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KTS: a real-time mapping algorithm for NoC-based
many-cores

Audrey Queudet1 · Nadine Abdallah2 ·
Maryline Chetto1

Abstract Many-core architectures based on network-on-chip (NoC) are scalable and
have the ability to meet the increasing performance requirements of complex concur-
rent applications (real-timevideo, communications, control, etc.). This paper addresses
the mapping problem of hard real-time task sets on NoC-based many-core processors.
Our main contribution is a novel static mapping scheme called K-level task splitting
(KTS). If a task cannot be allocated on a given core of the NoC because of a too
high processing utilization ratio, it gets replicated so that its jobs execute on more
than one core without migrating. Synchronization between task replicas could then be
ensured by assigning offsets and virtual deadlines to them. KTS’s advantage is that
datamigration is not required, thus involving no overheads due tomigrations. The only
requirement is that all core clocks be synchronized within the NoC. In this newly pro-
posed algorithm, the schedulability of each task is determined based upon fundamental
results relative to the feasibility analysis of asynchronous real-time task sets. The paper
describes the principles of task splitting, our algorithm and its properties. We evaluate
the efficiency of KTS, demonstrating that it is a good compromise between existing
semi-partitioned schemes (with possible migrations) and fully partitioned approaches.
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1 Introduction

A real-time system is any information processing system which has to respond to
externally generated input stimuli within a finite and specified time interval. The cor-
rectness of the result of a real-time task is not only related to its logic correctness,
but also to when the results occur [17]. Traditional classification of real-time systems
stands for two classes to characterize the real-time requirement of such systems: hard
and soft. In hard real-time systems, an overrun in response time can lead to potential
loss of life and/or big financial damage. For soft systems, deadline overruns are tol-
erable, but not desired. And there are no catastrophic consequences of missing one or
more deadlines.

Today multiprocessor and multicore architectures are invariably used. This is not
the case of the so-called many-core processors, whereas the International Technology
Roadmap for Semiconductors foresees that the number of processing elements that
will be integrated into an system-on-chip (SoC) will be in the order of thousands by
2020 [15]. The migration from traditional architecture to many-core systems brings
vast works to deal with. In order to obtain the maximum performance, programmers
have to consider a mass of things such as mapping tasks onto cores, task scheduling
and even the cache coherence.

Network-on-chip (NoC)-based many-core processors offer a promising support
to deal with a number of issues, such as system performance and power consump-
tion. With a large-scale integration of multiple cores on a single chip, they provide a
promising solution for real-time applications. To the best of our knowledge, partition-
ing for NoC-based many-cores has not been studied for real-time applications. One
study [8] has explored the partitioning on NoC-based many-core processors for crit-
ical applications but with fault tolerance requirements only. The overall performance
of NoC-based many-cores with respect to real-time requirements mostly depends on
the global intrachip communications. Indeed, in the most efficient real-time mapping
approaches existing today, tasks must migrate between cores. Frequent task migra-
tion results in additional communication costs and cache misses and potentially very
high overheads which might seriously degrade application performance in a NoC-
based system. Consequently, a key challenge for NoC-based systems is either to
manage task migrations in a bounded and predictable way or to reduce the over-
head by restricting/eliminating task migrations. The use of additional communication
links, circuit-switched routing or prioritized communication channels is among exist-
ing solutions at the hardware level to guarantee the required latency. A number of
process migration mechanisms and policies have also been proposed (see [14] for a
survey) in order to reduce state transfers and exhibit low-overhead migration.

The main objective and scope of this work is to study the mapping problem of a
real-time task set on NoC-based many-core processors. In our research we propose
an approach with no task migrations. Hence, the cache effectiveness is not decreased,
and tasks’ execution times are not increased because of the need for fetching again
data from the main memory. The only requirement of the approach is that all processor
clocks be synchronized. Once the task mapping is done, each processor independently
applies its local scheduler. Our partitioning algorithm only provides a feasible map-
ping. It is then the role and responsibility of the application designer to select a given

2



real-time scheduler that will produce a valid schedule in which all the timing require-
ments of the task set will be met. Ideally, the designer should select an optimal one
which, by definition, is able to schedule every feasible task set. Otherwise, he should
couple the results of the feasibility analysis with a schedulability analysis.

The remainder of the paper is structured as follows. The next section reviews related
research in bothmulticoremapping andNoCclock synchronization. The systemmodel
is defined in Sect. 3. Section4 presents K-level task splitting (KTS), a new static map-
ping strategy with an offline task splitting phase. Section5 provides some results of
experiments. Finally, Sect. 6 concludes with a summary of the contributions and out-
lines some directions for future work.

2 Related work

2.1 Mapping approaches for multiprocessor systems

As our work is closely related to classical results on the partitioning of real-time
tasks on multiprocessor architectures, we provide hereafter a summary of mapping
approaches for multiprocessor systems.

Partitioning a task set amounts to a bin-packing problem (known to be NP hard
[11]): how to place n objects of different sizes in m identical boxes? Some heuristics
have been proposed in the literature in order to solve it in an acceptable computational
time [12]. Heuristics as First Fit (FF), Best Fit (BF),Worst Fit (WF) or Next Fit (NF)
imply a sequential mapping of tasks to processors after passing a schedulability test.
A task sorting criterion is used to determine the order in which tasks are examined for
mapping.

Hybrid mapping approaches extend partitioned ones allowing a subset of tasks to
migrate. Among them, semi-partitioning is often outlined as the best compromise
with most tasks statically partitioned onto cores. It offers improved load balancing
and increased utilization compared to static partitioning. The concept was introduced
by Anderson et al. [1] with the EDF-fm algorithm dedicated to soft real-time systems.
At most m − 1 tasks need to be able to migrate, and each such task migrates between
two processors, across job boundaries only. Most recently, in 2014, the same authors
introduced another EDF-based semi-partitioning strategy called EDF-os [2]. EDF-os
minimizes tardiness by introducing some constraints on migrations: (i) the number of
processors to which jobs of a migrating task can migrate to at most two and (ii) each
processor can be assigned to only two migrating tasks.

In [6], Burns et al. introduced an EDF-based task splitting scheme called EDF
Split (DD). Each processor p is filled with tasks until no further task can be added
due to unschedulability on the processor. Any non-allocated task τi is split into two
subtasks. The first one is retained on processor p while guaranteeing schedulability.
The second one is mapped to the processor p + 1 with offset computed so as to avoid
the two generated tasks to execute simultaneously. The authors show that EDF Split
(DD) makes a small but significant improvement over fully partitioned approaches.
Evaluation of our approach is provided via comparative benchmarks with EDF Split
(DD), one of the best semi-partitioned algorithms found in the literature.
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2.2 Clock synchronization in NoCs

As our approach requires that all processor clocks be synchronized within the NoC,
we report hereafter some works about clock synchronization with a focus on those
suitable for real-time applications. There is indeed a vast literature on the subject
[5]. Several techniques have been proposed in the literature to address the issue of
distributing a high-speed, low-power, low-jitter clock across the whole chip [18]. The
most commonly used today consists in trying to align the entire chip with a global
clockwith low skew, yet challenging to fullymaster [16]. Another popularmethod is to
make use of asynchronous protocols that are free from clock–skew issues but are prone
to metastability problems due to asynchronous clock domain crossings [13]. Among
existing asynchronous NoCs, only MANGO [4] offers hard real-time guarantees. A
middle option, particularly interesting for NoC-based systems, is also possible: the
globally asynchronous, locally synchronous (GALS) method [7]. It relies on blocks
that are synchronous but communicate asynchronously. The GALS scheme has the
benefit of allowing cores to decouple from one master clock. Hence, it appears as
the only one that supports the challenge of building high-scalable systems. A real-
time NoC architecture with an efficient GALS implementation named Argo has been
proposed in [9].

3 Models and terminology

3.1 System and task model

We consider a NoC architecture which is intended to hard real-time applications as
presented in [9]. Figure1 shows such a homogeneous NoC Π = {π1, . . . , πm} with
m identical cores in using a 2-D-mesh topology.

In a real-time context, the mapping problem for NoC is to decide how to place a
set of n asynchronous real-time tasks T = {τ1, τ2, . . . , τn} onto the cores of a given
network such that all timing constraints are met.

Each task τi is assumed to be periodic and characterized by a 4-tuple (φi , Ci , Ti ,
Di ) whose parameters are described hereafter:

– φi : the offset (i.e. the time of the first activation of τi relatively to the system
initialization time),

– Ci : the worst-case execution time (WCET),
– Ti : the period or minimal inter-arrival time between two consecutive activations
of τi ,

– and Di : the relative deadline (i.e. the time by which the current job of τi has to
finish its execution relatively to its arrival time).

The utilization of task τi , denoted ui is given by Ci
Ti
. The normalized system uti-

lization of task set τ is defined as usys = ∑n
i=1 ui/m.

Any task τi generates an infinite number of jobs τi j , j ≥ 0. Each job is assigned a
release time ri j = φi + jTi and an absolute deadline di = ri j + Di . When all offsets
equal to zero, τ is said to be synchronous; otherwise, it is asynchronous. Tasks are
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Fig. 1 Static mapping on a homogeneous NoC using a 2-D-mesh topology

Table 1 Notation used throughout the paper

Symbol Description

n Number of tasks

m Number of processors

T Task set

Π NoC core set

τi Task i of the task set T
π j Processor j of the core set Π

Ci Worst-case execution time of task τi

Di Relative deadline of task τi

Ti Period or minimal inter-arrival time of task τi

ui Utilization factor of task τi , ui = Ci /Ti
usys Normalized system utilization, usys = ∑n

i=1 ui /m

Φ j Max offset of any tasks assigned to processor π j

Φ Max offset of any tasks in T
H(T ) Hyperperiod of task set T , H(T ) = lcm(T1, . . . , Tn)

K Number of levels of task splitting

assumed to be preemptable and independent in the sense that there exists no kind of
dependency (e.g. shared data resources, precedence ordering) of one job on another
of the same or another task. The deadline of τi is less than or equal to its period (i.e.
∀i, Di ≤ Ti ), also referred to as the constrained-deadline model. Note that in the
special case where ∀i, Di = Ti , tasks are said to have implicit deadlines.

For ease of reference, Table1 provides a summary of notations used in the rest of
the paper.
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3.2 Feasibility analysis of asynchronous task sets

In our approach, the feasibility of the static mapping on the NoC is guaranteed by
a core-by-core feasibility analysis, considering asynchronous independent real-time
periodic tasks. Hence, this section summarizes previous results on feasibility analysis
on uniprocessor platforms which has always been a central research issue in real-time
scheduling.

Definition 1 A task set T is feasible if and only if there is some scheduling algorithm
that will successfully schedule all job sequences that can be generated by T .

The feasibility problem of asynchronous periodic task sets on a uniprocessor plat-
form has been proven to be co-NP-complete in the strong sense [10]. Leung andMerril
[10] proved that we have to analyse all deadlines in [0, Φ + 2H ]. In [3] Baruah et
al. proposed an exact test for task sets with constrained deadlines. It is based on the
processing demand within any time interval compared to the available processing
capacity in that interval, as described in Lemma 1.

Lemma 1 [3] A set of independent real-time tasks T is feasible on a single processor
if and only if:

1. U = ∑
τi∈T

Ci
Ti

≤ 1 and
2. ∀0 ≤ t1 < t2 ≤ Φ + 2H, db f (t1, t2) ≤ t2 − t1.

db f (t1, t2) denotes the processor demand bound function and is given by:

db f (t1, t2) =
n∑

i=1

ηi (t1, t2)Ci . (1)

where ηi (t1, t2) = max
(
0, � t2−φi−Di

Ti
� − � t1−φi

Ti
	 + 1

)
represents the number of jobs

of task τi which occur in the interval [t1, t2) with a deadline less than or equal to t2.
In theKTS partitionedmapping approach (presented hereafter), Lemma 1 is applied

to a given core of the NoC locally, in order to test if a new task can be mapped or not
to the core, checking the feasibility of the set of real-time tasks formed by the ones
already mapped to that core plus the new task.

4 K-level task splitting (KTS)

We present a new static mapping algorithm called K-level task splitting (KTS) based
on partitioned scheduling with a task splitting phase. Some tasks are mapped to single
processors, while other ones are divided into asynchronous subtasks with smaller
utilization factor, each being mapped to an individual processor. KTS consists of a
singlemapping phase in which each task is mapped to a specific processor in the NoC.

This approach is deemed a partitioning scheme rather than a semi-partitioning
scheme. It permits the different jobs generated by a given task to be executed on
different cores but each job is executed on one core only. Hence, it makes sense to
treat the proposed approach as a static mapping one for the two following reasons:
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1. Every subtask is still a periodic task whose jobs are activated less frequently but,
unlike other methods, jobs themselves are not divided among different processors
(i.e. only successive task invocations are spread over different processors);

2. Task code being identical for each subtask, it can be replicated, and since jobs
of a given task are assumed to be independent of each other, data migration for
subtasks is not required at job boundaries.

The only requirement of the algorithm is that all processor clocks in the NoC be
synchronized in order to ensure the subtask scheduling order. As reviewed in Sect. 2.2,
deterministic clock synchronization solutions for many-core topologies exist and are
suitable for hard real-time systems [9]. KTS is assumed to be disseminated in the form
of an open-source real-time partitioning tool in order to be used in total independence
with the real-time operating system running on the cores of the NoC.

4.1 Principle

KTS first attempts to map each task to a particular processor through a bin-packing
heuristic (e.g. FFD, BFD…). If a task is rejected by all processors, it will be split into
two subtasks. The resulting tasks will have smaller utilization factor (i.e. half the value
of the task’s utilization factor) and different offsets so as to be mapped to different
processors and executed without any overlapping in time.

The algorithm then attempts to map those resulting tasks to a processor. The exact
schedulability test for periodic tasks with offsets described in Lemma 1 is used. If
a subtask cannot be mapped to any single processor, it is split again. Each splitting
step corresponds to a level. We define a depth limit K , that is to say, a task cannot be
split more than K times. K is given by the user. Even if K is too large, KTS may stop
splitting a task before reaching the depth limit K if all tasks are successfully mapped to
cores. This means a task does not necessary need to be split K times. If K is very large,
the success of mapping the whole task set is maximized but at the cost of an increased
computation time (the algorithm is recursively called each time a task is split).

More formally, a task τi (φi ,Ci , Ti , Di ) being rejected by all processors is split into
two subtasks τ ′

i (φi ,Ci , 2∗Ti , Di ) and τ ′′
i (φi +Ti ,Ci , 2∗Ti , Di ), as depicted in Fig. 2.

Provided the processor clocks of the NoC be synchronized, subtasks will be resumed
at the “right” time (task t

′′
i with a given offset), thus guaranteeing that the activation

of the subtasks τ ′
i and τ ′′

i be equivalent to the activation pattern of the original task τi .

t

τi(0, 2, 4, 3)
τi(φi, Ci, Ti, Di)

t

τ ′
i(0, 2, 8, 3)

t

τ ′′
i (4, 2, 8, 3)

Fig. 2 Task splitting

7



TASK SET

τ1

τ2

τ3

τ ′
3

τ ′′
3

τ ′′
3′

τ ′′
3′′

τ4

K = 1

K = 2

ASSIGNING A TASK

task

task

assigned to a processor

rejected by all processors

Fig. 3 KTS’s consecutive task splittings according to parameter K

Figure3 illustrates the algorithm for K = 2. KTS allows up to two levels of deriva-
tions for each task. At level 0, task τ3 cannot be mapped to a single processor. So, it
is divided into two tasks τ ′

3 and τ ′′
3 at the first level (K = 1). Then one of the two

subtasks (τ ′′
3 ) is rejected. τ

′′
3 is then split again to derive two other tasks at level 2. The

algorithm continues until either it reaches the depth limit K or all tasks are success-
fully mapped. In the example depicted in Fig. 3, the algorithm reaches the limit depth
K = 2 in which all the subtasks are successfully mapped. Consequently, the task set
is schedulable on the given NoC.

More generally, on a NoC-based platform composed of m cores, every task can
be potentially split K times into two subtasks of lower processor utilization factors.
However, if all cores are already loaded with tasks in such a way that their remaining
capacity is less than the processor utilization factor of the original task to be mapped
divided by m, then the task will inevitably be rejected (condition 1. of Lemma 1 will
be violated).

Let us note that KTS algorithm with K = 0 is equivalent to the fully partitioning.
Figure4 shows the pseudo-code of KTS with FFDD (First Fit Decreasing Density)

bin-packing heuristic. current_k represents the current level of derivation of subtasks,
while K is the depth limit for task splitting. In case of successfulmapping to processors,
the algorithm returns SUCCESS with the corresponding mapping of task set T on
processor set Π , denoted map(T ,Π). Otherwise, it returns FAILURE. In this case,
task set T is said to be unfeasible since some tasks have been rejected. As the objective
is to execute the whole task set on the NoC, even if the algorithm leads to a partial
mapped task set, if it returns FAILURE, no task is executed.

For any processor π j , let map(π j ) denote the tasks among τ1,…, τi−1 that have
already been mapped to processor π j . Initially, map(π j ) = ∅. At the beginning, the
algorithm performs using an FFDD algorithm. If no such π j exists, then we are unable
to conclude that the periodic task setT is feasible upon them-processorNoC. Task τi is
then split into a set τ spli ti = {τ ′

i (φi ,Ci , 2×Ti , Di ); τ ′
i (φi +Ti ,Ci , 2×Ti , Di )} of two

subtasks that are mapped to a subset of processors belonging to the NoC (at most m).
KTS is a recursive algorithm. First call of KTS is with the value current_k = 0. If

at some point a task is rejected by all cores, it is split and the split tasks belong to the
next level current_k+1. KTS then tries tomap them by calling itself for the next level
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Algorithm 1 KTS Partitioned Algorithm
Input: m, current k, K, T = {τ1, ..., τn}

Output: SUCCESS and map(T , Π) if T is feasible, FAILURE otherwise.

Function: KTS(in m, in current k, in K, in T , out map(T , Π))

begin
for i = 1 → |τ | do

Sched ← false;
/* mapping the task according to FFDD */
for j = 1 → m do

if τi feasible on πj then
/* τi is mapped to πj */
map(πj) = map(πj) ∪ τi;
Sched ← true;
break;

end if
end for
if not Sched then

/* Trying to split the task */
if current k < K then

/* the depth limit K has not been reached */
split τi(φi, Ci, Ti, Di) into a new set of two subtasks;
τsplit
i = {τ ′

i(φi, Ci, 2 × Ti, Di); τ ′
i(φi + Ti, Ci, 2 × Ti, Di)};

if KTS(m, current k + 1, K, τsplit
i ) == SUCCESS then

Sched ← true;
end if

else
/* the depth limit K has been reached*/
Sched ← false;

end if
end if
if not Sched then

return FAILURE;
end if

end for
map(T , Π) =

⋃m
j=1 map(πj)

return SUCCESS;
end

Fig. 4 Pseudo-code of KTS

current_k = current_k+1 and so on until all tasks are successfully mapped to cores
or until the current level current_k reaches the max depth K without mapping all the
tasks. If all tasks and resulting split tasks are successfully mapped to cores, the task
set is feasible. Otherwise, if K is reached without mapping all tasks, it is not feasible.

4.2 Properties

The following lemma asserts that, in mapping a subtask of τ
spli t
i to a processor π j ,

the partitioning algorithm does not adversely affect the feasibility of the tasks mapped
earlier to processors.
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Lemma 2 If tasks previously mapped to processors were feasible (on each proces-
sor) and the algorithm above maps τ ′

i (respectively, τ ′′
i ) to processor π j (according

to Lemma 1), then tasks mapped to any processor (including processor π j ) remain
feasible.

Proof Sketch Observe that the feasibility of processors other than processor π j is not
affected by the mapping of task τ ′

i (respectively, τ ′′
i ) to processor π j . If the tasks

mapped to π j were feasible on π j prior to the mapping of τ ′
i (respectively, τ ′′

i ) and
condition of Lemma 1 is satisfied, then the tasks on map(π j ) remain feasible after
adding τ ′

i (respectively, τ
′′
i ). 
�

The correctness of the partitioning algorithm follows, by repeated applications of
Lemma 2.

Theorem 1 KTS partitioning algorithm returns SUCCESS on task set T if and only
if the resulting partitioning is feasible.

Proof Sketch Observe that the algorithm returns SUCCESS if and only if it has suc-
cessfully mapped each task in T to some processor. Prior to the mapping of task τi ,
each processor is trivially feasible. It follows from Lemma 2 that all processors remain
feasible after each task mapping as well. Hence, all processors are feasible once all
tasks in T have been mapped. 
�
Theorem 2 KTS performance stops to increase when the first job of a task cannot be
executed on any processor without causing deadlines violation.

Proof Sketch A task cannot be mapped to any processor even if its utilization factor
is less than the spare capacity due to the fact that its first job cannot be executed
successfully on any processor. Considering the task splitting scheme Fig. 2, splitting
the task will not split the job execution time and subsequently resulting tasks will
remain unmapped to any processor. For that reason, adding a level of splitting is
useless. 
�

From the pseudo-code given in Fig. 4, we also derive that the complexity of KTS
is quadratic polynomial (see Theorem 3).

Theorem 3 KTS has order of n2 time complexity.

Proof Sketch The mapping problem for NoC is to decide how to place a set of n hard
real-time tasks T = {τ1, τ2, . . . , τn} onto the cores of a given network such that all
timing constraints are met :

• If n ≤ m, no need for task splitting and in the worst case each task if assign to a
different core.
– with KTS-FF : the first task passes the schedulability test on first core and is
assigned to it (1 operation), the second task in the worst case is assigned to the
second core after being rejected from first core which means the schedulability
test is done two times (two operations), …, the n-th task in the worst case is
assigned to the n-th core n after being rejected from previous core whichmeans
the schedulability test is done n times (n operations), which leads us to say
that the total number of operations is 1 + · · · + n that to say n(n + 1)/2.
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– with KTS-WF : each task does the schedulability test on all of the m cores
before choosing the one that can receive the task while maximizing its spare
capacity. The total number of operations is n × m.

• If n > m :
– with KTS-FF : the m first tasks pass their schedulability test as described in
the case n ≤ m (1+ 2+ · · · +m = (m + 1)m/2 operations) and are assigned
with success to cores. Each of the rest of tasks (n − m), in the worst case,
tries to be assigned to the m cores ((n − m)m operations). If it is rejected by
all cores, it is split into two subtasks at each splitting operation. At each level
k they double their number before re-testing on the m cores ((n − m)m.2 +
(n − m)m.22 + · · · + (n − m)m.2K operations). We can deduce that the total
number of operations is m(m + 1)/2 + (n − m)m × Ks avec Ks = ∑K

k=0 2
k

which is a constant value.
– with KTS-WF : the m first tasks pass their schedulability test as described in
the case n ≤ m (1+ 2+ · · · +m = (m + 1)m/2 operations) and are assigned
with success to core(m2).Each of the rest of the tasks tries to be assigned to the
m cores ((n −m)m operations). If they are rejected by all cores, they are split
(two resulting subtasks at each splitting operation) at each level k before they
all are assigned. At each level k they double their number before re-testing on
the m cores ((n − m)m.2 + (n − m)m.22 + · · · + (n − m)m.2K operations).
The total number of operations is m2 + (n − m)m × Ks avec Ks = ∑K

k=0 2
k

which is also a constant value.

As n = βm with βεR+, KTS complexity is in O(n2). 
�

5 Performance analysis and discussion

In this section, we analyse the effectiveness of KTS with respect to classical FFDD
bin-packing heuristic and EDF Split (DD) algorithm [6].

5.1 Simulation set-up

In our task generation methodology, we consider two sets of experiments. The first
one is relative to tasks with implicit deadlines. The second one is relative to tasks with
constrained deadlines as described in what follows:

– Task utilization factors ui are randomly generated (uniform distribution) in the
range [0.1, 1].

– Task periods Ti are picked in the interval [20, 200];
– Task WCETs Ci are computed from periods Ti and utilization factors ui : Ci =

Ti .ui
– Task relative deadlines Di are randomly chosen in the range [Ci , Ti ];

We generate 100 different task sets on a m-processor NoC with m ∈ {16, 32,
64, 128}.

A task set is said to be successfully scheduled if all tasks in the set are successfully
mapped to processors. The effectiveness of the algorithm KTS is measured by the
Success_Ratio:
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Success_ratio = Nsuccess

Ngenerated
(2)

where Nsuccess and Ngenerated are the number of successfully scheduled task sets and
the total number of task sets, respectively.

In all experiments, we generate 100 task sets with normalized system utilization
usys ∈ [0.6, 1]. Task sets are composed of 2 × m tasks with either implicit (D = T )
or constrained deadlines (D ≤ T ).

5.2 Simulation results

KTS-FFDD (K = x) refers to KTS with a depth limit K = x based upon the KTS-
FFDD heuristic. It is compared to both EDF Split (DD) and the classical heuristic
FFDD.

5.2.1 Experiment 1: Effect of the number of processors in the NoC

Figure5 illustrates the comparative performance of FFDD, KTS-FFDD and EDF Split
(DD) with varying the number of processors m of the NoC for implicit-deadline task
sets.
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Fig. 5 Success ratio for D = T with: a m = 16, b m = 32, c m = 64, d m = 128
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Fig. 6 Success ratio for D ≤ T with: a m = 16, b m = 32, c m = 64, d m = 128

Wenote that, as the number of processors increases, the performance of all strategies
increases. The success ratio observed for both KTS-FFDD and EDF Split (DD) clearly
exceeds that of FFDD in all observed cases. As expected, the higher the value of K ,
the higher the success ratio. KTS-FFDD always behaves better than EDF Split (DD)
as soon as K > 1. For instance, for usys = 0.986 and m = 32, EDF Split (DD)
only schedules 75% of the task sets generated while 98% are schedulable using KTS-
FFDD with K = 4. It is worth noticing that for the case m = 128 (i.e. for a large
number of processors in the NoC), KTS-FFDD and EDF Split (DD) achieve similar
performance. However, KTS-FFDD does not imply any migration cost at run-time,
thus still being the best solution to choose.

Figure6 depicts the curve of the success ratio for the same cases (i.e. NoCs com-
posed of 16, 32, 64 and 128 processors) in considering constrained-deadline task sets.

Here, the overall success ratio for all algorithms is not as high as in the case D = T .
Our algorithm always outperforms the other algorithms if K > 1. In contrast to the
case with implicit-deadline tasks, EDF Split (DD) never reaches the good performance
of KTS-FFDD even for a high number of processors. For usys = 0.875 and m = 128,
FFDD schedules 31% of the task sets, while 35% of them are schedulable under EDF
Split (DD) and 95% under KTS-FFDD with K = 4.

The very good performance of KTS-FFDD can be explained easily: the higher the
number of processors, the higher the chance of splitting tasks into a large number of
subtasks with low utilization factors, thus mapping them more easily into the NoC.
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5.2.2 Experiment 2: Effect of light/heavy tasks mapped into the NoC

In this experiment, we study the effect of task utilization factors on the effectiveness of
KTS-FFDD,EDFSplit (DD) andFFDDon a 64-processorNoC.A taskwith utilization
factor less than 0.5 is called a light task, while a task with utilization factor at least
0.5 is called a heavy task.

We consider three profiles of task sets. If all utilization factors are drawn from
[0.1; 0.5], [0.1; 1] and [0.5; 1], we, respectively, refer to light distribution, medium
distribution and heavy distribution.

Success ratios for light, medium and heavy distributions are depicted with respect
to normalized system utilization in Figs. 7, 8, and 9, respectively. Both implicit- and
constrained-deadline cases are considered.

Results clearly indicate that both KTS-FFDD (K = 4) and EDF Split (DD) are the
best heuristics whatever is the case under consideration. Moreover, we note that the
higher the ratio of heavy tasks in the task set, the more efficient are EDF Split and
KTS-FFDD in comparison to FFDD. KTS-FFDD with K > 1 outperforms EDF Split
(DD) for medium distributions only, but the gain is quite significant: for constrained-
deadline tasks, when utilization factors are in the range [0.1, 1] and usys = 0.875, only

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98  1

Su
cc

es
s 

R
at

io

usys

            FF
            EDFSplit DD

            KTS−FF (K=1)
            KTS−FF (K=2)
            KTS−FF (K=3)
            KTS−FF (K=4)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7  0.75  0.8  0.85  0.9  0.95  1

Su
cc

es
s 

R
at

io

usys

            FF
            EDFSplit DD

            KTS−FF (K=1)
            KTS−FF (K=2)
            KTS−FF (K=3)
            KTS−FF (K=4)

(b)

Fig. 7 Success ratio for light distributions: a D = T , b D ≤ T

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98  1

Su
cc

es
s 

R
at

io

usys

            FF
            EDFSplit DD

            KTS−FF (K=1)
            KTS−FF (K=2)
            KTS−FF (K=3)
            KTS−FF (K=4)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.7  0.75  0.8  0.85  0.9  0.95  1

Su
cc

es
s 

R
at

io

usys

            FF
            EDFSplit DD

            KTS−FF (K=1)
            KTS−FF (K=2)
            KTS−FF (K=3)
            KTS−FF (K=4)

(b)

Fig. 8 Success ratio for medium distributions: a D = T , b D ≤ T
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Fig. 9 Success ratio for heavy distributions: a D = T , b D ≤ T

Table 2 Cross-comparison of the mapping algorithms

Algorithms Performance Computational
complexity (offline)

Temporal overhead
(online)

FFDD Poor Linear None

EDF Split (DD) Good Pseudo-polynomial Quite significant

KTS-FFDD (K > 1) Very good/tunable Quadratic polynomial None

35% of the task sets are schedulable using EDF Split (DD) while 75% are schedulable
using KTS-FFDD with K = 4.

5.3 Synthesis and discussion

Evaluation over a wide range of randomly generated task sets indicates that KTS-
FFDD algorithm is a good alternative to EDF Split (DD) algorithm. KTS approach
is conceptually simple, easy to implement in existing systems and effective. Every
subtask is still a periodic task whose code can be replicated.

Table2 gives a qualitative evaluation of the three mapping algorithms under con-
sideration in terms of performance, computational complexity and temporal overhead.

It supports the conclusion that EDF Split (DD) and KTS-FFDD offer benefits over
conventional partitioned FFDD approach in terms of performance (i.e. the ratio of
the number of successfully mapped task sets over the total number of submitted task
sets is higher), but not both algorithms give good results at run-time. Aside from its
requirement of processor clocks in the NoC to be synchronized, KTS-FFDD does not
require any temporal overhead (i.e. no additional algorithm is required at run-time in
order to ensure the task jobs precedence constraints). This is not the case for EDF
Split (DD). Important for the selection of a mapping strategy is not only performance,
but also ease of implementation and application. EDF split (DD) will require more
implementation effort to be deployed. The downside of the zero run-time overhead of
KTS-FFDD is that the algorithm exhibits a higher (but also polynomial) complexity
for the offline mapping phase. According to the level of performance required by the
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application, it is always possible to tune the split depth limit K value so as to reach a
good compromise between performance and computation time.

Finally, compared to EDF Split (DD), KTS cannot handle sporadic tasks (i.e. tasks
for which period is interpreted as a minimum inter-arrival interval). However, KTS
can be implemented in many applications, whereas EDF Split (DD) can only be used
in systems in which the code of each task may be explicitly divided into two parts
mapped on two different processors. This is not always the case, andwhen appropriate,
it requires an in-depth WCET analysis of the code.

6 Conclusion

This paper addressed an important issue for the practical utilization of many-core
architectures based on NoCs for real-time systems: mapping of deadline-constrained
tasks. We introduced a novel static mapping algorithm based on task splitting. We
showed how the classical real-time feasibility analysis for asynchronous tasks can be
used in such a task splitting scheme. The competitive schedulability ofKTS is achieved
without any additional number of context switches and without any migration cost,
thus resolving the problem of the global intrachip communication costs that can highly
degrade the overall performance of the NoC. The only requirement of the approach is
that all processor clocks be synchronized.

Future works include extending this approach to firm real-time systems that allow
some of their jobs to be occasionally discarded so as to handle transient overloads.
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