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Shock waves induced by a planar obstacle in a
vibrated granular gas

Alexandre Vilquin1, Hamid Kellay1 and Jean-François Boudet1,†
1Laboratoire Onde et Matière d’Aquitaine (UMR CNRS 5798), Université de Bordeaux,

351 cours de la Libération, 33405 Talence, France

The low value of the speed of sound in dilute granular media permits the study
of the properties of supersonic flows for a wide range of Mach numbers. In this
paper, we report the experimental observation of a subsonic–supersonic transition in
a vibrated granular gas. The shock fronts studied are obtained by simply pushing
a rectangular obstacle into the granular gas for different obstacle velocities. The
supersonic regime is characterized by the formation of normal shock waves whose
width increases when the Mach number decreases to values close to 1. The bimodal
model proposed by Mott-Smith in the 1950s provides a good description for the
velocity distributions as well as the macroscopic quantities for shock waves in
molecular gases but remains inadequate for dissipative media like granular gases and
plasmas. Here by examining the shock front structure for a wide range of Mach
numbers, we adapt the Mott-Smith bimodal description to a dissipative medium. By
using balance equations from granular kinetic theory and taking into account different
dissipation sources, the proposed model allows us to understand how this dissipation
modifies temperature, mean velocity and volume fraction profiles through the shock
front.
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1. Introduction
Among the surprising properties of dilute granular flows is the low propagation

speed of pressure inhomogeneities. As a consequence, the speed of sound in dilute
granular flows is of the order of 10 cm s−1 (Savage 1988; Amarouchene & Kellay
2006; Huang et al. 2006; Boudet, Cassagne & Kellay 2009), which allows us to easily
generate supersonic flows in a simple laboratory setting and to create shock fronts
when these flows interact with an obstacle. These shock fronts show similarities
with their counterparts in molecular gases (Rericha et al. 2001; Boudet & Kellay
2010). These granular shock waves can be attached or detached (Hákonardóttir &
Hogg 2005) in the same way as for gases (Anderson 1990). Moreover, an obstacle
propagating in a granular medium generates a Mach cone in a shallow granular fluid
(Heil et al. 2004) and in a dilute flow (Amarouchene & Kellay 2006). The opening
of the Mach cone provides a determination of these low sound speeds. Granular
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shocks in dense free surface flows have received special attention because they are
related to avalanche protection dams (Faug et al. 2015). Many configurations were
analysed such as oblique shocks, detached or attached bow shocks (Gray & Cui 2007;
Johnson & Gray 2011), crater formation (Boudet, Amarouchene & Kellay 2006) and
analogies with hydraulic jumps in shallow-water flows have been found (Gray, Tai &
Noelle 2003; Boudet, Amarouchene & Kellay 2007; Mejean, Faug & Einav 2017).

The second feature of granular media is their dissipative nature. Binary collisions
between particles are inelastic and lead to an important energy dissipation (Grossman,
Zhou & Ben-Naim 1997). Dilute granular flows are thus described as dissipative gases
(Savage & Jeffrey 1981; Haff 1983; Goldhirsch 2003). The theoretical framework for
the description of these flows is the granular kinetic theory which is derived from
the inelastic Boltzmann equation (Lun et al. 1984). The hydrodynamic equations
governing granular flows are analogous to the Navier–Stokes equations with specific
additional terms due to this inelastic dissipation (Goldshtein & Shapiro 1995;
Brilliantov & Pöschel 2003; Andreotti, Forterre & Pouliquen 2012). These equations
which model flows near the local thermodynamic equilibrium reproduce the behaviour
of dilute granular flows despite the fact that velocity distributions in a granular
medium are rarely Gaussian. As an illustration, supersonic dilute granular flows
around a triangular obstacle were found to be well described by these continuous
equations, as shown in Rericha et al. (2001). The blast dynamics in a granular gas
is also well described by these equations as shown in Barbier, Villamaina & Trizac
(2015). Furthermore, the study of granular gases provides prototypical dissipative
media on which different theories of the role of dissipation can be tested. Plasmas
are another example of a highly dissipative medium where shock fronts and their
properties are of great interest. For example in Gregori et al. (2012), it is shown how
the shock front presence during galaxy formation permits us to explain the appearance
of magnetic fields in space. A better understanding of shock front structure in granular
gases could provide useful information about the role of dissipation for shocks in
other media such as a plasma although the nature of the dissipative mechanisms is
different.

Supersonic flows around an obstacle are characterized by the existence of a shock
front. For strong normal shock waves, this is the region where the supersonic flow
becomes subsonic. In this case, it has been shown that the velocity distributions
in the front can be very far from Gaussian distributions. They actually show a
bimodal structure with two distinct peaks in molecular gases (Holtz & Muntz 1983;
Pham-Van-Diep, Erwin & Muntz 1989), in granular gases (Boudet, Amarouchene &
Kellay 2008; Vilquin, Boudet & Kellay 2016) and in plasmas (Mazouffre et al. 2001;
Vankan et al. 2005). While hydrodynamics equations remain valid in describing
slightly supersonic regimes and weak shock waves, with nearly Gaussian velocity
distributions, in molecular gases (Muntz & Harnett 1969) and in granular gases
(Rericha et al. 2001), they are not suitable for strong shocks at high Mach numbers.
For molecular gases, Mott-Smith (1951) proposed a description of shock fronts by
considering that the velocity distributions are bimodal. Using a bimodal velocity
distribution to solve the Boltzmann equation leads to a better description of the shock
front than that obtained by the resolution of the hydrodynamic equations. A similar
description in a dissipative granular medium has not been attempted yet.

In this work, we propose to apply this bimodal description to dissipative
granular gases. A granular gas is a dilute flow where particles interact with binary
collisions, very different from dense granular flows where few particles can have
prolonged contact. We study the problem of a rectangular obstacle moving in a
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FIGURE 1. (Colour online) Schematic of density and temperature profiles generated
by a moving obstacle in the y-direction in a one-dimensional medium. (a) Molecular
gas: TY and TX are the longitudinal and transverse temperatures. The gas density ρ
is the blue curve. (ρ∗1 , T1) and (ρ∗2 , T2) are respectively the density and temperature
values of supersonic and subsonic gases on either side of the shock front linked by
Rankine–Hugoniot conditions (see § 2). (b) Granular gas: T is the temperature. The gas
volume fraction φ is the blue curve. (φ∗1 , T1) are the initial value of volume fraction and
temperature. φC is the random close-packing volume fraction.

vibrated granular medium. In a restricted area centred on the symmetry axis of
the flow, this problem could be considered similar to a one-dimensional piston
problem. This problem has already been analysed for gases by Landau & Lifchitz
(1967). The obstacle moving at a constant speed Vobs, generates, after a transient,
a one-dimensional shock front of high intensity moving at a constant speed Vfront.
Density and temperature profiles generated by the obstacle displacement are plotted
in figure 1(a) for a molecular gas. Far from the obstacle, the initial gas has a
temperature T1, a density ρ∗1 and a zero mean velocity. Near the obstacle, the gas is
compressed to a denser value ρ∗2 , heated to a higher temperature T2 and propagates
at the obstacle speed. In the reference frame of the shock front, the supersonic flow
is the initial gas and the subsonic flow is the denser gas close to the obstacle. These
two gases are at thermodynamic equilibrium. The shock front is the non-equilibrium
region, connecting these two flows, and where strong variations in physical quantities
occur. Its thickness is of the same order of magnitude as the mean free path λ
evaluated in the initial gas. In this region, the velocity distributions show a two-peak
structure because supersonic and subsonic gases coexist. Macroscopic variables on
either side of the front are connected by Rankine–Hugoniot equations, which allow
us to determine ρ∗2 , T2 and Vfront as functions of ρ∗1 , T1 and Vobs. The Mach number
of this flow is given by Ma = Vfront/C1, where C1 is the sound speed in the initial
gas. The bimodal structure of the velocity distributions leads to an anisotropy of the
temperature (Harnett & Muntz 1972; Holian et al. 1993; Hoover & Hoover 2010): for
an obstacle propagating along the y-axis, the longitudinal temperature (denoted TY)
is greater than the transverse temperature (denoted TX), as illustrated in figure 1(a).
Note that the extent of the shock front is the region where the two temperatures
differ.

The piston problem has also been considered in a granular medium in recent
numerical work by Sirmas & Radulescu (2015). They show that an obstacle,
propagating in an inelastic gas, also generates a shock front that travels at constant
speed. However, the volume fraction and longitudinal temperature profiles illustrated
in figure 1(b) show large differences with respect to molecular gases. The temperature
reaches a maximum before decreasing near the obstacle to very low values. The
volume fraction increases continuously up to its maximum value (φC, random
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close-packing volume fraction). For a granular material of spherical particles with
a diameter d, the volume fraction is φ = NVp/V where N is the particle number,
Vp = πd3/6 and V the volume of the region of interest. Goldshtein, Shapiro &
Gutfinger (1996) had previously analysed this device in the context of granular
hydrodynamic equations and showed a qualitative agreement with the simulations. In
particular the authors explain the shape of the profiles by the leading role of inelastic
dissipation. In the shock front, the inelastic gas is compressed and the temperature
and the volume fraction increase. As the number of inelastic collisions increases, the
energy decreases as we progress in the shock front. The gas temperature decreases
continuously to zero while the volume fraction increases to a maximum value φC.

Sirmas & Radulescu (2015) do not focus on the shock front in their simulations.
They do not measure temperature and velocity distributions along each axis.
Goldshtein et al. (1996) use hydrodynamic equations, which are not suitable to
describe the shock front for strong shock waves with bimodal velocity distributions.
One of the objectives of the present work is a careful description of normal shocks
in granular gases; particularly focusing on the velocity distributions and temperature
along each axis.

Note the following specificity of the granular piston: without power injection, a
granular gas will collapse and its temperature will decrease to zero because of inelastic
collisions. Goldshtein et al. (1996) bypass this difficulty by taking a zero temperature
for the initial supersonic gas, so the Mach number is infinite. Sirmas & Radulescu
(2015) use inelasticity depending on a velocity threshold. Shocks are elastic if they
occur between two particles whose velocity difference is below a defined threshold.
They become inelastic if the velocity difference is above this threshold. This procedure
permits us to maintain the gas temperature to a value depending on this threshold.
However, to probe the inelastic behaviour of this inelastic gas in the disturbed area,
it is necessary to use a sufficiently high obstacle velocity. In other words, the front
propagation speed is limited to large Mach numbers; this procedure does not allow us
to approach the subsonic–supersonic transition.

We here use a rectangular obstacle displaced a vibrated box containing a granular
medium. The energy injected by the walls of the container compensates dissipation
due to inelastic collisions and permits us to obtain a vibrated granular gas with a
well-defined granular temperature (Ogawa 1978). By controlling this temperature value
and obstacle velocity, this set-up allows us to access to a wide range of Mach numbers
and observe the subsonic–supersonic transition in dilute granular flows.

Sections 2 and 3 of this paper present the Mott-Smith model for gases and its
adaptation for a granular medium, which we term the bimodal inelastic model.
Section 4 presents the experimental set-up of the granular piston in a vibrated box.
Section 5 shows all the results obtained at different Mach numbers and their analysis
based on the inelastic bimodal model. The paper then ends with a discussion on the
role of dissipation in the shock front in § 6, and a final short conclusion.

2. The Rankine–Hugoniot relations and the Mott-Smith model

The work undertaken in this section consists of presenting the theory of one-
dimensional shock waves for dilute gases proposed in 1951 by Mott-Smith before
extending it to an inelastic gas such as a granular gas in § 3. Let us first introduce the
jump relations established by Rankine (1870) and Hugoniot (1887). These relations
permit us to link macroscopic properties of supersonic and subsonic gases on either
side of the shock front. They are obtained by writing the conservation laws of energy,
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momentum and mass for a non-dissipative gas and can be written for a perfect gas
with n degrees of freedom in the reference frame of the shock front as:

ρ∗2

ρ∗1
=

n+ 1
1+ nMa−2

,

V2

V1
=

1+ nMa−2

n+ 1
,

T2

T1
=
(1+ nMa−2)((n+ 2)Ma2

− 1)
(n+ 1)2

.


(2.1)

The values of the mean velocity V2, the temperature T2 and the number density ρ∗2 (far
from the front) describing the subsonic flow can be calculated from their counterparts
describing the supersonic flow (V1, T1, ρ

∗

1 ) for different Mach numbers Ma= V1/C1.
However, these values give no indication of the density profile which requires an
adequate description of the front.

Mott-Smith (1951) makes a very simple hypothesis. Because of the presence of
supersonic and subsonic gases in the shock front, the velocity distribution in this
region is bimodal and is the sum of two Gaussian distributions. The proportions of
each peak varies across the shock front. For a shock wave propagating along the axis
y, the velocity distribution function is written f = f1 + f2 with:

fi(c)=
ρi(y)

(2πkBTi/m)3/2
exp

(
−
(c− Viey)

2

2kBTi/m

)
, i= 1, 2. (2.2)

Here c= uex+ vey+wez is the velocity vector of a particle; kB and m are respectively
the Boltzmann constant and the mass of the particle. The number densities ρi(y)
represent respectively the local density of supersonic particles (i = 1) and subsonic
particles (i = 2). These equations are usually written in the reference frame of the
shock front. By using this distribution in the Boltzmann equation, conservation laws
permit us to obtain Euler equations with two populations. These equations lead to
mean velocities, temperatures and density values of the two gases which obey the
Rankine–Hugoniot conditions (2.1). To find the density profile in the shock front,
Mott-Smith then calculates the moment of order 2 of the longitudinal speed with the
Boltzmann equation and obtains the following closure relation:

∂ρ1(y)
∂y
=−B

ρ1(1− ρ1/ρ
∗

1 )

λ
, (2.3)

where λ is the mean free path in the supersonic gas. The coefficient B only depends
on the Mach number and n. This equation is used to find the density profile of each
population:

ρ1(y)=
ρ∗1

1+ exp(−By/λ)
, ρ2(y)=

ρ∗2

1+ exp(By/λ)
. (2.4a,b)

The shock front width is given by LMS = 4λ/B. Note that the bimodal distribution
proposed by Mott-Smith is not a solution of the Boltzmann equation to describe the
shock front. Indeed the calculation with a moment of order 3 leads to a similar closure
equation but with a coefficient B which is slightly different. However, the model works
reasonably well when compared to observations. For a gas of hard spheres, the width
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variation with the Mach number complies with numerical simulations with better than
10 % accuracy (Lumpkin & Chapman 1992). Actually, the results given by Mott-Smith
quite faithfully reflect macroscopic variables and their evolution through the shock
front.

Despite the fact that the Mott-Smith model is a good approach to describe the
shock, it does not accurately reflect the shape of the velocity distributions in the
shock front, along the longitudinal axis, for large Mach number values. The velocity
distributions, experimentally measured by Pham-Van-Diep et al. (1989) in helium for
Ma = 25, show that there is an overpopulation at intermediate speeds. It has been
shown that in a granular shock fronts, this overpopulation is mainly due to particles
produced by collisions between the subsonic and the supersonic particles (Vilquin
et al. 2016). These results show that a three-population model could be more relevant
for shock waves generated with large Mach number values. For a first application to
a dissipative medium, we limit our study to a two-population model.

According to the Mott-Smith model, the total temperatures calculated along each
axis are different in the shock front. For a shock wave propagating along y-axis, TY
is always larger than TX (as shown in figure 1a) and the difference is given by:

TY − TX =
ρ1(y) · ρ2(y)

(ρ2(y)+ ρ1(y))2
m(V1 − V2)

2

kB
. (2.5)

This equation gives the temperature difference profile as a function of the position
along the direction of the flow. The temperature difference is zero on each side of
the front, goes through a maximum which occurs when ρ1(y)= ρ2(y) and is given by:

(TY − TX)MAX =
m(V1 − V2)

2

4kB
. (2.6)

This maximum depends only on the Mach number via the velocity jump relation
(2.1). If the speed of the shock front approaches the speed of sound, the jump
becomes increasingly weak and the width of the shock front increases sharply. This
is the transition to a subsonic flow: changes in macroscopic quantities such as the
characteristic lengths go from the mean free path for supersonic flows to macroscopic
scales for subsonic flows and these changes are well described by the Mott-Smith
model. Note that Ma= 1 is the Mach number for which TY(y)= TX(y) and LMS→∞:
the shock front disappears.

3. The inelastic bimodal model
3.1. Granular kinetic theory

From the Boltzmann equation for inelastic gases, Lun derived the hydrodynamic
equations (Lun et al. 1984): These are written for a one-dimensional flow along the
y-axis as:

∂

∂y
[φV] = 0, (3.1)

∂

∂y
[φV2

+ P] = 0, (3.2)

∂

∂y

[
φV
(

1
2

V2
+

n
2

T + P
)]
= ΓG, (3.3)
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where V =〈v〉 is the longitudinal mean velocity along the y-axis. The transverse mean
velocity 〈u〉 = 0 in our one-dimensional model. T is the granular temperature and is
defined by T = δc2/3 (δc is the standard deviation of the particle velocity c, TX = δu2

and TY = δv
2 are the temperatures along x and y) and φ is the volume fraction. We

here use the following equation of state to describe a granular gas (Bougie et al. 2002)
with the pressure P given by:

P= φTχ(φ), χ(φ)= 1+
2(1+ r)φ(

1−
(
φ

φC

)(4/3)φC
) , (3.4a,b)

where r is the coefficient of inelasticity, and φC = 0.65 is the random close-packing
volume fraction. The main difference with molecular gases is the term ΓG, which is
the energy dissipation due to inelastic collisions between particles and can be written
in (Bougie et al. 2002):

ΓG =−
12(1− r2)

d
√

π
φ2T3/2. (3.5)

Note that the Rankine–Hugoniot relations are invalid for granular shock waves because
of the energy dissipation term. From the granular kinetic theory the speed of sound
with 6 freedom degrees is given (Savage 1988) by:

C1 =

√
χT
(

1+
1
3
χ +

φ

χ

∂χ

∂φ

)
. (3.6)

In the following, unless otherwise specified, we will use the term ‘Mach number’ Ma
for the free stream Mach number where the speed of sound C1 is calculated in the
vibrated granular gas (φ = φ∗1 , V = V1, T = T1) far from the shock front.

3.2. The bimodal assumption
Now for the shock front, we make the same assumption as Mott-Smith: the velocity
distributions are bimodal and can be written as: f = f1 + f2 where fi is given by:

fi(c)=
φi(y)

(2πTi)3/2
exp

(
−
(c− Viey)

2

2Ti

)
, i= 1, 2. (3.7)

The hydrodynamic equations for a model of two populations are then written:

∂

∂y
[φ1V1 + φ2V2] =

∂M
∂y
= 0, (3.8)

∂

∂y
[φ1V2

1 + P1 + φ2V2
2 + P2] =

∂P
∂y
= 0, (3.9)

∂

∂y

[
φ1V1

(
n
2

T1 +
1
2

V2
1 + P1

)
+ φ2V2

(
n
2

T2 +
1
2

V2
2 + P2

)]
=
∂E
∂y
= Γ , (3.10)

where M, P and E are respectively mass, momentum and energy flows. The energy
dissipation Γ must be derived from the inelastic Boltzmann equation and has not
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yet been established for strong shock waves in a vibrated granular gas. In these
equations, the mean velocity V1 and temperature T1 are the known properties of the
initial supersonic gas. In our system, we assume that V1 and T1 do not vary across
the shock front contrary to the volume fraction φ1 since the supersonic gas becomes
subsonic. This assumption will be justified by the description of energy injection and
dissipation in § 3.3. We need to obtain this volume fraction φ1 and the properties of
the subsonic gas (φ2, V2, T2). Note that we neglect friction phenomena due to the
top and bottom vibrated walls. An additional relation, similar to the closure equation
(2.3), is required to solve the system as in the Mott-Smith model in molecular gases.
In a previous work, Boudet et al. (2008) showed the bimodal nature of the velocity
distributions in a shock front and a closure relation similar to the one stated above has
been found in dilute granular media. We use the following functional form (identical
to that proposed by Mott-Smith):

φ1(y)=
φ∗1

1+ exp(−y/L)
. (3.11)

It correctly describes the density profile of supersonic particles where 4L is the
counterpart of the shock front width in the Mott-Smith model in molecular gases.

3.3. Energy injection and dissipation
Solving this system requires us to find the expression for the dissipation term. This
calculation, for strong shock waves in a vibrated granular gas, presents several
difficulties. The velocity distributions in the shock front have complex shapes far
from Gaussian distributions. Moreover, in addition to dissipation terms due to inelastic
collisions, we have to take into account the energy injection due to the collisions
with the vibrated walls. This injection part ensures the existence of the initial vibrated
granular gas with a non-zero temperature far from the shock front.

First we consider the dissipation terms due to inelastic collisions. Making the
hypothesis of bimodality allows us to decompose the term into three contributions
emanating from collisions between two supersonic particles, collisions between two
subsonic particles and collisions between a supersonic particle and a subsonic particle
which would contribute respectively to the following terms: Γ1,1 + Γ2,2 + Γ1,2. For
terms Γi,i, for the same kind of particles, we write the granular dissipation in the
form (i= 1, 2):

Γi,i =−
12

d
√

π
(1− r2)φ2

i T3/2
i , (3.12)

where d is the particle diameter. For the term Γ1,2, we write by adapting a term
obtained in Barrat & Trizac (2002) for two-population dissipation:

Γ1,2 =−
12

d
√

π
(1− r2)φ1φ2

(
T1 +

1
n
(V1 − V2)

2
+ T2

)3/2

. (3.13)

Along with these considerations, we also need to consider the injection part due
to collisions between particles and the top and bottom walls. In the same way as the
dissipation part, we use the bimodal assumption to introduce two additional terms,
ΓW1 and ΓW2, in the right-hand side of equation (3.10). These terms are respectively
interaction term between walls and supersonic particles, and between walls and
subsonic particles. Then the total dissipation term is:

Γ = Γ1,1 + Γ2,2 + Γ1,2 + ΓW1 + ΓW2. (3.14)
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In the undisturbed region far from the shock, to obtain an initial granular gas with
a non-zero temperature in a stationary state, the dissipation due to inelastic collisions
is compensated by the energy injection then Γ1,1 + ΓW1 = 0. The walls inject energy
into the system which compensates for the dissipative terms for supersonic particles
without obstacle propagation. We assume that this equality remains valid throughout
the shock front. In other words, we consider the supersonic particles keep their initial
stationary state before they become subsonic. It allows us to assume that V1 and T1
are constant. The right-hand side of the dissipation term is reduced to Γ = Γ2,2 +

Γ1,2 + ΓW2. Note that ΓW2 is unknown. We tested different functional forms for Γ .
As we see below, an adequate form for the dissipation turns out to be:

Γ =−k
12

d
√

π
(1− r2)φ2

2T3/2
2 . (3.15)

The functional form is similar to that of Γ2,2, indicating that the major contribution is
due to Γ2,2 but k is an unknown constant. Note that we have neglected the contribution
of Γ1,2, and we discuss this assumption in § 6.1.

An important question is how the shock width L and the dissipation parameter k are
determined. The two parameters are determined by using a numerical resolution with
Euler method (see appendix A) and discussed in § 6, to obtain the best agreement with
our experimental measurements. The value of L is mainly imposed by the width of
the temperature difference TY − TX (shown in figure 10), which has a low sensitivity
to k values. The other macroscopic quantities (volume fraction φ, mean velocity V)
permit us to obtain the k value. We will show in § 5 that normal shock fronts in dilute
granular media can be described in a satisfactory manner.

4. Measurement methods and experimental set-up
4.1. Properties of the vibrated granular gas without obstacle displacement

A thin horizontal box (with internal dimensions 36× 21× 0.3 cm) contains a granular
medium of steel balls (diameter d = 1 mm). Here, a homogeneous granular gas is
obtained when the box is vibrated vertically using an electromagnetic shaker with
frequencies ranging from 28 to 46 Hz and an acceleration between 1.5 and 4 g where
gravity g= 9.81 m s−2. With a vibration amplitude A= 1 mm, the system enables to
obtain an homogeneous granular gas with a volume fraction φ∗1 varying between 0.07
and 0.14. The cell consists of a lower anodized aluminium plate, an upper glass plate
and aluminium spacers of 3 mm thickness.

To obtain the local volume fraction φ and particle velocities c in the box plane
(x and y axis), the reflected light from the beads is collected with a fast camera
working at 4000 frames per second, allowing an accurate particle tracking. Each steel
bead is a spherical mirror reflecting light from a spot with a radius smaller than the
bead diameter. Particle positions and velocities are obtained from the images with the
software ImageJ (see photographs in figures 4, 5, 7 and 11). Calculations of velocity
distributions and macroscopic values are realized with a home-made program on the
software Matlab. Details on experimental set-up and calculations are given in Vilquin
(2015), Vilquin et al. (2016).

Considering the vibration conditions described above, the granular gas is homogene-
ous in the whole box in agreement with experiments carried out by Roeller et al.
(2011). The velocity distributions (probability distribution function: PDF) depicted
in figure 2(a) are not strictly a Gaussian, as already observed in previous studies
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FIGURE 2. (Colour online) (a) Velocity distributions normalized by the standard deviation
along both axes (circles PDF(v) along y axis, plain diamonds PDF(u) along x axis). The
black curves are fits using the functional shape exp(−[c2

i /bi]
a) with a = 1 for the solid

line and a= 0.75 for the dashed line. (b) Temperatures along each axis as a function of
the reduced acceleration for φ∗1 = 0.07. (c) Temperatures as function of vibrated granular
gas density for Γ = 3g and f = 40 Hz.

(Rouyer & Menon 2000; Van Zon & Mackintosh 2004), especially for flat walls
(Windows-Yule & Parker 2013). Note that the PDF shape does not change in the
range of parameters used in our experiments. The gas temperature T1, extracted from
particle velocities, is plotted in figure 2(b,c). This temperature increases with the
reduced acceleration but is roughly constant versus the gas volume fraction. Energy
transfers between a vibrated wall and a granular system are not well described
(Windows-Yule et al. 2015). For the initial vibrated granular gas in these experiments,
it is observed that the reduced acceleration of the walls plays a leading role in the
control of the gas temperature (Aumaître et al. 2001). This temperature is used to
calculate the sound speed C1 (see (3.6)) by taking r = 0.95 for steel beads. Our
measurements are realized for different parameters: φ∗1 = 0.07 with C1= 0.1, 0.15 and
0.2 m s−1 and φ∗1 = 0.14 with C1 = 0.17 m s−1. The speed of sound in the granular
gas can thus be directly controlled by the shaker acceleration and to a small extent
by the volume fraction of particles.

4.2. The granular shock front
To generate shock waves in the vibrated granular gas, a rectangular obstacle, with
7 cm width and 3 mm thickness, is translated at a constant speed Vobs (along the
y-axis from left to right) varying between 0.07 and 2 m s−1 in the granular gas.
It corresponds to a range of Mach numbers varying between 0.5 and 13. After a
transient, it produces upstream a volume fraction bump which propagates in the
vibrated granular medium at constant speed denoted Vfront. For supersonic obstacle
displacements, the shock front reaches a stationary state (see details in Vilquin 2015
and Vilquin et al. 2016). It allows us to study the problem in the reference frame
of the front. Then the initial vibrated granular gas, far from the front, becomes the
supersonic gas with a mean longitudinal velocity V1 = Vfront and temperature T1,
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FIGURE 3. (Colour online) Norm |c| of the velocity field for a shock wave for a free
stream Mach number Ma∼ 2 and φ∗1 = 0.07 in the reference frame of the front. Velocities
are averaged during 1t ∼ 0, 3 s for box size of 0.7 mm. Only one in six vectors is
displayed for greater clarity. The green rectangle indicates the restricted area of 25 mm
width centred on the symmetry axis of the obstacle.

determined by vibration conditions. In this way, we calculated a temporal average of
the velocity fields in the reference frame of the shock front shown in figure 3. For the
measurements shown in § 5, we restrict the region of interest to a width of 25 mm,
centred on the symmetry axis of the obstacle. In this way, we consider that the bow
shock is locally flat. Moreover the vibrated cell internal dimensions (36×21×0.3 cm)
are sufficient to avoid edge effects due to side walls. Then our problem of a blunt
obstacle displacement can be considered as a one-dimensional piston problem in a
vibrated granular gas. The volume fraction φ, the mean longitudinal velocity V , the
transverse temperature TX and the longitudinal temperature TY can be temporally and
spatially averaged in the transverse direction x.

5. Results
First we present volume fraction, mean velocity and temperature profiles across

the shock front for three different regimes: for a hypersonic flow (Ma = 6), for a
supersonic flow (Ma = 1.3) and for a subsonic flow (Ma = 0.5). Mach numbers are
calculated from the supersonic vibrated granular gas properties (φ∗1 , V1, T1) far from
shock front. All the local macroscopic quantities are temporally and spatially averaged
as we described in § 4.2. For each case, velocity distributions are also examined and
related to the temperature profiles. A comparison to our dissipative bimodal model is
then carried out.

5.1. Hypersonic regime for Ma= 6
In figure 4(a), we plot the longitudinal mean velocity V and the volume fraction φ
of the granular gas for a Mach number Ma = 6 in the reference frame of the front.
The mean velocity and the volume fraction profiles both show the presence of the
shock front. The mean velocity, equal to V1 far from the front, decreases to a value
close to zero near the obstacle. Note that, although the mean velocity decreases as
in molecular gases, the low value reached does not respect the Rankine–Hugoniot
conditions. The volume fraction value, equal to φ∗1 in the supersonic region, increases
drastically to reach values near the close compact volume fraction in the subsonic
region. This is the first indication that granular systems are different from molecular
gases as noted above and in previous studies (Boudet et al. 2008; Sirmas & Radulescu
2015). Another observation which reinforces this aspect comes from the variation of
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FIGURE 4. (Colour online) Volume fraction (circles) and velocity (diamonds) versus y (a)
and transverse (circles) and longitudinal (diamonds) temperatures measurements (b) in the
reference frame of the front obtained for Ma= 6 and φ∗1 = 0.07. The signals are averaged
over 0.1 s. The supersonic flow is located in the region y > 15 mm. The curves (solid
lines) are given by the resolution of inelastic bimodal model with a shock width L=1 mm
and k= 4. Photo: an instantaneous image of a granular flow which shows the increase in
the number of particles induced by the displacement of the obstacle (grey area). The red
arrow represents the region where the measurements displayed in the figures are carried
out. The yellow arrows give the velocity of each particle in the reference frame of the
front. Transverse (c) and longitudinal (d) velocity distributions measured at y = 12 mm
(blue circles) and y= 20 mm (black plain circles). The solid red curves show the velocity
distributions given by the resolution of the inelastic bimodal model; the distributions f1
and f2 for the two populations are given by dashed lines. The black vertical line shows
the velocity threshold allowing the estimation of φ1.

the temperature versus distance across the shock front (figure 4b). As in molecular
gases, the longitudinal temperature goes through a maximum across the front and is
different from the transverse temperature. However and contrary to molecular gases,
the longitudinal and transverse temperatures TY and TX decrease further in the shock
front region and go down to values close to zero near the obstacle. The trend observed
here is very similar to that observed in the simulations of Sirmas & Radulescu (2015).
The anisotropy of temperature with TY > TX in the shock front can be understood by
examining velocity distributions.

The longitudinal velocity distribution PDF(v) in the front, clearly shows a two
peak structure while the distribution in the supersonic region is single peaked with
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FIGURE 5. (Colour online) Volume fraction (circles) and velocity (diamonds) versus y (a)
and transverse (circles) and longitudinal (diamonds) temperatures measurements (b) in the
reference frame of the front obtained for a Mach flow Ma = 1.3 and a volume fraction
φ∗1 = 0.07. Solid lines are given by the resolution of inelastic bimodal model with a shock
width L = 5 mm and k = 2.5. Photo: an instantaneous image of a granular flow. The
red arrow represents the region described on the graphs. Transverse (c) and longitudinal
(d) velocity distributions measured at y = 18 mm (blue symbols) and in the bath (black
plain symbols). The red curves show the velocity distributions given by the resolution of
inelastic bimodal model.

a smaller width (figure 4d). This bimodal nature, illustrated in figure 4(d) at a
location corresponding to the position of the maximum in temperature anisotropy,
makes for a much larger width of the distribution and therefore the temperature along
the longitudinal direction. Far from the front, where the temperature is isotropic
(see figure 4b) the velocity distributions along both axes are superimposed as the
temperature becomes isotropic in these two cases.

5.2. Supersonic regime for Ma= 1.3
An interesting aspect of our system is the possibility to approach the subsonic–
supersonic transition. Macroscopic quantities for the granular gas are plotted for
Ma= 1.3 in figure 5(a,b). Similarly to the large Mach number regime in figure 5(a),
density and mean velocity profiles show a clear transition from their initial values
in the initial supersonic gas to their final values in the subsonic region. However
there are some notable differences compared to the hypersonic regime: the maxima
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FIGURE 6. (Colour online) (a) Volume fraction profiles in the reference frame of the
laboratory (a) and in the reference frame of the front (b). yfront corresponds to the
position where a fixed value φ(yfront)= 0.11 of volume fraction is reached (in dashed line).
(c) Obstacle and front positions during obstacle propagation. The dashed line indicate a
linear adjustment and the constant velocities obtained. The volume fraction is φ∗1 = 0.07
and the free stream Mach number Ma= 0.5.

of the temperatures along the longitudinal and transverse directions are lower and
the extent of the anisotropic region is wider. Both features are found in molecular
gases upon approaching Ma= 1, indicating an increase of the shock width (Alsmeyer
1976). The distribution of longitudinal velocities does not show a clear bimodality as
shown in figure 5(d) and observed in molecular gas (Muntz & Harnett 1969). Note
that the velocity distributions in the supersonic and shock front regions are almost
identical for the transverse component (figure 5c). The longitudinal component in the
front is slightly wider (figure 5d). This quasi-absence of the bimodal nature of the
distributions has also been found in gases according to the Mott-Smith model and
the Rankine–Hugoniot conditions as discussed in § 2.

5.3. Subsonic regime for Ma= 0.5
When the obstacle velocity is reduced further, we observe a stationary front moving
at subsonic velocity. To check that the front propagation reaches a stationary state,
we have plotted the volume fraction across the front at different times in figure 6(a).
As the obstacle moves forward, steel beads accumulate and the maximum of volume
fraction increases continuously. We obtain the front displacement by tracking the
position yfront defined by the value φ(yfront) = 0.11 for the volume fraction. Like the
obstacle velocity, the front velocity Vfront= dyfront/dt becomes constant after a transient
(see figure 6c). Despite this accumulation, we observe that all the volume fraction
profiles can be superimposed (see figure 6b). The profile shape remains a constant
shape during propagation. This constant shape and front velocity allow us to conclude
that the front is stationary, which has no equivalent in molecular gases.

The volume fraction, mean velocity and temperature profiles are obtained by
using a temporal average and plotted in figure 7 for a Mach number Ma = 0.5.
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FIGURE 7. (Colour online) Volume fraction (circles) and velocity (diamonds) versus y
(a) and transverse (circles) and longitudinal (diamonds) temperatures measurements (b) in
the reference frame of the front obtained for a Mach flow Ma= 0.5 and a volume fraction
φ∗1 = 0.07. The horizontal lines indicate the corresponding values in the region far from
the obstacle. (c) Velocity distributions obtained at y = 15 mm. Photo: an instantaneous
image of a granular flow. (d) Local speed of sound C1 calculated from the experimental
measurements of φ and T with the equation (3.6). The red arrow represents the region
described on the graphs.

The variation of the velocity and the volume fraction show a slight decrease and a
slight increase near the obstacle respectively. It is interesting to note that on the one
hand the temperatures do not go through a maximum but seem to have a plateau far
away from the obstacle and decrease continuously upon its approach. On the other
hand, there is no difference between the two temperatures. The PDFs of the velocity
also show that the two components are roughly isotropic ruling out a temperature
anisotropy.

As expected, these elements indicate the absence of a shock front at Mach numbers
smaller than 1. Using the criterion of temperature anisotropy and analysing the
different experiments carried out, it appears that there is presence of a shock front
only if Ma > 1 ± 0.2 (Vilquin 2015). This is an indirect measurement of the sound
speed in our granular gas. And the value extracted for the sound velocity is consistent
with those provided by the granular kinetic theory (see (3.6)).

To our knowledge, the stationary state observed here has no equivalent in molecular
gases. In such gases, a piston produces a compression and induces a temperature
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increase leading to an increase of the speed of sound near the obstacle. The velocity of
compression waves emitted decreases as they move away from the obstacle (Landau
& Lifchitz 1971). The first emitted compression waves are caught by those emitted
later with higher velocities and the front gradually stiffens. After this unsteady stage,
a stationary and supersonic shock front emerges. However, we observe a stationary
state in granular gases. In these gases, compression induces a temperature decrease
and we observe in figure 7(d) that sound speed slightly increases across the front
without stiffening of the front (see figure 6b). One possible explanation might be that
perturbations due to gas compression are slowed down by friction between the top
and bottom walls and attenuated by dissipation due to inelastic collisions.

5.4. A dissipative bimodal description
In order to understand this phenomenology for different Mach numbers, we have
solved numerically the inelastic bimodal model as explained in § 3. The model,
including the closure relation for φ1 (see (3.11)) and the dissipation term (see (3.15)),
provides a way to obtain the macroscopic properties φ1, V1, T1 for the supersonic
flow and φ2, V2, T2 for the subsonic flow, versus the position y in the shock front. It
also allows us to calculate the average quantities of the flow φ, V , TX and TY . The
numerical calculation requires two adjustable parameters: L which is the thickness or
the width of the shock front and k which is a measure of the dissipation. Details
about the determination of these two parameters are provided in appendix A.

The results of our calculations are shown as continuous lines in figure 4 with L= 1
and k= 4 for Ma= 6, which is representative of our large Mach number experiments.
There is a very good agreement for the volume fraction φ, the mean longitudinal
velocity V and the transverse temperature TX . For the longitudinal temperature TY ,
the functional shape is consistent with experiments, but the maximum value is
overestimated by a factor of 1.5. The shock width L is found equal to 1 mm for
this Mach number. This value is consistent with that obtained independently from the
volume fraction φ1(y) of the supersonic flow as shown in figure 10(b). The analysis
of all the experiments carried out at large Mach numbers (2.5 < Ma < 13) show
similar results: a very good agreement for TX , V and φ and an overestimation of the
maxima of TY .

This difference can be understood by constructing the velocity distribution with the
macroscopic quantities φ1, V1, T1, φ2, V2, T2 obtained from our dissipative bimodal
description (see figure 4c,d) similarly to the Mott-Smith model in molecular gases.
In our case, Gaussian distributions are used for convenience but in the experiments
the distributions are not strictly Gaussian. We will however continue using the
Gaussian form for simplicity. Note that in the front region the bimodal distribution
describes correctly the distributions of transverse velocities (see continuous lines in
figure 4c), but relatively poorly the measured distributions of longitudinal velocities
(see figure 4d). One possible reason for such a discrepancy is related to the presence
of a surplus of intermediate particles. Indeed the measured distributions show a
surplus at intermediate speeds at the expense of the peak of subsonic particles in
molecular gases (Pham-Van-Diep et al. 1989) and in granular gases (Boudet et al.
2008; Vilquin et al. 2016), which is consistent with a lower measured temperature.
The bimodal description, although better than the hydrodynamic description, is not
complete and needs an additional population as shown in Vilquin et al. (2016).
These intermediate particles could be the main cause of the overestimation of TY by
the model.
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bimodal model with experimental measurements versus free stream Mach number Ma for
an initial volume fraction φ∗1 = 0.07.

The inelastic bimodal model can also be solved for supersonic regime at lower
Mach numbers. The results are plotted with L = 5 and k = 2.5 for Ma = 1.3 in
figure 5(a,b) as continuous lines. The model is in agreement for the measurements
including the longitudinal temperature TY , which is not the case at large Mach
numbers as shown above. It should be noted that the longitudinal velocity distributions
are in this case well described by the model (figure 5c,d). This is also observed
in gases for low Mach numbers for which the Mott-Smith model describes the
distributions of longitudinal speeds very well. For these low Mach numbers, the
presence of intermediate particles is less important.

Note here that the dissipation term used has an unknown parameter k. By
inspecting all the experiments at different Mach numbers, we find a value of k that
is approximately 3 for low Mach numbers and increases up to values of k= 5± 1 for
higher Mach numbers as shown in figure 8. These values of k are larger than those
predicted for the granular inelastic dissipation where k= 1. A few elements must be
reported. First, contrary to our model, the restitution coefficient r may have a velocity
dependence (Lifshitz & Kolsky 1964) and decreases for collisions at high velocities.
The consequence of such a dependence is that the value of r could be smaller than
0.95 for high Mach number experiments which is in agreement with high k values
shown in figure 8. Secondly, in a real granular medium, there is frictional dissipation.
It is an additional source of dissipation which is not considered in the model. The last
point is that theoretical dissipation is calculated for a three-dimensional environment.
In these experiments, the granular material is confined and vibrated. So the number of
collisions between grains and thus the dissipation could probably be underestimated.

6. Discussion
The results presented above show that the Mott-Smith model adapted to granular

media gives a reasonable description of our experiments carried out at different Mach
numbers. This model explains both the velocity and volume fraction profiles and gives
a reasonable approximation to the temperature anisotropy characteristic of the shock
fronts observed.

6.1. Width of the shock front
As we will see below, the outcome of this analysis is the shock front width. To
summarize and discuss the results obtained in the previous part, we present in figure 9
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FIGURE 9. (Colour online) Shock width normalized by the mean free path λ= d/6
√

2φ∗1
versus Ma for φ∗1 = 0.07 and C1 = 0.1, 0.15, 0.2 m s−1 (blue symbols) and φ∗1 = 0.14 and
C1 = 0.175 m s−1 (red symbols). The blue line gives the resolution of the Mott-Smith
model for a gas of hard spheres. To compare to molecular gases, green symbols give the
shock widths measured in argon and nitrogen (Alsmeyer 1976). Inset: the shock width
normalized by the bead diameter d versus Ma. The lines give the resolution of the Mott-
Smith model for a gas of hard spheres. It should be noted that for large Mach numbers
and for both volume fraction shock width becomes approximately half the size of the
bead.

the shock width denoted L, deduced from our analysis using the model described
above, as a function of the Mach number, from the different experiments carried out.
We plot the shock width L normalized by the mean free path λ= d/6

√
2φ∗1 calculated

in the gas in three dimensions. (There are no calculations for mean free path in a
confined gas to our knowledge.)

Let us consider first the measurements made with the initial volume fraction
φ∗1 = 0.07. The shock width L clearly shows a saturation for Mach numbers between
3 and 13. At lower Mach numbers, the width L increases as the Mach number
goes to 1. This behaviour is characteristic of shock fronts in molecular gases as
illustrated in the same figure where measurements in gases are shown for argon and
nitrogen (Alsmeyer 1976). That the width of the shock front increases near Mach
1 is reminiscent of the fact that the shock is becoming shallower as the speed of
sound is approached from above. The variation of the width with Mach number
seems to follow the Mott-Smith prediction quite reasonably. We recall here that the
Mott-Smith prediction uses the bimodal nature of the velocity distributions, considers
hard spheres with elastic interactions and does not consider dissipation. Therefore the
fact that the widths we extract from our analysis follow this prediction is in itself
surprising. To our knowledge, these are the first measurements of shock front width
for a wide range of Mach numbers in granular gases.

We mention above that the energy dissipation seems to have a little influence on
the L values of the shock width while it affects the temperature and density variations.
A possible explanation is related to the spatial localization of the dissipation.
We examine the spatial variation of the energy and pressure flux E, defined in
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FIGURE 10. (Colour online) (a) The profile of the energy and pressure flux E estimated
by equation (3.10). The red curve gives the inelastic bimodal model. (b) The volume
fraction φ1 of supersonic particles; the red curve is a fit of the analytic form given by
equation (3.11) with L = 1 mm. (c) Derivative of the energy flux E from experimental
measurements (red circles) and the model (red line) plotted in (a), and temperature
difference TY − TX (blue diamonds) as function of y. Note that the maxima of each curve
do not coincide. The flow properties are a Mach number Ma= 6 and a volume fraction
φ∗1 = 0.07.

equation (3.10). The flux E is evaluated using experimental data and its variation
is shown in figure 10(a) along with the variation of the density of the supersonic
population (see figure 10b). Note that this energy flux across the shock should
be constant in the absence of dissipation which is not the case here. It decreases
near the end of the shock front where dissipation becomes important. We plot the
derivative dE/dy of this term, which is equivalent to the dissipation Γ , along with
the temperature anisotropy in figure 10(c). Note that the peak of the dissipation is
located slightly to the left of the maximum of the temperature difference TY − TX . It
shows that the dissipation remains small at the shock front and becomes important
only when the supersonic particles have significantly decreased. The shock width
is basically determined before the dissipation becomes important. The value of the
shock width, therefore, has a low sensitivity to the presence of dissipation.

Note that we neglected the dissipation term Γ1,2 (3.13), due to inelastic collisions
between supersonic and subsonic particles. The ratio Γ2,2/Γ1,2 ∝ φ2/φ1, where Γ2,2

(3.12) is the dissipation term due to inelastic collisions between subsonic particles.
Figures 10 and 4(a) show that the energy dissipation starts for a value of the
supersonic volume fraction φ1 smaller compared to the subsonic volume fraction
φ2 = φ − φ1. Thus the contribution of Γ1,2 is negligible compared to the dissipation
term Γ2,2.
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FIGURE 11. (Colour online) Volume fraction (circles) and velocity (diamonds) versus y (a)
and transverse (circles) and longitudinal (diamonds) temperatures measurements (b) in the
reference frame of the front obtained for a Mach flow Ma= 6 and a volume fraction φ∗1 =
0.14. (c) Derivative of the energy flux E from experimental measurements (red circles),
and temperature difference TY −TX (blue diamonds) as function of y. Note that the maxima
of each curve do coincide contrary to the previous case φ∗1 = 0.07 plotted in figure 10.
(d) Longitudinal velocity distribution in the bath (black symbols) and near the maxima of
the temperature anisotropy (blue symbols). The red curves show the velocity distributions
given by the resolution of inelastic bimodal model with k= 5.

6.2. Effect of the initial volume fraction on the shock front
Let us go back to figure 9 displaying the shock width L versus the Mach number
Ma. We have used different sound speeds (we control the temperature T1 by changing
the characteristics of the vibration) and we have also tested another initial volume
fraction φ∗1 to examine the validity of our model. For the higher volume fraction
φ∗1 = 0.14, the widths seem to deviate from the Mott-Smith prediction for elastic
spheres. As mentioned above, the dissipation and the temperature anisotropy are
spatially separated (as shown in figure 10) for the dilute case φ∗1 = 0.07. However,
this may no longer be the case for the higher volume fraction. In order to examine
this in detail, we plot in figure 11, the mean velocity, the temperatures and the
volume fraction profiles for Ma = 6 and φ∗1 = 0.14. The overall picture is similar
to that observed at large Mach numbers above (see figure 4 with Ma = 6 and
φ∗1 = 0.07) as both the density and the velocity show a clear transition from their
initial values in the supersonic regime to their final values in the subsonic region.
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However there are some notable differences; the maxima of the temperatures along
the longitudinal and transverse directions are lower for the higher volume fraction.
The distribution of longitudinal velocities does not show a clear bimodality as seen
in figure 11. Furthermore, the inelastic bimodal model with k = 5 and L = 1 mm
(see the continuous line in figure 11) shows an important disagreement for the
temperature profiles, notably for TX which was not the case at lower volume fraction.
Two explanations can be put forth. First, the main hypothesis of the model is that
in the shock front the velocity distributions are bimodal. The experimental results
do not show clearly a bimodality for the high density case. Thus, the description
with two populations is perhaps not valid. Possibly, this is due to the nature of the
shocks between steel beads. An inspection of videos of the experiments shows that
in the area of the shock wave, many shocks are not binary as a particle may collide
with a pair of particles simultaneously for example or with small clusters of particles.
Our model, derived from kinetic theory is only valid for dilute granular flows with
binary collisions and not for dense flows. Second, the spatial separation between the
peak of the dissipation and the maximum of temperature anisotropy and therefore
the shock front are not clearly visible in figure 11. These observations, and perhaps
other effects for the higher volume fraction (such as the finite size effects where
the mean free path becomes comparable to the particle size, see inset in figure 9),
clearly point to the limitations of the approach developed here and the requirement
for additional work. Nevertheless and for the dilute case, the shock fronts turn out to
be well described by the approach proposed here and the width of the shock follows
the simple Mott-Smith model for elastic hard spheres.

7. Conclusion
A moving planar obstacle in a vibrated granular gas creates a shock front which

moves at constant speed, controllable by the obstacle velocity. This experimental
set-up can generate one-dimensional shock waves in a granular gas at the desired
Mach number. In the shock fronts, the velocity distributions show a structure with
two peaks. An inelastic model of granular shock front with two populations, based
on the Mott-Smith model for molecular gases is proposed and its resolution correctly
reproduces the different profiles obtained experimentally and notably that of the
temperature anisotropy. The few remaining disagreements observed for large Mach
numbers, in particular the magnitude of the temperature anisotropy, indicate that this
bimodal description is still approximate and should be expanded. One of the possible
extensions is that to a three-population model as proposed recently (Vilquin et al.
2016). An important result concerns the width of the shock front. This width is
found experimentally to be very close to that of a gas of hard spheres, and this for
all Mach numbers studied. This agreement can be explained by the weak role of the
dissipation in a large part of the shock front.
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Appendix Numerical resolution
In this section, we present the numerical method to solve the inelastic bimodal

model described in § 3. With the two additional ingredients, the dissipation term Γ
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(3.15) and the closure relation for the volume fraction φ1(y) (3.11), we numerically
solved the hydrodynamic equations (3.8), (3.9), (3.10) with a Euler method. For a
given spatial position y, equations are:

φ1V1 + φ2V2 =M, (A 1)
φ1(V2

1 + χ1T1)+ φ2(V2
2 + χ2T2)= P, (A 2)

1
2φ1V1(V2

1 + (n+ 2χ1)T1)+
1
2φ2V2(V2

2 + (n+ 2χ2)T2)= E. (A 3)

For greater clarity, we denote χi = χ(φi) where χ(φ) is given by the equation (3.4).
The initial values of the flux M, P, E are given by the supersonic gas properties far
from the shock front (y→ +∞). We assume the supersonic volume fraction φ1 is
given by the closure equation (3.11). The equations can be rewritten:

φ2V2 = M̃ =M − φ1V1, (A 4)
φ2(V2

2 + χ2T2)= P̃= P− φ1(V2
1 + χ1T1), (A 5)

φ2V2(V2
2 + (n+ 2χ2)T2)= Ẽ= 2E− φ1V1(V2

1 + (n+ 2χ1)T1). (A 6)

We choose an initial value y1 where the supersonic gas volume fraction φ1 is very
close to φ∗1 . We assume for y= y1:

M(y1)≈M(y→+∞)= φ∞1 V1,

P(y1)≈ P(y→+∞)= φ∞1 (V
2
1 + χ(φ

∞

1 )T1),

E(y1)≈ E(y→+∞)= 1
2φ
∞

1 V1(V2
1 + (n+ 2χ(φ∞1 ))T1),

χ2(y1)≈ χ2(y→+∞)= 1.

 (A 7)

From these assumptions, the equations (A 4), (A 5), (A 6) can be solved to obtain
subsonic gas properties φ2, V2, T2 for y = y1. In the same way, for the next value
y2 = y1 + δy with a very small value δy, mass and momentum flux keep the same
values. The energy flux vary because of dissipation: E(y2) = E(y1) + Γ δy, and we
assume χ2(y2) = χ2(y1) for δy sufficiently small. Properties of the subsonic gas
are calculated step by step across the shock front. This method is robust without
convergence problems.

This numeric resolution requires two input parameters: the shock width L and a
dissipation coefficient k. We solve the system with different values (L; k) to obtain
the best agreement with experimental measurements. The numeric solving shows that
the L value is mainly given by temperature difference TY − TX as discussed in § 3.3.

To compare with experimental measurements, we calculated the total macroscopic
quantities:

φ = φ1 + φ2, V =
φ1V1 + φ2V2

φ
,

TX =
φ1T1 + φ2T2

φ
, TY =

φ1(T1 + V2
1 )+ φ2(T2 + V2

2 )

φ
− V2

Y,

 (A 8)

where φ, V , TX , TY are respectively the total volume fraction, the longitudinal mean
velocity, the transverse and longitudinal temperatures of the granular gas in the shock
front. Results are shown in § 5.
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