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Abstract 
Our purpose is to develop an unsupervised method of extraction and characterization 
of time-frequency (TF) patterns. The new idea is the notion of probability model in 
the time-frequency representation. Each TF point is considered as a random variable 
having a density distribution, which depends of its belonging class and of the TF 
estimator. We consider square modulus based estimates such as spectrogram and 
scalogram, which induces chi-square mixture densities. Density parameters are 
estimated by Maximum Likelihood. The classification is managed by a region-
growing algorithm in a feature space built from moments evaluated in local cells. We 
here propose a new feature based on entropy we must consider in the continuous case. 
We derive the analytical expressions of the generalized Rényi entropy for a non-
central chi-square distribution. We therefore can represent what we refer to as an 
entropy map where entropy is calculated from local histogram evaluated in gliding 
time-frequency cells. We present both feature space segmentation and entropy map 
on real signals: seismic signals (avalanches and seisms), acoustical signals (cavitation 
and concert halls), bioacoustical signals. Application of the proposed algorithm is 
also possible on other representation than time-frequency representation. 

1 INTRODUCTION 

This communication tackles the interpretation problem of time-frequency 
representations (TFR). Whatever the signal domain, TFR are 2D representations, 
which lead to intricate and critical interpretation. Lots of key issues arise. One of 
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them is why and how to decide if a time-frequency coefficient comes from noise only 
or has energy from signal. 

Different approaches are proposed in the literature. Our approach is different in 
the sense that we do not want to consider a priori information. We think that the 
structure of TFR can be used to discriminate components having different behavior 
such as random signal from deterministic one. For this purpose, we propose a new 
processing, which could be applied after a TF analysis and right before a decision 
process. This interpretation process is general and can be of interest to all applications 
where a non-stationary analysis is necessary. 

Analyzed signals are random due to the presence of noise. So, TF points are 
also random variables defined by their probability distribution. In the TFR, we are so 
able to define a probability model that we use for the purpose of classification. The 
observation set Lx associated to a time discrete signal [ ]x n  is here a TFR or a time-

scale space. So, Lx is a subset of  such as for each element 2R ( ),n k  of this set,  

being the frequency variable, a TF coefficient 

k

[ ],xS n k  exists. It writes: 

( ) [ ] [ ]{ }2, / ,x xn k S n k for a given x n= ∈ ∃�L R  (1) 

Elements of Lx satisfy one of the two following assumptions: 

-Hypothesis : the signal is a stationary zero mean Gaussian noise 0H [ ]b n  of 

unknown variance  to which matches a sub-set 2σ
0HL  defined by: 

( ) [ ] [ ]{ }
0

, /H xn k x n b n= ∈ =L L  (2) 

-Hypothesis : the signal is a non-stationary deterministic signal 1H [ ]d n  in an 

additive noise [ ]b n  to which matches a subset 
1HL , complementary of 

0HL : 

( ) [ ] [ ] [ ]{ }
1

, /H xn k x n d n b n= ∈ = +L L  (3) 

There is no restriction on [ ]d n , which can be composed of several non-
connected components. These components could be wideband signals, transients, 
pure or modulated frequencies. This communication addresses the problem of 
determining the subsets 

0HL  and 
1HL  from the knowledge of Lx only. A solution is 

proposed without a priori knowledge on the nature of [ ]d n , on the number of their 
components and on their localization in the TFR. 

We briefly introduce the probability model, a local mixture density (section 2). 
We focus on main features of this model that enable to discriminate TF patterns in 
TFR such as spectrogram or scalogram. The studied features are first local moments. 
The statistical behavior of these moments (section 3.1) is used to propose a complete 
segmentation process (section 3.2). As a complementary feature, we also begin to 
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work about the local entropy (section 4.1) and present here our first results in entropy 
map form (section 4.2). We illustrate both methods on real signals. 

2 LOCAL MIXTURE DENSITY MODEL 

[ ],xS n k  is the square modulus of the projection of x  on a function base Φ : ,n k

[ ] [ ] [ ]
2

,, ,xS n k x m m= Φn k  (4) 

If  is the complex exponential function centered on time , at frequency  and 

smoothed by a  points time window  such as 

,n kΦ n k

]wN w [ ] [
2i

n e−,n k
w

mk
Nm w m

π
Φ = , 

[ ],xS n k  is the spectrogram of x . If ,n kΦ  is a wavelet computed from a mother 
wavelet ψ  centered on  and scaled from a scale factor n 0k k  such as 

[ ],n k m
0 0

ψ1 m n
k k k k

 −
Φ =  

 
, [ ],xS n k  is the scalogram of x . In both cases, under 

hypothesis , 1H [ ],xS n k  is a non-central 2χ  distribution with r degrees of freedom, 

proportionality parameter α  equal to 2σ r  and non-centrality parameter δ  equal to 
[ ],dS n k , [HOR 02c,d], [WHA 71], [JOH 95]: 

[ ] ( ) [ ]( ) ( )2 21, , , ,x d
S n k H r r S n k

p s f s
χ σ

=  (5) 

r is asymptotically equal to  with respect to the support of 2 ,n kΦ , the extreme 

frequency values excepted. Under hypothesis , 0H [ ],xS n k  does not contain 

deterministic signal energy. So, δ  is null and has central 2χ  distribution: 

[ ] ( ) ( ) ( )2 2, , , 0x àS n k H r r
p s f s

χ σ
=  (6) 

Therefore, each point of the TFR is a mixture of central and non-central 2χ  
distribution. Identifying the deterministic components turns out to estimate the non-
centrality parameters δ . Identifying the noise alike turns out to estimate the 
proportionality parameter α . 

In that communication, we consider a TF local approach [HOR 02c,d]. Let us 
define a cell C  of  TF coefficients gliding over the whole TFR. In that case, the 
mixture distribution 

N
( )Cp s  of the parent random variable associated to C  is defined 

from the total probability as: 

( ) [ ]( ) ( )
( )

( ) ( ) ( )2 2 2 2, , , , , 0
,

1 1
d

c r r S n k r r
n k C

p s f s p f
N χ σ χ σ

∈

= + −∑ s  (7) 
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where p is the proportion of deterministic coefficients in cell . In a local approach, 
 is different from  and is an unknown parameter and so are 

C
r 2 2σ , [ ],dS n k  and p . 
The cell size is fixed as the time-frequency support of the reproducing kernel of the 
TF method [HOR 02c]. 

3 MOMENT FEATURE SPACE AND SEGMENTATION 

3.1 Local TFR moments and Chi-2 laws 

Our purpose is the estimation of the mixture density parameters. In a global approach, 
resolution by maximum likelihood turns out to be an incomplete data 
parameterization. EM algorithm is able to provide a sequence of iterates that are 
guaranteed to find a maximum of the likelihood function. In that case, the problem 
must be formulated for a density mixture involving non-central 2χ  distribution. A 
solution can be read in [HOR 03]. 

In a local approach, the mixture distribution is defined by (7). In order to reduce 
the number of unknown parameters, one solution consists of defining only one δ  for 
each cell. So we define it as equal to the mean of every [ ],dS n k  in the cell. 
Therefore, equation (7) writes: 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2, , , , 0
1

c
c r r r r

p s p f s p f s
χ σ δ χ σ

= + −  (8) 

with [ ]
( ),

,c
n k C

dp N S nδ
∈

= ∑
qth q

k . Others approximations could be considered [HOR 02b]. 

The  moment to zero µ  of this parent variable can be expressed as [HOR 02c]: 

( ) ( )2

1
, ! 1

!

qqq i
q

i

snrp snr q p
i

µ σ
=


= +

 
∑�q


  (9) 

where 2
csnr δ σ=

q

 is a local signal to noise ratio in the cell C . Assuming ergodicity, 
moments µ  can be estimated from statistics : qm

[ ]
( ),

1 , q
q x

n k C
m S

N ∈

= ∑ n k  (10) 

1m  has a central 2χ  distribution, 
2

2
1

1

, ,0r
r
σχ



 


 . The ratio 1r r  is the apparent size of 

the cell, lower than , and depending from the degree of TFR coefficient 
correlation, so from the data weighting window and the overlapping between 
windows. For q  greater than 1, the distribution is not so explicit. Nevertheless, the 
dispersion of these estimated moments can be computed [HOR02b,cd]: 

N
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Figure 1: TFR and FS co-segmentation. H-axis is time, V-axis is frequency. For each signal, on the 

left: spectrogram and on the right: segmentation result. First line: Opera “Bastille” (left) and concert 
hall ‘Halle aux grains” (right) impulse response (sampling frequency 16 KHz), Kaiser Bessel 4 
window with 63 pts, covering 50%, 256 frequency pts, cells 3×11, 25.10bλ

−= . Second line: 
Avalanche (left) and seismic (right) signals (sampling frequency 100 Hz), Hanning window with 128 
pts, covering 50%, 256 frequency pts, cells 3×7, 210bλ

−= . Third line: Two types cavitation signal 
(sampling frequency 15 324 Hz for the 1st and 32 000 Hz for the 2nd), Kaiser Bessel 4 window with 128 
pts, covering 50%, 256 frequency pts, cells 3×5, 210bλ

−= . Fourth line: Bioacoustical signal (dolphin 
wistle), (sampling frequency 32 KHz), Hanning window with 511 pts, covering 50%, 1024 frequency 

pts, cells 3×7, 210bλ
−= . 

 

{ } ( ,q qE m p snrµ= )                       { } ( ) ( )( )2
2

1

, ,q q q
rm p snr p snr
r

µ µ= −Var  

{ } ( ) ( ) ((1, , ,q j q j q j
app

Cov m m p snr p snr p snr
N

µ µ µ+= − )),  (11) 

These local moments are features of each cell. Each cell can be transformed in a new 
space defined by these moments. The statistical properties given by (11) allow a 
description of this new space, referred to as Feature Space (FS). The FS dimension is 
the number of unknown parameters of the mixture model. Parameters 2σ ,  and  r 1r
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can be approximated by maximum likelihood estimators [HOR 02] and are not 
considered as parameters of the mixture distribution. The approximation defined in 
(8) leads to two unknowns, p  and . So, in that case, FS is bi-dimensional 

 and presents clusters: one for the noise centered close to the origin at the 

point (

snr
( 1 2,m m )

{ } ( )1 1 0,0E m µ= = 2σ , { } ( ) 420,0 rE m
r2 2µ σ+

= = ) and the other ones 

distributed according the values of p  and  of the analyzed signal in each cell. snr

1HL

1H

2χ
0HL

bλ 1m

0HL 1HL

( ) ( )
1

0

1
1 cp s dsα

− ∫2logc α
H p =

α
2r =

3.2 Region growing algorithm and co-segmentation 
The FS defined in the previous section shows off clusters that need to be 

segmented under the condition of belonging to connected points in the TFR. These 
connected points belong to the set  we want to estimate. The co-segmentation 
procedure based on a region growing algorithm takes into account the structure of the 
FS described by equations (11). A complete description of the algorithm can be read 
in [HOR 02c,d]. Beginning by points having maximum values for p  and  and so 
belonging to 

snr
L , the iterative process stops when the remaining points have a central 

 distribution, such as they belong to . The only control parameter that the user 
has to choose is a probability  for the  distribution such as its quantile defines 
the limit of the noise cluster in the FS. Figure 1 shows the extraction of TF patterns 
for real signals. Details of parameters are in the caption. 

 

4 ENTROPY MAPS 

4.1 Entropy and Chi-2 laws 
As we want to extract information from TFR, it is natural to think about the notion of 
entropy. The entropy depends on the probability distribution only. Its main property 
is its behavior according to the size of the distribution support. The entropy is 
maximum for a uniform distribution whereas it decreases for a more localized one. 
The entropy can so be used for classifying distributions, which have different 
supports. It is the case in TFR where central and non-central 2χ  distributions 
discriminating the set  from the set . We again consider the local approach, 
which implies the distribution mixture (8). 

Rényi entropy is a generalization of Shannon one [REN 61]. Given that the 
TFR distribution is continuous, we define Rényi entropy as: 

α  (12) 

When  tends to 1, equation (12) tends to Shannon entropy. For the set 
0HL  

defined by distribution (6) and for , Rényi entropy writes: 
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( ) ( )2 2
22

22, 2, 0

log
log

1
H fα χ σ

α
σ

α
  = + 

− 
 (13) 

Rényi entropy increases with the noise variance, which is coherent since the 
distribution spreads out with the noise variance. For the set 

1HL  defined by a non-

central 2χ  distribution (5), the analytical expression is very complex, which also 
implies a complex analytical expression for the mixture distribution (8) [HUC 02]. 
For this reason, we here only comment the behavior of Rényi entropy and more 
particularly the choice of α . In figure 2, more α  increases, more the difference 
between the minimum and the maximum of the entropy increases. This property can 
be useful for better classifying distributions. More α  increases, more the concavity of 
the curve increases. This property can be of interest to initialize the segmentation 
method with cells of highest p , that is to say cells which are entirely inside a TF 
pattern. For α  equal to 2, Rényi entropy varies linearly with p  We also notice that 
all curves have a maximum for values of p  close to 0.9 . This property is useful to 
enhance the contours of a pattern right before detection. 
 

 

 

 

 
Figure 2: Rényi entropy versus the mixture proportion p and the snr for 4 values of α. 

 

4.2 TFR Histograms with adapted bounds and entropy maps 
The measure of entropy needs the measure of a distribution [SMI 01]. Equation (12) 
is get from a continuous density that we have to estimate from a discrete TFR. In each 
cell, the distribution cp  is estimated by the simple method of histogram, which 
provides finite values . Let [cP ],c ca b  be the amplitude support and  the interval 

number in [
binn

],c ca b . Applying Riemann theorem and given that the considered 

functions are continuous, we can connect ( )cH pα  in (12) to [ ]cH Pα : 

[ ] [ ] ( ) ( )
1

22 2
1 0

1 1 loglog log
1 1

binc

bin

n
c c

cc c cn
i bin

b a
P i H pH P n

α
α αα α→+∞

=

 −
= + → = − − 

∑ ∫ p s ds

  (14) 

We a priori choose to fix  equal to binn N . The choice of [ ],c ca b  is more critical. If 
these amplitudes are chosen according to the extreme values of the global TFR, it has 
the advantage to compute distributions according the same bounds. But, in the case of 
a TFR, it leads to insignificant estimates of the distribution in cells where all the 
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values are small relative to the maximum of the representation. We so propose to 
compute histograms with adapted bounds in each cell such as [ ]min ,c xc

a S k= f  and 

[ ]max ,c xc
b S k= f . In this way, we get N  values of [ ]cP i  for each cell C . 

Afterwards, we can calculate the entropy associated to each cell from (14). The 
obtained 2D representation is referred to as entropy map. Figure 3 shows entropy 
maps for real signals. At this stage of the study, one important result is the improving 
of the entropy histogram related to the RTF histogram due to the contrast of entropy 
maps. We now are able to fix a threshold for computing a pattern contour. Works are 
in progress to introduce entropy as a feature for a co-segmentation. 
 

 
Figure 3: Entropy maps (α=10) for the signals of the figure 1. First line, entropy map of “Bastille” 
TFR, followed by its histogram and the RTF histogram,then the entropy map of “Halle aux grains”. 

Second line, entropy maps of avalanche, seismic, 1st type cavitation and bioacoustical signals. 
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