. OxRAM reliability evaluation versus OxRAM variability [16]73

In this section, an investigation in the impact of OxRAM variability on the memory array74

performances is proposed [16]. Indeed, variability in advanced IC designs has emerged as a roadblock75

and significant efforts of process and design engineers are required to decrease its impact.76

Since the cell variability is calibrated on silicon using the previous OxRAM model, only the77

realistically possible variations are reported in this study. A large number of Monte Carlo simulations are78

performed to provide the statistics needed to characterize variability. Cell variations are introduced and79

simulated sequentially using an electrical simulator. The goal is to track an important shift of reliability80

parameters.81

Figure 8 presents the elementary array used for simulation: it is constituted, a row decoder, a column82

decoder and a sense amplifier for the read operation. Memory array cells are first placed in an erase state.83

Then, the memory array programming is done in 2 cycles. First, all memory cells are set (logical ’1’),84

then the memory array is reset (logical ’0’). Logical failures can be detected at the output of the sense85

amplifier during the read operation after set/reset.86

Figure 8. 3 × 3 OxRAM memory array.

The best way to monitor the impact of variability on OxRAM electrical parameters is to plot the87

OxRAM hysteresis in transient mode (i.e. cell current evolution versus cell voltage difference during a88

Write/Erase cycle). Figure 9 shows the impact of the memory array cell variability (9 cells) on the circuit89

hysteresis.90
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Figure 9. Variability impact on I − V hysteresis the memory array
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It appears clearly that RLRS distribution can be severely impacted by cell variability. VReset and VSet91

parameters can also suffer from cell variability but in a lesser extent. Notice that RLRS and RHRS are92

extracted @0.5V (read conditions). And VSet and VReset are extracted @40µA, at a circuit level.93

RLRS and RHRS distributions are plotted in Figure 10. Results are presented for cell variability included94

in the range ±10% of the median value of the considered card model parameters (solid bar). Results are95

also provided for cell variability included in the range ±20% (dashed bar).96

Figure 10. RLRS and RHRS distributions versus cell variability

3x104 4x104
0

10

20

30

40

50

60

 

(a)

nb
 c

el
l (

-)

RLRS ()
1x106 2x106

Variation :
 +/- 10%
 +/- 20%

 

(b)

 

RHRS ()

At 10%, a spreading ofRLRS andRHRS parameters is observed. The spreading increases significantly97

at 20%. Although these values are related to a specific OxRAM technology, a good feedback can be98

provided to designers to optimize the sensing circuitry according to the level of controllability of the99

fabrication process.100
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VReset and VSet distributions are plotted in Figure 11a-b. Here again, the initial spreading (solid bar)101

increases (dashed bar) according to the variability increase. These results are of the prime importance as102

this study predicts an increase of VSet to the value of 1.5 V . Which mean that the programming signals103

provided to the cell needs to reach at least 1.5 V for cell to be programmed properly.104

Figure 11. VSet and VReset distributions versus cell variability
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4.2. SRAM Sense amplifier [26]105

The read operation of data stored in cross-point resistive switching memory is currently one of the106

major challenges to develop this approach. Indeed, sneak path or destructive read with complementary107

resistive switching element are a strong limit to develop this type of architecture. Moreover, the108

resistance ratio (RHRS/RLRS) and the process variations have to be considered when designing a sense109

solution. A sense amplifier performing with high reliability is then required. Figure 12 shows a110

pre-charge based sense amplifier, which has demonstrated the best tolerance to different sources of111

variation , while keeping high speed and low power. In this sense amplifier, the read operation is112

performed in two phases:113

• 1st Phase: The sense amplifier is first connected to the bit-line of the selected word with SEN set114

to ’1’ and the circuit is pre-charged with PCH equals ’0’.115

• 2nd Phase: The data stored in the 2R cell can be evaluated to logic level at the output Q as PCH is116

changed to ’1’ and WL is pulled down to ’0’.117
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Figure 12. Pre-Charged Sense Amplifier for data sensing. It consists of a pre-charge sub-
circuit (MPC0, MPC1), a pair of inverters (MNA0-1, MPA0-1), which act as an amplifier.[26,
27]

The Figure 13 validates the ability of the architecture to successfully read in parallel a full word.118

The model presented before has allowed us to assess the robustness of sense towards the variability119

of OxRAM or CMOS transistors [26]; and the validated complete crossbar architecture based on 2R120

complementary [27].121

Figure 13. Simulation results with read phase of a selected cell [26,27]
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5. Conclusion122

In conclusion, this paper deals with a compact model well suited for describing simultaneously set123

and reset operations in bipolar resistive switching memories based on HfO2-based memory devise. By124

gathering local electrochemical reactions and a thermal mechanism in a single master equation, the125

model enables accounting for both creation and destruction of conductive filaments. The simulation126

results satisfactorily match quasi-static and dynamic experimental data published in literature on resistive127

switching devices. Beside, the model was implemented into circuit simulators. It has been successfully128

used in many circuit and enabled predicting relevant trends required for designing innovative memory129

matrix architectures or proposing distributed memories solutions.130
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