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Abstract

The problem of reinforcement learning in an unknown and discrete Markov Decision Process
(MDP) under the average-reward criterion is considered, when the learner interacts with
the system in a single stream of observations, starting from an initial state without any
reset. We revisit the minimax lower bound for that problem by making appear the local
variance of the bias function in place of the diameter of the MDP. Furthermore, we provide
a novel analysis of the KL-Ucrl algorithm establishing a high-probability regret bound

scaling as Õ
(√

S
∑

s,a V?
s,aT

)
for this algorithm for ergodic MDPs, where S denotes the

number of states and where V?
s,a is the variance of the bias function with respect to the

next-state distribution following action a in state s. The resulting bound improves upon
the best previously known regret bound Õ(DS

√
AT ) for that algorithm, where A and

D respectively denote the maximum number of actions (per state) and the diameter of
MDP. We finally compare the leading terms of the two bounds in some benchmark MDPs
indicating that the derived bound can provide an order of magnitude improvement in some
cases. Our analysis leverages novel variations of the transportation lemma combined with
Kullback-Leibler concentration inequalities, that we believe to be of independent interest.

Keywords: Undiscounted Reinforcement Learning, Markov Decision Processes, Concen-
tration Inequalities, Regret Minimization, Bellman Optimality

1. Introduction

In this paper, we consider Reinforcement Learning (RL) in an unknown and discrete Markov
Decision Process (MDP) under the average-reward criterion, when the learner interacts with
the system in a single stream of observations, starting from an initial state without any reset.
More formally, let M = (S,A, ν, P ) denote an MDP where S is a finite set of states and A
is a finite set of actions available at any state, with respective cardinalities S and A. The
reward function and the transition kernel is respectively denoted by ν and P . The game goes
as follows: the learner starts in some state s1 ∈ S at time t = 1. At each time step t ∈ N,
the learner chooses one action a ∈ A in her current state s ∈ S based on her past decisions
and observations. When executing action a in state s, the learner receives a random reward
r drawn independently from distribution ν(s, a) with support [0, 1] and mean µ(s, a). The
state then transits to a next state s′ ∈ S sampled with probability p(s′|s, a), and a new
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Talebi and Maillard

decision step begins. As the transition probabilities and reward functions are unknown,
the learner has to learn them by trying different actions and recording the realized rewards
and state transitions. We refer to standard textbooks (Sutton and Barto, 1998; Puterman,
2014) for background material on RL and MDPs.

The performance of the learner can be quantified through the notion of regret, which
compares the reward collected by the learner (or the algorithm) to that obtained by an
oracle always following an optimal policy, where a policy is a mapping from states to
actions. More formally, let π : S → P(A) denote a possibly stochastic policy. We further
introduce the notation p(s′|s, π(s)) = EZ∼π(s)[p(s′|s, Z)], and Pπf to denote the function
s 7→

∑
s′∈S p(s

′|s, π(s))f(s′). Likewise, let µπ(s) = EZ∼π(s)[µ(s, Z)] denote the mean reward
after choosing action π(s) in step s.

Definition 1 (Expected cumulative reward) The expected cumulative reward of policy
π when run for T steps from initial state s1 is defined as

Rπ,T (s1) = E
[ T∑
t=1

r(st, at)

]
= µπ(s1) + (Pπµπ)(s1) + · · · =

T∑
t=1

(P t−1π µπ)(s1) .

where at ∼ π(st), st+1 ∼ p(·|st, at), and finally r(s, a) ∼ ν(s, a).

Definition 2 (Average gain and bias) Let us introduce the average transition operator
P π = limT→∞

1
T

∑T
t=1 P

t−1
π . The average gain gπ and bias function bπ are defined by

gπ(s1) = lim
T→∞

1

T
Rπ,T (s1) = (P πµπ)(s1) , bπ(s) =

∞∑
t=1

(
(P t−1π − P π)µπ

)
(s) .

The previous definition requires some mild assumption on the MDP for the limits to makes
sense. It is shown (see, e.g., (Puterman, 2014)) that the average gain achieved by executing
a stationary policy π in a communicating MDP M is well-defined and further does not
depend on the initial state, i.e., gπ(s1) = gπ. For this reason, we restrict our attention to
such MDPs in the rest of this paper. Furthermore, let ? denote an optimal policy, that is1

g? = maxπ gπ.

Definition 3 (Regret) We define the regret of any learning algorithm A after T steps as

RegretA,T :=

T∑
t=1

r(s?t , ?(s
?
t ))−

T∑
t=1

r(st, at) where at = A(st, ({st′ , at′ , rt′})t′<t) ,

and s?t+1 ∼ p(·|s?t , ?(s?t )) with s?1 = s1 is a sequence generated by the optimal strategy.

By an application of Azuma-Hoeffding’s inequality for bounded random martingales, it is
immediate to show that with probability higher than 1− δ,

RegretA,T 6
T∑
t=1

(
P t−1? µ? − P t−1at µat

)
+
√

2T log(2/δ)

=

T∑
t=1

(P t−1? − P ?)µ? +

[
Tg? −

T∑
t=1

P t−1at µat

]
+
√

2T log(2/δ) .

Thus, following (Jaksch et al., 2010), it makes sense to focus on the control of the middle
term in brackets only. This leads us to consider the following notion of regret, which we
may call effective regret :

RA,T := Tg? −
T∑
t=1

r(st, at) .

1. The maximum is reached since there are only finitely many deterministic policies.
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Variance-Aware Regret Bounds in MDPs

To date, several algorithms have been proposed in order to minimize the regret based on
the optimism in the face of uncertainty principle, coming from the literature on stochastic
multi-armed bandits (see (Robbins, 1952)). Algorithms designed based on this principle
typically maintain confidence bounds on the unknown reward and transition distributions,
and choose an optimistic model that leads to the highest average long-term reward. One of
the first algorithms based on this principle for MDPs is due to (Burnetas and Katehakis,
1997), which is shown to be asymptotically optimal. Their proposed algorithm uses the
Kullback-Leibler (KL) divergence to define confidence bounds for transition probabilities.
Subsequent studies by (Tewari and Bartlett, 2008), (Auer and Ortner, 2007), (Jaksch et al.,
2010), and (Bartlett and Tewari, 2009) propose algorithms that maintain confidence bounds
on transition kernel defined by L1 or total variation norm. The use of L1 norm, instead of
KL-divergence, allows one to describe the uncertainty of the transition kernel by a polytope,
which in turn brings computational advantages and ease in the regret analysis. On the
other hand, such polytopic models are typically known to provide poor representations of
underlying uncertainties; we refer to the literature on the robust control of MDPs with
uncertain transition kernels, e.g., (Nilim and El Ghaoui, 2005), and more appropriately
to (Filippi et al., 2010). Indeed, as argued in (Filippi et al., 2010), optimistic models
designed by L1 norm suffer from two shortcomings: (i) the L1 optimistic model could lead
to inconsistent models by assigning a zero mass to an already observed element, and (ii) due
to polytopic shape of L1-induced confidence bounds, the maximizer of a linear optimization
over L1 ball could significantly vary for a small change in the value function, thus resulting
in sub-optimal exploration (we refer to the discussion and illustrations on pages 120–121 in
(Filippi et al., 2010)).

Both of these shortcomings are avoided by making use of the KL-divergence and prop-
erties of the corresponding KL-ball. In (Filippi et al., 2010), the authors introduce the
KL-Ucrl algorithm that modifies the Ucrl2 algorithm of (Jaksch et al., 2010) by replacing
L1 norms with KL divergences in order to define the confidence bound on transition prob-
abilities. Further, they provide an efficient way to carry out linear optimization over the
KL-ball, which is necessary in each iteration of the Extended Value Iteration. Despite these
favorable properties and the strictly superior performance in numerical experiments (even
for very short time horizons), the best known regret bound for KL-Ucrl matches that of
Ucrl2. Hence, from a theoretical perspective, the potential gain of use of KL-divergence to
define confidence bounds for transition function has remained largely unexplored. The goal
of this paper is to investigate this gap.

Main contributions. In this paper we provide a new regret bound for KL-Ucrl scaling

as Õ
(√

S
∑

s,a V?
s,aT + D

√
T
)

for ergodic MDPs with S states, A actions, and diameter

D. Here, V?
s,a := Vp(·|s,a)(b?) denotes the variance of the optimal bias function b? of the

true (unknown) MDP with respect to next state distribution under state-action (s, a). This
bound improves over the best previous bound of Õ(DS

√
AT ) for KL-Ucrl as

√
V?
s,a 6 D.

Interestingly, in several examples
√

V?
s,a � D and actually

√
V?
s,a is comparable to

√
D.

Our numerical experiments on typical MDPs further confirm that
√
S
∑

s,a V?
s,a could be

orders of magnitude smaller than DS
√
A. To prove this result, we provide novel trans-

portation concentration inequalities inspired by the transportation method that relate the
so-called transportation cost under two discrete probability measures to the KL-divergence
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Talebi and Maillard

between the two measures and the associated variances. To the best of our knowledge, these
inequalities are new and of independent interest. To complete our result, we provide a new
minimax regret lower bound of order Ω(

√
SAVmaxT ), where Vmax := maxs,a V?

s,a. In view
of the new minimax lower bound, the reported regret bound for KL-Ucrl can be improved
by only a factor

√
S.

Related work. RL in unknown MDPs under average-reward criterion dates back to the
seminal papers by (Graves and Lai, 1997), and (Burnetas and Katehakis, 1997), followed by
(Tewari and Bartlett, 2008). Among these studies, for the case of ergodic MDPs, (Burnetas
and Katehakis, 1997) derive an asymptotic MDP-dependent lower bound on the regret and
provide an asymptotically optimal algorithm. Algorithms with finite-time regret guarantees
and for wider class of MDPs are presented by (Auer and Ortner, 2007), (Jaksch et al., 2010;
Auer et al., 2009), (Bartlett and Tewari, 2009), (Filippi et al., 2010), and (Maillard et al.,
2014).

Ucrl2 and KL-Ucrl achieve a Õ(DS
√
AT ) regret bound with high probability in com-

municating MDPs, for any unknown time horizon. Regal obtains a Õ(D′S
√
AT ) regret

with high probability in the larger class of weakly communicating MDPs, provided that
we know an upper bound D′ on the span of the bias function. It is however still an open
problem to incorporate this knowledge into an implementable algorithm. The TSDE algo-
rithm by Ouyang et al. (Ouyang et al., 2017) achieves a regret growing as Õ(D′S

√
AT )

for the class of weakly communicating MDPs, where D′ is a given bound on the span of
the bias function. In a recent study, (Agrawal and Jia, 2017) propose an algorithm based
on posterior sampling for the class of communicating MDPs. Under the assumption of
known reward function and known time horizon, their algorithm enjoys a regret bound
scaling as Õ(D

√
SAT ), which constitutes the best known regret upper bound for learning

in communicating MDPs and has a tight dependencies on S and A.

We finally mention that some studies consider regret minimization in MDPs in the
episodic setting, where the length of each episode is fixed and known; see, e.g., (Osband
et al., 2013), (Gheshlaghi Azar et al., 2017), and (Dann et al., 2017). Although RL in
the episodic setting bears some similarities to the average-reward setting, the techniques
developed in these paper strongly rely on the fixed length of the episode, which is assumed
to be small, and do not directly carry over to the case of undiscounted RL considered here.

2. Background Material and The KL-Ucrl Algorithm

In this section, we recall some basic material on undiscounted MDPs and then detail the
KL-Ucrl algorithm.

Lemma 4 (Bias and Gain) The gain and bias function satisfy the following relations

(Bellman equation) bπ + gπ = µπ + Pπbπ

(Fundamental matrix) bπ = [I − Pπ + Pπ]−1[I − P π]µπ .

This result is an easy consequence of the fact that P π (see Definition 2) satisfies P πPπ =
PπP π = P πP π = P π (see (Puterman, 2014) as well as Appendix E for details).

According to the standard terminology, we say a policy is b?-improving if it satisfies
π(s) = argmaxa∈A µ(s, a) + (Pab?)(s) . Applying the theory of MDPs (see, e.g., (Puterman,
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Variance-Aware Regret Bounds in MDPs

2014)), it can be shown that any b?-improving policy is optimal and thus that we can choose
? to satisfy2 the following fundamental identity3

(Bellman optimality equation) ∀s ∈ S, b?(s) + g? = max
a∈A

(
µ(s, a) +

∑
y∈S

p(y|s, a)b?(y)
)
.

We now recall the definition of diameter and mixing time as we consider only MDPs with
finite diameter or mixing time.

Definition 5 (Diameter (Jaksch et al., 2010)) Let Tπ(s′|s) denote the first hitting time
of state s′ when following stationary policy π from initial state s. The diameter D of an
MDP M is defined as

D := max
s 6=s′

min
π

E[Tπ(s′|s)].

Definition 6 (Mixing time (Auer and Ortner, 2007)) Let Cπ denote the Markov chain
induced by the policy π in an ergodic MDP M and let TCπ represent the hitting time of Cπ.
The mixing time TM of M is defined as

TM := max
π

TCπ .

For convenience, we also introduce, for any function f defined on S, its span defined by
S(f) := maxs∈S f(s)−mins∈S f(s). It actually acts as a semi-norm (see (Puterman, 2014)).

We finally introduce the following quantity that appears in the known problem-dependent
lower-bounds on the regret, and plays the analogue of the mean gap in the bandit literature.

Definition 7 (Sub-optimality gap) The sub-optimality of action a at state s is

ϕ(s, a) = µ(s, ?(s))− µ(s, a) + (p(·|s, ?(s))− p(·|s, a))>b? . (1)

Note importantly that ϕ is defined in terms of the bias b? of the optimal policy ?. Indeed, it
can be shown that minimizing the effective regret (in expectation) is essentially equivalent
to minimizing the quantity

∑
s,a ϕ(s, a)E[NT (s, a)], where NT (s, a) is the total number of

steps when action a has been played in state s. More precisely, it is not difficult to show
(see Appendix E for completeness) that for any stationary policy π and all t,

E[Rπ,t] =
∑
s,a

ϕ(s, a)E[Nt(s, a)] +
(
(P t−1π − I)b?

)
(s1) 6

∑
s,a

ϕ(s, a)E[Nt(s, a)] +D . (2)

The KL-Ucrl algorithm. The KL-Ucrl algorithm (Filippi et al., 2010; Filippi, 2010) is a
model-based algorithm inspired by Ucrl2 (Jaksch et al., 2010). To present the algorithm,
we first describe how it defines, at each given time t, the set of plausible MDPs based on
the observation available at that time. To this end, we introduce the following notations.
Under a given algorithm and for a state-action pair (s, a), let Nt(s, a) denote the number
of visits, up to time t, to (s, a): Nt(s, a) =

∑t−1
t′=0 I{st′ = s, at′ = a}. Then, let Nt(s, a)+ =

max{Nt(s, a), 1}. Similarly, Nt(s, a, s
′) denotes the number of visits to (s, a), up to time

2. The solution to this fixed-point equation is defined only up to an additive constant. Some people tend
to use this equation in order to define b? and g?, but this is a bad habit that we avoid here.

3. Throughout this paper, we may use g? (resp. b?) and g? (resp. b?) interchangeably.

5
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t, followed by a visit to state s′: Nt(s, a, s
′) =

∑t−1
t′=0 I{st′ = s, at′ = a, st′+1 = s′}. We

introduce the empirical estimates of transition probabilities and rewards:

µ̂t(s, a) =

∑t−1
t′=0 rt′I{st′ = s, at′ = a}

Nt(s, a)+
, p̂t(s

′|s, a) =
Nt(s, a, s

′)

Nt(s, a)+
.

KL-Ucrl, as an optimistic model-based approach, considers the set Mt as a collection
of all MDPs M ′ = (S,A, ν ′, P ′), whose transition kernels and reward functions satisfy:

KL(p̂t(·|s, a), p′(·|s, a)) 6 Cp/Nt(s, a) , (3)

|µ̂t(s, a)− µ′(s, a)| 6
√
Cµ/Nt(s, a) , (4)

where µ′ denotes the mean of ν ′, and where Cp := Cp(T, δ) = S (B + log(G)(1 + 1/G)),
with B = B(T, δ) := log(2eS2A log(T )/δ) and G = B + 1/ log(T ), and Cµ := Cµ(T, δ) =
log(4SA log(T )/δ)/1.99. Importantly, as proven in (Filippi et al., 2010, Proposition 1), with
probability at least 1− 2δ, the true MDP M belongs to the setMt uniformly over all time
steps t 6 T .

Similarly to Ucrl2, KL-Ucrl proceeds in episodes of varying lengths; see Algorithm 1.
We index an episode by k ∈ N. The starting time of the k-th episode is denoted tk, and by a
slight abuse of notation, letMk :=Mtk , Nk := Ntk , µ̂k = µ̂tk , and p̂k := p̂tk . At t = tk, the
algorithm forms the set of plausible MDPs Mk based on the observations gathered so far.
It then defines an extended MDP Mext,k = (S,A×Mk, µext, Pext), where for an extended
action aext = (a,M ′), it defines µext(s, aext) = µ′(s, a) and pext(s

′|s, aext) = p′(s′|s, a).
Then, a 1√

tk
-optimal extended policy πext,k is computed in the form πext,k(s) = (M̃k, π̃k(s)),

in the sense that it satisfies
g̃k

def
= gπ̃k(M̃k) > max

M ′∈Mk,π
gπ(M ′)− 1√

tk
,

where gπ(M) denotes the gain of policy π in MDP M . M̃k and π̃k are respectively called
the optimistic MDP and the optimistic policy. Finally, an episode stops at the first step
t = tk+1 when the number of local counts vk,t(s, a) =

∑t
t′=tk

I{st′ = s, at′ = a} exceeds
Ntk(s, a) for some (s, a). We denote with some abuse vk = vk,tk+1−1.

Remark 8 The value 1/
√
tk is a parameter of Extended Value Iteration and is only here

for computational reasons: with sufficient computational power, it could be replaced with 0.

Algorithm 1 KL-Ucrl (Filippi et al., 2010), with input parameter δ ∈ (0, 1]

Initialize: For all (s, a), set N0(s, a) = 0 and v0(s, a) = 0. Set t = 1, k = 1, and observe initial state s1

for episodes k > 1 do
Set tk = t

Set Nk(s, a) = Nk−1(s, a) + vk−1(s, a) for all (s, a)

Find a 1√
tk

-optimal policy π̃k and an optimistic MDP M̃k ∈ Mk using Extended Value Iteration

while vk(st, at) > Nk(st, at) do
Play action at = π̃k(st), and observe the next state st+1 and reward r(st, at)

Update Nk(s, a, x) and vk(s, a) for all actions a and states s, x

end while
end for

6
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Variance-Aware Regret Bounds in MDPs

3. Regret Lower Bound

In order to motivate the dependence of the regret on the local variance, we first provide the
following minimax lower bound that makes appear this scaling.

Theorem 9 There exists an MDP M with S states and A actions with S,A > 10, such
that the expected regret under any algorithm A after T > DSA steps for any initial state
satisfies

E[RA,T ] > 0.0123
√

VmaxSAT , where Vmax := max
s,a

Vp(·|s,a)(b?) .

Let us recall that (Jaksch et al., 2010) present a minimax lower bound on the regret
scaling as Ω(

√
DSAT ). Their lower bound follows by considering a family of hard-to-

learn MDPs. To prove the above theorem, we also consider the same MDP instances as
in (Jaksch et al., 2010) and leverage their techniques. We however show that choosing a
slightly different choice of transition probabilities for the problem instance leads to a lower
bound scaling as Ω(

√
VmaxSAT ), which does not depend on the diameter (the details are

provided in the appendix).

We also remark that for the considered problem instance, easy calculations show that for
any state-action pair (s, a), the variance of bias function satisfies c1

√
D 6 Vp(·|s,a)(b?) 6 c2D

for some constants c1 and c2. Hence, the lower bound in Theorem 9 can serve as an
alternative minimax lower bound without any dependence on the diameter.

4. Concentration Inequalities and The Kullback-Leibler Divergence

Before providing the novel regret bound for the KL-Ucrl algorithm, let us discuss some
important tools that we use for the regret analysis. We believe that these results, which
could also be of independent interest beyond RL, shed light on some of the challenges of
the regret analysis.

Let us first recall a powerful result from mathematical statistics (we provide the proof
in Appendix B for completeness) known as the transportation lemma; see, e.g., (Boucheron
et al., 2013, Lemma 4.18):

Lemma 10 (Transportation lemma) For any function f , let us introduce ϕf : λ 7→
logEP [exp(λ(f(X)−EP [f ]))]. Whenever ϕf is defined on some possibly unbounded interval
I containing 0, define its dual ϕ?,f (x) = supλ∈I λx− ϕf (λ). Then it holds

∀Q� P, EQ[f ]− EP [f ] 6 ϕ−1+,f (KL(Q,P )) where ϕ−1+,f (t) = inf{x > 0 : ϕ?,f (x) > t} ,

∀Q� P, EQ[f ]− EP [f ] > ϕ−1−,f (KL(Q,P )) where ϕ−1−,f (t) = sup{x 6 0 : ϕ?,f (x) > t} .

This result is especially interesting when Q is the empirical version of P built from n
i.i.d. observations, since in that case it enables to decouple the concentration properties of
the distribution from the specific structure of the considered function. Further, it shows
that controlling the KL divergence between Q and P induces a concentration result valid
for all (nice enough) functions f , which is especially useful when we do not know in advance
the function f we want to handle (such as bias function b?).

7
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The quantities ϕ−1+,f , ϕ−1−,f may look complicated. When f(X) (where X ∼ P ) is Gaus-

sian, they coincide with t 7→ ±
√

2VP (f)t. Controlling them in general is challenging.
However for bounded functions, a Bernstein-type relaxation can be derived that uses the
variance VP (f) and the span S(f):

Corollary 11 (Bernstein transportation) For any function f such that VP [f ] and S(f)
are finite,

∀Q� P, EQ[f ]− EP [f ] 6
√

2VP [f ]KL(Q,P ) +
2

3
S(f)KL(Q,P ) ,

∀Q� P, EP [f ]− EQ[f ] 6
√

2VP [f ]KL(Q,P ) .

We also provide below another variation of this result that is especially useful when the
bounds of Corollary 11 cannot be handled, and that seems to be new (up to our knowledge):

Lemma 12 (Transportation method II) Let P ∈ P(X ) be a probability distribution on
a finite alphabet X . Then, for any real-valued function f defined on X , it holds that

∀P � Q, EQ[f ]− EP [f ] 6
(√
VP,Q(f) +

√
VQ,P (f)

)√
2KL(P,Q) + S(f)KL(P,Q) ,

where VP,Q(f) :=
∑

x∈X :P (x)>Q(x)

P (x)(f(x)− EP [f ])2 .

When P is the transition law under a state-action pair (s, a) and Q is its empirical estimates
up to time t, i.e. Q = p̂t(·|s, a) and P = p(·|s, a), the first assertion in Corollary 11 can be
used to decouple EQ[f ]−EP [f ] from specific structure of f . In particular, if f is some bias

function, then f has a bounded span D, and since KL(Q,P ) = Õ(N−1t ), the first order terms

makes appear the variance of f . This would result in a term scaling as Õ(
√
S
∑

s,a V?
s,aT )

in our regret bound, where Õ(·) hides poly-logarithmic terms.
Now, for the case when Q = p̂t(·|s, a) and P = p̃t(·|s, a) is the optimistic transition

law at time t, the second inequality in Corollary 11 allows us to bound EP [f ] − EQ[f ]
by the variance of f under law p̃(·|s, a), which itself is controlled by the variance of f
under the true law p(·|s, a). Using such an approach would lead to a term scaling as

Õ(
√
S
∑

s,a V?
s,aT + DS2T 1/4). We can remove the term scaling as Õ(T 1/4) in our regret

analysis by resorting to Lemma 12 instead, in combination with the following property of
the operator V:

Lemma 13 Consider two distributions P,Q ∈ P(X ) with |X | > 2. Then, for any real-
valued function f defined on X , it holds that

(i) VP,Q(f) 6 VP (f) ,

(ii)
√
VP,Q(f) 6

√
2VQ(f) + 3S(f)

√
|X |KL(Q,P ) .

5. Variance-Aware Regret Bound for KL-Ucrl

In this section, we present a regret upper bound for KL-Ucrl that leverages the results
presented in the previous section. Let Ψ := S(b?) denote the span of the bias function, and

8
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for any (s, a) ∈ S ×A define V?
s,a := Vp(·|s,a)(b?) as the variance of the bias function under

law p(·|s, a).
Let ?̃k denote the optimal policy in the extended MDP Mk, whose gain g̃?̃k satisfies

g̃?̃k = maxM ′∈Mk,π gπ(M ′). We consider a variant of KL-Ucrl, which computes, in every
episode k, a policy π̃k satisfying: maxs |b̃k(s)− b̃?̃k(s)| 6 1√

tk
, and g̃k > g̃?̃k −

1√
tk

.4

In the following theorem, we provide a refined regret bound for KL-Ucrl:

Theorem 14 (Variance-aware regret bound for KL-Ucrl) With probability at least 1−
6δ, the regret under KL-Ucrl for any ergodic MDP M and for any initial state satisfies

RKL-Ucrl,T 6
(

31
√
S
∑

s,a V?
s,a + 35S

√
A+
√

2D + 1
)√

TB(T, δ)

+ Õ
(
SA(TMSA+D + S3/2) log(T )

)
,

where Õ hides the terms scaling as polylog(log(T )/δ). Hence, with probability at least 1−δ,

RKL-Ucrl,T = O
([√

S
∑

s,a V?
s,a +D

]√
T log(log(T )/δ)

)
.

Remark 15 If the cardinality of the set S+s,a := {s′ : p(s′|s, a) > 0} for state-action (s, a) is
known, then one can use the following improved confidence bound for the pair (s, a) (instead
of (3)):

Nt(s, a)KL(p̂t(·|s, a), p′(·|s, a)) 6 Cs,ap , (5)

where Cs,ap =
|S+s,a|
S Cp (see, e.g., (Filippi, 2010, Proposition 4.1) for the corresponding con-

centration result). As a result, if |S+s,a| for all (s, a) ∈ S × A is known, it is then straight-
forward to show that the corresponding variant of KL-Ucrl, which relies on (5), achives a

regret growing as Õ
(√∑

s,a |S+s,a|V?
s,aT +D

√
T
)
.

The regret bound provided in the aforementioned remark is of particular importance in
the case of sparse MDPs, where most states transit to only a few next-states under various
actions. We would like to stress that to get an improvement of a similar flavour for Ucrl2,
to the best of our knowledge, one has to know the sets S+s,a for all (s, a) ∈ S × A rather
than their cardinalities.

Sketch of proof of Theorem 14. The detailed proof of this result is provided in Ap-
pendix C. In order to better understand it, we now provide a high level sketch of proof
explaining the main steps of the analysis.

First note that by an application of Azuma-Hoeffding inequality, the effective regret
is upper bounded by RA,T 6 Tg? −

∑T
t=1 µ(st, at) +

√
T log(1/δ)/2, with probability at

least 1 − δ. We proceed by decomposing the term Tg? −
∑T

t=1 µ(st, at) on the episodes
k = 1, . . . ,m(T ), where m(T ) is the total number of episodes after T steps. Introducing

4. We study such a variant to facilitate the analysis and presentation of the proof. This variant of KL-Ucrl

may be computationally less efficient than Algorithm 1. We stress however that, in view of the number
of episodes (growing as SA log(T )) as well as Remark 8, with sufficient computational power such an
algorithm could be practical.

9
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vk(s, a) as the number of visits to (s, a) during episode k for any (s, a) and k, with probability
at least 1− δ we have

RA,T 6
m(T )∑
k=1

∆k +
√
T log(1/δ)/2 =

m(T )∑
k=1

∆k where ∆k =
∑
s,a

vk(s, a)(g? − µ(s, a)) .

We focus on episodes such that M ∈Mk, corresponding to valid confidence intervals, up to
losing a probability only 2δ. In order to control ∆kI{M ∈Mk}, we use the decomposition∑

s,a

vk(s, a)(g? − µ(s, a)) =
∑
s,a

vk(s, a)(g̃k − µ(s, a) + (g? − g̃k)) .

We refrain from using the fact that g? − g̃k 6 1/
√
tk and instead use it as a slack later in

the proof. We then introduce the bias function from the identity g̃k − µ̃k = (P̃k − I)b̃k, and
thus get

∆k =
∑
s,a

vk(s, a)
(

(P̃k − Pk)b?︸ ︷︷ ︸
(a)

+ (Pk − I)b̃k︸ ︷︷ ︸
(b)

+ (P̃k − Pk)(b̃k − b?) + (g? − g̃k)︸ ︷︷ ︸
(c)

)
Term (a). The first term is controlled thanks to our variance-aware concentration inequal-
ities:

(P̃k − Pk)b? = (P̂k − Pk)b? + (P̃k − P̂k)b? , where

∀s, ((P̂k − Pk)b?)(s) 6
√

2V?
s,π̃k(s)

KL(p̂k, p) +
2

3
S(b?)KL(p̂k, p) and

∀s, ((P̃k − P̂k)b?)(s) 6 (1 +
√

2)
√

2Vp̂k(b?)KL(p̂k, p̃k) + S(b?)(1 + 3
√

2S)KL(p̂k, p̃k) .

The first inequality is obtained by Corollary 11 while the second one by a combination of
Lemma 12 together with Lemma 13. We then relate

√
Vp̂k(b?) to

√
Vp(b?) thanks to:

Lemma 16 For any episode k > 1 such that M ∈Mk, it holds that for any pair (s, a),√
Vp̂k(·|s,a)(f) 6

√
2Vp(·|s,a)(f) +

6SS(f)B√
Nk(s, a)

with probability at least 1− δ.

It is then not difficult to show that this first term, when summed over all episodes, con-

tributes to the regret as Õ(
√
S
∑

s,a V?
s,a

√
T log(log(T )/δ)), where the log(log(T )) terms

comes from the use of time-uniform concentration inequalities.
Term (b). We then turn to Term (b) and observe that it makes appear a martingale
difference structure. Following the same reasoning as in (Jaksch et al., 2010) or (Filippi
et al., 2010), the right way to control it is however to sum this contribution over all episodes
and make appear a martingale difference sequence of T deterministic terms, bounded by
the deterministic quantity D, since S(b̃k) 6 D. This comes at the price of losing a constant
error D per episode. Now, since it can be shown that m(T ) 6 SA log2(8T/SA) as for Ucrl2,
we deduce that with probability higher than 1− δ,

m(T )∑
k=1

∑
s,a

vk(s, a)(Pk − I)b̃k 6 D
√

2T log(1/δ) + 2DSA log2(8T/SA) .

10
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Term (c). It thus remains to handle Term (c). To this end, we first partition the states
into S+s = {x ∈ S : P̃k(s, x) > Pk(s, x)} and its complementary set S−s , and get

vk(P̃k − Pk)(b̃k − b?) =
∑
s

vk(s, π̃k(s))
∑
x∈S+s

(P̃k(s, x)− Pk(s, x))(b̃k(x)− b?(x))

+
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(P̃k(s, x)− Pk(s, x))(b̃k(x)− b?(x)) .

We thus need to control the difference of bias from above and from below. To that end, we
note that by property of the bias function, it holds that

b̃k − b? = g̃?̃k − g̃k + (µ̃k − µk) + (P̃k − Pk)b?︸ ︷︷ ︸
(d)

−ϕk + P̃k(b̃k − b?) .

Owing to the fact that g̃?̃k − g̃k 6 1/
√
tk and by the previous results on concentration

inequalities, the term (d) can be shown to be scaling as Õ
(√

SV?
s,a

Nk(s,a)

)
. Thus, this means

that provided that for all s, a, Nk(s, a) &
SV?

s,a

ϕ(s,a)2
, then (d)−ϕ(s, a) 6 0, and thus b̃k − b? 6

0 + P̃k(0 + . . .) 6 0. On the other hand, for the control of the last term, we first note that
for an b̃?̃k -improving policy (which is optimal in the extended MDP), then for all J ∈ N it
holds

b? − b̃?̃k 6 (g̃?̃k − g?) + P?(b? − b̃?̃k) 6 J(g̃?̃k − g?) + P J? (b? − b̃?̃k) .

Thus, we obtain that

vk(P̃k − Pk)(b̃k − b?) + vk(g? − g̃?̃k)1 6
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))
(
P J? (b? − b̃?̃k)

)
(x)

+
∑
s

vk(s, π̃k(s))
[
1− J

∑
x∈S−s

(Pk(s, x)− P̃k(s, x))
]
(g? − g̃?̃k) + ηk , (6)

where ηk is controlled by the error of computing b̃k in episode k (which, for the considered

variant of the algorithm, is bounded by
√

32SB
∑

s,a
vk(s,a)
Nk(s,a)+

). In order to handle the

remaining terms in (6), and choose J , we use the fact that P? is γ-contracting for some

γ < 1. Thus, choosing J = log(D)
log(1/γ) ensures that contribution of the first term in (6) is

less than
√

32SB
∑

s,a
vk(s,a)√
Nk(s,a)+

. Furthermore, provided that Nk(s, a) & SBJ2 for all s

and a, we observe that the term in brackets is non-negative, and hence the second term in
(6) becomes negative (later on we consider the case where this condition is not satisfied).

Putting together, we get (c) 6 (2
√

32SB + 1)
∑

s,a
vk(s,a)√
Nk(s,a)+

.

Finally, it remains to handle the case where some state-action pair is not sufficiently
sampled, that is there exists (s, a) such that Nk(s, a) < `s,a, where

`s,a = `s,a(T, δ) := Õ
(
SBmax

{ Ψ

ϕ(s, a)
,

log(D)

log(1/γ)

}2)
, ∀s, a.
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Figure 1: The N -state Ergodic RiverSwim MDP

Borrowing some arguments from (Auer and Ortner, 2007), we show that a given state-action
pair (s, a), which is not sufficiently sampled, contributes to the regret (until it becomes
sufficiently sampled) by at most O(TM max(`s,a, log(SA/δ))) with probability at least 1 −
δ
SA . Summing over (s, a) gives the total contribution to regret. At this point, the proof is
essentially done, up to some technicalities and careful handling of second order terms.

Remark 17 Most steps in the proof of Theorem 14 carries over to the case of communicat-
ing MDPs without restriction (up to considering the fact that for a communicating MDP,
P? may not induce a contractive mapping. Yet there exists some integer β > 1 such that
P β? induces a contractive mapping; this will only affect the terms scaling as Õ(log(T )) in
the regret bound). It is however not clear how to appropriately bound the regret when some
state-action pair is not sufficiently sampled.

Illustrative numerical experiments. In order to better highlight the magnitude of the
main terms in Theorem 14 when compared to other existing results, we consider a standard
class of environments for which we compute them explicitly.

For the sake of illustration, we consider the RiverSwim MDP, introduced in (Strehl and
Littman, 2008), as our benchmark environment. In order to satisfy ergodicity, here we
consider a slightly modified version of the original RiverSwim (see Figure 1). Furthermore,
to convey more intuition about the potential gains, we consider varying number of states.
The benefits of KL-Ucrl have already been studied experimentally in (Filippi et al., 2010),
and we compute in Table 1 features that we believe explain the reason behind this. In
particular, it is apparent that while Ψ

√
SA 6 D

√
SA grows very large as S increases, V?

s,a

is very small, on all tested environments, and does not change as S increases. Further, even

on this simple environment, we see that
√∑

s,a V?
s,a is an order or magnitude smaller than

Ψ
√
SA. We believe that these computations highlight the fact that the regret bound of

Theorem 14 captures a massive improvement over the initial analysis of KL-Ucrl in (Filippi
et al., 2010), and over alternative algorithms such as Ucrl2.

6. Conclusion

In this paper, we revisited the analysis of KL-Ucrl as well as the lower bound on the re-
gret in ergodic MDPs, in order to make appear the local variance of the bias function of
the MDP. Our findings show that, owing to properties of the Kullback-Leibler divergence,

12
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S Ψ maxs,aV
?
s,a Ψ

√
SA

√∑
s,aV

?
s,a

6 6.3 0.6322 21.9 1.8
12 14.9 0.6327 72.9 2.8
20 26.3 0.6327 166.4 3.7
40 54.9 0.6327 490.9 5.3
70 97.7 0.6327 1156.5 7.1
100 140.6 0.6327 1988.3 8.5

Table 1: Comparison of span and variance for S-state Ergodic RiverSwim.

the leading term Õ(DS
√
AT ) obtained for the regret of KL-Ucrl and Ucrl2 can be re-

duced to Õ
(√

S
∑

s,a V?
s,aT

)
, while the lower bound for any algorithm can be shown to be

Ω(
√
SAVmaxT ), where Vmax := maxs,a V?

s,a. Computations of these terms in some illus-
trative MDP show that the reported upper bound may improve an order of magnitude over
the existing ones (as observed experimentally in (Filippi, 2010)), thus highlighting the fact
that trading the diameter of the MDP to the local variance of the bias function may result
in huge improvements.

We note that this improvement often corresponds to a gain of a factor O(
√
D). A

natural question is whether the
√
S gap between the upper and lower bounds can be filled

in. In the simpler setting of episodic reinforcement learning with known horizon H, several
papers have shown that by taking advantage of this knowledge, it is possible to design
strategies for which the regret bound does not lose a

√
S factor. However, such strategies

do not apply straightforwardly to undiscounted reinforcement learning. Nonetheless, we
believe that combining techniques of such studies with the tools that we have developed is
a fruitful research direction.
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Appendix A. Regret Lower Bound

The proof of Theorem 9 mainly relies on the problem instance for the derivation of the
minimax lower bound in (Jaksch et al., 2010) and related arguments there. For the sake of
completeness, we first recall their problem instance and then compute the variance of the
corresponding bias function.

To get there, we first consider the two-state MDP M ′ shown in Figure 2, where there
are two states {s0, s1}, each having A′ = bA−12 c actions. We consider deterministic rewards
defined as r(s0, a) = 0 and r(s1, a) = 1 for all a ∈ A. The learner knows the rewards but
not the transition probabilities. Let δ := 4

D , where D is the diameter of the MDP for which
we derive the lower bound. Under any action a, p(s0|s1, a) = δ. In state s0, there is a
unique optimal action a?, which will be referred to as the good action. For any a 6= a?, we
have p(s1|s0, a) = δ whereas p(s1|s0, a?) = δ+ ε for some ε ∈ (0, δ2) that will be determined
later. Note that the diameter D′ of M ′ satisfies: D′ = 1

δ = D
4 .

...

...
...

...

1− δ − ε

1− δ

δ

s0 s1

1− δ

δ + ε

δ

Figure 2: The MDP M ′ for lower bound (Jaksch et al., 2010)
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We consider δ ∈ (0, 13).5 After straightforward calculations, one finds that the average
reward in M ′ is given by

g? =
1/δ

1/δ + 1/(δ + ε)
=

δ + ε

2δ + ε
.

Furthermore, from Bellman optimality equation we obtain

b?(s0) +
δ + ε

2δ + ε
= (δ + ε)b?(s1) + (1− δ − ε)b?(s0) ,

thus giving Ψ := S(b?) = b?(s1)− b?(s0) = 1
2δ+ε . Consider a 6= a? and let p = p(·|s0, a). It

follows that:

Ep[b?] = δb?(s1) + (1− δ)b?(s0) = b?(s0) + δΨ ,

Vp(b?) = δ(b?(s1)− Ep[b?])2 + (1− δ)(b?(s0)− Ep[b?])2 = δ(1− δ)Ψ2 .

Similarly, we obtain

Vp(·|s0,a?)(b
?) = (δ + ε)(1− δ − ε)Ψ2 ,

Vp(·|s1,a)(b
?) = δ(1− δ)Ψ2 , ∀a.

Hence, using the facts that x 7→ x(1−x) is increasing for x ∈ [0, 12 ] and ε+δ 6 1
2 , we obtain

Vmax := max
s,a

Vp(·|s,a)(b?) = (δ + ε)(1− δ − ε)Ψ2 .

A.0.1 The composite MDP

We now build a composite MDP M as considered in (Jaksch et al., 2010), as a concatenation
of k := bS2 c copies of M ′ in the form of an A′-ary tree, where only one copy contains the
good action a? (see Figure 3). To this end, we first add A′+ 1 additional actions so that M
has at most A actions per state. For any state s0, one of these new actions connects s0 to the
root, and the rest connect s0 to the leaves. Whereas for any state s1, all new actions make
a transition to the same state s1. By construction, the diameter of the composite MDP M
does not exceed 2(D4 +logA′ k), so that MDP M has 2bS2 c 6 S states, bA′−12 c+b

A′−1
2 c+1 6 A

actions, and a diameter less than D.

A.1 Proof of Theorem 9

To derive the claimed result, we derive a lower bound on the regret for the composite MDP
presented above. Our analysis is largely built on the techniques used in the proof of (Jaksch
et al., 2010, Theorem 5). We also closely follow the notations used in (Jaksch et al., 2010).

Let us assume, as in the proof of (Jaksch et al., 2010, Theorem 5), that all states s0
are identified so that M is equivalent to an MDP M ′ with kA′ actions (note that following
the same argument as in (Jaksch et al., 2010), despite the same maximal average reward,
learning in M ′ is easier than in M , and so any regret lower bound for M ′ implies a lower

5. The case of δ > 1/3 can be handled similarly to the analysis of (Jaksch et al., 2010).
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Figure 3: The composite MDP M (Jaksch et al., 2010)

bound in M , too). Note that by construction of M , it holds that Vmax in M equals Vmax

in M ′. Denote by (s?0, a
?) the good copy, i.e., the one containing the good action a?. We

assume that a? is chosen uniformly at random among all actions {1, . . . , k} × {1, . . . , A′}.
Let E?[·] and Eunif [·] respectively denote the expectation with respect to the random choice
of (s?0, a

?) and the expectation when there is no good action. Furthermore, let Ea[·] denote
the expectation conditioned on a = a?, and introduce N1, N0, and N?

0 as the respective
number of visits to s1, s0, and (s0, a

?).
The proof proceeds in the same steps as in the proof of (Jaksch et al., 2010, Theorem 5)

up to Equation (36) there, where it is shown that assuming that the initial state is s0,

Ea[N1] 6 Ea[N0 −N?
0 ] + (δ + ε)D′Ea[N?

0 ] 6 T − Eunif [N1] + εD′Ea[N?
0 ] ,

Eunif [N1] >
T −D′

2
,

so that the accumulated reward RA,T by the algorithm A in M ′ up to time step T satisfies

Ea[RA,T ] 6 Ea[N1] 6
T +D′

2
+ εD′Ea[N?

0 ] .

The following lemma, which is a straightforward modification to (Jaksch et al., 2010,
Lemma 13), enables us to control Ea[N?

0 ]:

Lemma 18 Let f : {s0, s1}T+1 7→ [0, B] be any function defined on any trajectory sT+1 =
(st)16t6T+1 in M ′. Then, for any δ ∈ [0, 13 ], ε ∈ (0, 1− 2δ), and a ∈ {1, . . . , kA′},

Ea[f(s)] 6 Eunif [f(s)] + εB

√
log(2)Eunif [N

?
0 ]

2(δ + ε)(1− δ − ε)
.

17
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Noting that N?
0 is a function of sT+1 satisfying N?

0 ∈ [0, T ], by Lemma 18 we deduce

Ea[N?
0 ] 6 Eunif [N

?
0 ] + εT

√
log(2)Eunif [N

?
0 ]

2(δ + ε)(1− δ − ε)

= Eunif [N
?
0 ] + εΨT

√
log(2)Eunif [N

?
0 ]

2Vmax
,

where we used
√

Vmax = Ψ
√

(δ + ε)(1− ε− δ). As shown in the proof of (Jaksch et al.,

2010, Theorem 5),
∑kA′

a=1 Eunif [N
?
0 ] 6 (T +D′)/2 and

∑kA′

a=1

√
Eunif [N

?
0 ] 6

√
kA′(T +D′)/2,

so that we finally get, using the relation E?[RA,T ] = 1
kA′
∑kA′

a=1 Ea[RA,T ],

E?[RA,T,M ′ ] =
δ + ε

2δ + ε
T − E?[RA,T ]

>
δ + ε

2δ + ε
T − T

2
− εD′T

2kA′
− εD′2

2kA′

− ε2ΨD′T

kA′

√
log(2)kA′T

4Vmax
− ε2ΨD′T

kA′

√
log(2)kA′D′

4Vmax
− D′

2

>
εT

4δ + 2ε
− εD′

2kA′
(T +D′)− 0.42ε2ΨD′T√

kA′Vmax
(
√
T +
√
D′)− D′

2
.

Noting that the assumption T > DSA implies T > 16D′kA′, we deduce that

E?[RA,T,M ′ ] >
εT

4δ + 2ε
− εD′T

2kA′

(
1 +

1

16kA′

)
− 0.42ε2ΨD′T

√
T√

kA′Vmax

(
1 +

1

4
√
kA′

)
− D′

2
.

The first term in the right-hand side of the above satisfies

εT

4δ + 2ε
=
εTΨ

2
>

5εVmaxT

6
,

since

Ψ

Vmax
=

2δ + ε

(δ + ε)(1− δ − ε)
> 1 +

δ

δ + ε
>

5

3
,

where we used ε 6 δ
2 in the last step. Hence, we get

E?[RA,T,M ′ ] >
5

6
εVmaxT −

εD′T

2kA′

(
1 +

1

16kA′

)
− 0.42ε2ΨD′T

√
T√

kA′Vmax

(
1 +

1

4
√
kA′

)
− D′

2
.

In particular, setting ε = c
√

kA′

VmaxT
for some c (which will be determined later) yields

E?[RA,T,M ′ ] >
5

6
c
√
kA′VmaxT −

√
kA′VmaxT

(
cD′

2kA′Vmax

(
1 +

1

16kA′

))
−
√
kA′VmaxT

(
0.42c2

kA′
D′Ψ

V2
max

(
1 +

1

4
√
kA′

))
− D′

2
.
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To simplify the above bound, note that

D′

Vmax
6

(2δ + ε)2

δ(δ + ε)(1− δ − ε)
6 2
(2δ + ε

δ

)2
6 12.5 , (7)

where we used 1− ε− δ > 1
2 since ε 6 δ

2 . Moreover,

D′Ψ

V2
max

=
D′Ψ

Ψ4(δ + ε)2(1− δ − ε)2

=
(2δ + ε)3

δ(δ + ε)2(1− δ − ε)2
6 4
(2δ + ε

δ

)3
6 62.5 .

Putting these together with the fact that

D′

2
6

√
D′

2

√
T

16kA′
6

√
12.5/16

2

√
VmaxT

kA′
6 0.45

√
VmaxT

kA′
,

which follows from (7), we deduce that

E?[RA,T,M ′ ] >
√
kA′VmaxT

(5c

6
− 12.5c

2kA′
− 12.5c

32(kA′)2
− 26.25c2

kA′
− 6.6c2

(kA′)3/2
− 0.45

kA′

)
,

Taking c = 0.132 and using the facts k = bS2 c > 5 and A′ = bA−12 c > 4 yield the announced

result. This completes the proof provided that we show that this choice of c satisfies ε 6 δ
2 .

To this end, observe that by the assumption T > DSA > 16kA′

δ , it follows that

ε = 0.132

√
kA′

VmaxT
6

0.132

4

√
δ

Vmax
6

0.132

4

√
δ(2δ + ε)2

(δ + ε)(1− δ − ε)
6 0.047(2δ + ε) ,

so that ε 6 0.1δ. This concludes the proof. �

A.2 Proof of Lemma 18

The lemma follows by a slight modification of the proof of (Jaksch et al., 2010, Lemma 13).
We recall that according to Equations (49)-(51) in (Jaksch et al., 2010),

Ea[f(s)]− Eunif [f(s)] 6
B

2

√
2 log(2)KL(Punif ,Pa) , (8)

where

KL(Punif ,Pa) =
T∑
t=1

KL(Punif(st+1|st),Pa(st+1|st))

=
T∑
t=1

Punif(st = s0, at = a)

(
δ log

( δ

δ + ε

)
+ (1− δ) log

( 1− δ
1− δ − ε

))
.

Now using the inequality kl(a, b) 6 (a−b)2
b(1−b) valid for all a, b ∈ (0, 1) (instead of (Jaksch et al.,

2010, Lemma 20)) and noting that Eunif [N
?
0 ] =

∑T
t=1 Punif(st = s0, at = a), we obtain

KL(Punif ,Pa) = kl(δ, δ + ε)Eunif [N
?
0 ] 6

ε2

(1− δ)(1− δ − ε)
Eunif [N

?
0 ] .

Plugging this into (8) completes the proof. �
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Appendix B. Concentration Inequalities

B.1 Proof of Lemma 10

Let us recall the fundamental equality

∀λ ∈ R, logEP [exp(λ(X − EP [X])] = sup
Q�P

[
λ
(
EQ[X]− EP [X]

)
− KL(Q,P )

]
.

In particular, we obtain on the one hand that (see also (Boucheron et al., 2013, Lemma 2.4))

∀Q� P, EQ[f ]− EP [f ] 6 min
λ∈R+

ϕf (λ) + KL(Q,P )

λ
.

Since ϕf (0) = 0, then the right-hand side of the above is non-negative. Let us call it u. Now,
we note that for any t such that u > t > 0, by construction of u, it holds that KL(Q,P ) >
ϕ?,f (t). Thus, {x > 0 : ϕf,?(x) > KL(Q,P )} = (u,∞) and hence, u = ϕ−1+,f (KL(Q,P )).

On the other hand, it holds

∀Q� P, EQ[f ]− EP [f ] > max
λ∈R−

ϕf (λ) + KL(Q,P )

λ
.

Since ϕ(0) = 0, then the right-hand side quantity is non-positive. Let us call it v. Now, we
note that for any t such that v 6 t 6 0, by construction of v, it holds that KL(Q,P ) > ϕ?,f (t).
Thus, {x 6 0 : ϕ?,f (x) > KL(Q,P )} = (−∞, v) and hence, v = ϕ−1−,f (KL(Q,P )). �

B.2 Proof of Corollary 11

By a standard Bernstein argument (see for instance (Boucheron et al., 2013, Section 2.8)),
it holds

∀λ ∈ [0, 3/S(f)), ϕf (λ) 6
VP [f ]

2

λ2

1− S(f)λ
3

,

∀x > 0, ϕ?,f (x) >
x2

2(VP [f ] + S(f)
3 x)

.

Then, a direct computation (solving for x in ϕ?,f (x) = t) shows that

ϕ−1+,f (t) 6
S(f)

3
t+

√
2tVP [f ] +

(S(f)

3
t
)2
6
√

2tVP [f ] +
2

3
tS(f) ,

ϕ−1−,f (t) >
S(f)

3
t−
√

2tVP [f ] +
(S(f)

3
t
)2
> −

√
2tVP [f ] ,

where we used that
√
a+ b 6

√
a+
√
b for a, b > 0. Combining these bounds, we get

EQ[f ]− EP [f ] 6
√

2VP [f ]KL(Q,P ) +
2

3
S(f)KL(Q,P ) ,

EP [f ]− EQ[f ] 6
√

2VP [f ]KL(Q,P ) .

�
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B.3 Proof of Lemma 12

If EQ[f ] 6 EP [f ], then the result holds trivially. We thus assume that EQ[f ] > EP [f ]. It is
straightforward to verify that

EQ[f ]− EP [f ] =
∑

x:Q(x)>P (x)

(f(x)− EQ[f ])(Q(x)− P (x)) +
∑

x:Q(x)<P (x)

(f(x)− EP [f ])(Q(x)− P (x))

+
∑

x:P (x)>Q(x)

(EP [f ]− EQ[f ])(Q(x)− P (x)) . (9)

The first term in the right-hand side of (9) is upper bounded as

∑
x:Q(x)>P (x)

(f(x)− EQ[f ])(Q(x)− P (x)) =
∑

x:Q(x)>P (x)

√
Q(x)(f(x)− EQ[f ])

Q(x)− P (x)√
Q(x)

(a)

6
√ ∑
x:Q(x)>P (x)

Q(x)(f(x)− EQ[f ])2

√√√√ ∑
x:Q(x)>P (x)

(Q(x)− P (x))2

Q(x)

(b)

6
√
VQ,P (f)

√
2KL(P,Q) , (10)

where (a) follows from Cauchy-Schwarz inequality and (b) follows from Lemma 22.

Similarly, the second term in (9) satisfies

∑
x:Q(x)<P (x)

(f(x)− EP [f ])(Q(x)− P (x)) =
∑

x:Q(x)<P (x)

√
P (x)(f(x)− EP [f ])

Q(x)− P (x)√
P (x)

6
√
VP,Q(f)

√
2KL(P,Q) . (11)

Finally, we bound the last term in (9):

(EP [f ]− EQ[f ])
∑

x:P (x)>Q(x)

(Q(x)− P (x))
(a)
=

1

2
(EQ[f ]− EP [f ])‖P −Q‖1

6
1

2
S(f)‖P −Q‖21

(b)

6 S(f)KL(P,Q) , (12)

where (a) follows from the fact that for any pair of distributions U, V ∈ P(X ), it holds that∑
x∈X |U(x)− V (x)| = 2

∑
x:U(x)>V (x)(U(x)− V (x)), and where (b) follows from Pinsker’s

inequality. The proof is concluded by combining (10), (11), and (12). �

B.4 Proof of Lemma 13

Statement (i) is a direct consequence of the definition of VP,Q. We next prove statement
(ii). Observe that Lemma 22 implies that for all x ∈ X

|P (x)−Q(x)| 6
√

2 max(P (x), Q(x))KL(Q,P ) .
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Hence,

VP,Q(f) =
∑

x:P (x)>Q(x)

P (x)(f(x)− EP [f ])2

6
∑

x:P (x)>Q(x)

Q(x)(f(x)− EP [f ])2 +
√

2KL(Q,P )
∑

x:P (x)>Q(x)

√
P (x)(f(x)− EP [f ])2 .

(13)

The first term in the right-hand side of (13) is bounded as follows:∑
x:P (x)>Q(x)

Q(x)(f(x)− EP [f ])2 6 2
∑

x:P (x)>Q(x)

Q(x)(f(x)− EQ[f ])2 + 2(EQ[f ]− EP [f ])2

6 2VQ(f) + 2(EQ[f ]− EP [f ])2 .

Note that
(EQ[f ]− EP [f ])2 6 S(f)2‖P −Q‖21 6 2S(f)2KL(Q,P ) ,

which further gives∑
x:P (x)>Q(x)

Q(x)(f(x)− EP [f ])2 6 2VQ(f) + 4S(f)2KL(Q,P ) .

Now we consider the second term in (13). First observe that∑
x:P (x)>Q(x)

√
P (x)(f(x)− EP [f ])2 6

√ ∑
x:P (x)>Q(x)

P (x)(f(x)− EP [f ])2
√∑

x

(f(x)− EP [f ])2

6
√
VP,Q(f)S(f)

√
|X | ,

thanks to Cauchy-Schwarz inequality. Hence, the second term in (13) is upper bounded by

S(f)
√

2|X |VP,Q(f)KL(Q,P ) .

Combining the previous bounds together, we get

VP,Q(f) 6 2VQ(f) + 4S(f)2KL(Q,P ) + S(f)
√

2|X |VP,Q(f)KL(Q,P ) ,

which leads to(√
VP,Q(f)− S(f)

√
|X |KL(Q,P )/2

)2
6 2VQ(f) + S(f)2(|X |/2 + 4)KL(Q,P ) ,

so that using the inequality
√
a+ b 6

√
a+
√
b, we finally obtain√

VQ,P (f) 6
√

2VQ(f) + S(f)2(|X |/2 + 4)KL(Q,P ) + S(f)
√
|X |KL(Q,P )/2

6
√

2VQ(f) + S(f)(
√

2|X |+ 2)
√
KL(Q,P ) .

The proof is completed by observing that
√

2|X |+ 2 6 3
√
|X | for |X | > 2. �
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B.5 Proof of Lemma 16

Let δ ∈ (0, 1) and (s, a) ∈ S ×A. Consider an episode k > 1 such that M ∈Mk, and define
p̂k = p̂k(·|s, a), p = p(·|s, a), and Nk = Nk(s, a). Observe that by a Bernstein-like inequality
(Dann et al., 2017, Lemma F.2), we have: for all s′ ∈ S, with probability at least 1− δ,

p̂k(s
′)− p(s′) 6

√
2p(s′)Cb
Nk

+
2Cb
Nk

,

with Cb = Cb(t, δ) := log(3 log(max(e, t))/δ). It then follows that with probability at least
1− δ,

Vp̂k(f) =
∑
s′

p̂k(s
′)(f(s′)− Ep̂k [f ])2

6
∑
s′

p(s′)(f(s′)− Ep̂k [f ])2 +

√
2Cb
Nk

∑
s′

√
p(s′)(f(s′)− Ep̂k [f ])2 +

2Cb
Nk

∑
s′

(f(s′)− Ep̂k [f ])2

6
∑
s′

p(s′)(f(s′)− Ep̂k [f ])2︸ ︷︷ ︸
Z1

+

√
2Cb
Nk

∑
s′

√
p(s′)(f(s′)− Ep̂k [f ])2︸ ︷︷ ︸

Z2

+
2CbSS(f)2

Nk
. (14)

Next we bound Z1 and Z2. Observe that

Z1 6 2
∑
s′

p(s′)(f(s′)− Ep[f ])2 + 2(Ep[f ]− Ep̂k [f ])2

6 2Vp(f) + 4S(f)2KL(p̂k, p) ,

where the last inequality follows from

(Ep[f ]− Ep̂k [f ])2 6 S(f)2‖p− p̂k‖21 6 2S(f)2KL(p̂k, p) . (15)

For Z2 we have

Z2 6 2
∑
s′

√
p(s′)(f(s′)− Ep[f ])2 + 2(Ep[f ]− Ep̂k [f ])2

∑
s′

√
p(s′) .

Now, using Cauchy-Schwarz inequality∑
s′

√
p(s′)(f(s′)− Ep[f ])2 6

√∑
s′

p(s′)(f(s′)− Ep[f ])2
∑
s′

(f(s′)− Ep[f ])2

6
√
SVp(f)S(f) ,

so that using (15), we deduce that

Z2 6 2S(f)
√
SVp(f) + 4S(f)2KL(p̂k, p)

∑
s′

√
p(s′)

6 2S(f)
√
SVp(f) + 4S(f)2KL(p̂k, p)

√
S ,
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where the last inequality follows from Jensen’s inequality:

∑
s′

√
p(s′) =

∑
s′

p(s′)

√
1

p(s′)
6
∑
s′

√
p(s′)

p(s′)
=
√
S .

Putting together, we deduce that with probability at least 1− δ,

Vp̂k(f) 6 2Vp(f) + 2S(f)

√
2SCb
Nk

(√
Vp(f) + 2S(f)KL(p̂k, p)

)
+ S(f)2

(
4KL(p̂k, p) +

2SCb
Nk

)
.

Noting that M ∈Mk, we obtain

Vp̂k(f) 6 2Vp(f) + S(f)

√
8SVp(f)Cb

Nk
+ 4S(f)2

√
2SCbCp

N
3/2
k

+
(4Cp + 2SCb)S(f)2

Nk

6 2Vp(f) + S(f)

√
8SVp(f)Cb

Nk
+
SS(f)2

Nk
(16B

√
2SCb + 16B + 2Cb)

6 2Vp(f) + S(f)

√
8SVp(f)B

Nk
+

36S3/2B3/2S(f)2

Nk
,

with probability at least 1− δ, where we used Cp = 4SB, Cb 6 B, and S > 2. The proof is
concluded by observing that

√
Vp̂k(f) 6

√
2Vp(f) + S(f)

√
SB

Nk
+ 6S(f)B

√
S3/2

Nk

6
√

2Vp(f) +
6SS(f)B√

Nk
,

with probability at least 1− δ. �

Appendix C. Regret Upper Bound for KL-Ucrl

In this section, we provide the proof of the main result (Theorem 14). We will try to closely
follow the notations used in the proof of (Jaksch et al., 2010, Theorem 2).

We first recall the following result indicating that the true model belongs to the set of
plausible MDPs with high probability. Recall that for δ ∈ (0, 1] and t ∈ N,

Cµ := Cµ(T, δ) = log(4SA log(T )/δ)/1.99 ,

Cp := Cp(T, δ) = S (B + log(G)(1 + 1/G)) ,

where

B : = B(T, δ) = log(2eS2A log(T )/δ) , (16)

G : = G(T, δ) = B + 1/ log(T ) .

Moreover, observe that Cp 6 4SB.

24



Variance-Aware Regret Bounds in MDPs

Lemma 19 ((Filippi et al., 2010, Proposition 1)) For all T > 1 and δ > 0, and for
any pair (s, a), it holds that

P
(
∀t 6 T, |µ̂t(s, a)− µ(s, a)| 6

√
Cµ/Nt(s, a)

)
> 1− δ

SA
,

P
(
∀t 6 T, Nt(s, a)KL(p̂t(s, a), p(·|s, a)) 6 Cp

)
> 1− δ

SA
.

In particular, P(∀t 6 T, M ∈Mt) > 1− 2δ.

Next we prove the theorem.

Proof (of Theorem 14). Let T > 1 and δ ∈ (0, 1). Fix algorithm A = KL-Ucrl. Denote by
m(T ) the number of episodes started by KL-Ucrl up to time step T (hence, 1 6 k 6 m(T )).

By applying Azuma-Hoeffding inequality, as in the proof of (Jaksch et al., 2010, Theo-
rem 2), we deduce that

RA,T = Tg? −
T∑
t=1

r(st, at) 6
∑
s,a

NT (s, a)(g? − µ(s, a)) +
√

1
2T log(1/δ) ,

with probability at least 1− δ. The regret up to time T can be decomposed as the sum of
the regret incurred in various episodes. Let ∆k denote the regret in episode k:

∆k :=
∑
s,a

vk(s, a)(g? − µ(s, a)) .

Therefore, Lemma 19 implies that with probability at least 1− 3δ,

RA,T 6
m(T )∑
k=1

∆kI{M ∈Mk}+
√

1
2T log(1/δ) .

Next we derive an upper bound on the first term in the right-hand side of the above
inequality. Consider an episode k > 1 such that M ∈ Mk. The state-action pair (s, a)
is considered as sufficiently sampled in episode k if its number of observations satisfies
Nk(s, a) > `s,a, with

`s,a = `s,a(T, δ) := max
{128SBmax(Ψ2, 1)

ϕ(s, a)2
, 32SB

( log(D)

log(1/γ)

)2}
, ∀s, a ,

where B is given in (16), and where γ denotes the contraction factor of the mapping induced
by the transition probability matrix P? of the optimal policy (γ can be determined as a
function of elements of P?).

Now consider the case where all state-action pairs are sufficiently sampled in episode k
(we analyse the case where some pairs are under-sampled (i.e., not sufficiently sampled) at
the end of the proof). We have

|µ̃k(s, a)− µ(s, a)| 6 |µ̃k(s, a)− µ̂k(s, a)|+ |µ̂k(s, a)− µ(s, a)| 6 2

√
Cµ

Nk(s, a)+
.
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Hence,

∆k =
∑
s,a

vk(s, a)(g? − µ̃k(s, a)) +
∑
s,a

vk(s, a)(µ̃k(s, a)− µ(s, a))

6
∑
s,a

vk(s, a)(g? − µ̃k(s, a)) + 2
√
Cµ
∑
s,a

vk(s, a)√
Nk(s, a)+

.

Let µ̃k and P̃k respectively denote the reward vector and transition probability matrix
induced by the policy π̃k on M̃k, i.e., µ̃k := (µ̃k(s, π̃k(s)))s, P̃k :=

(
p̃k(s

′|s, π̃k(s))
)
s,s′

. By

Bellman optimality equation, g̃k− µ̃k(s, a) = (P̃k−I)b̃k. Hence, defining vk = (vk(s, π̃k(s))s
yields

∆k 6 vk(P̃k − I)b̃k + (g? − g̃k)vk1 + 2
√
Cµ
∑
s,a

vk(s, a)√
Nk(s, a)+

.

Now we use the following decomposition:

vk(P̃k − I)b̃k = vk(P̃k − Pk)b?︸ ︷︷ ︸
F1(k)

+ vk(P̃k − Pk)(b̃k − b?)︸ ︷︷ ︸
F2(k)

+ vk(Pk − I)b̃k︸ ︷︷ ︸
F3(k)

.

Let c = 1 +
√

2. The following two lemmas provide upper bounds for F1(k) and F2(k):

Lemma 20 For all k ∈ N such that M ∈Mk, with probability at least 1− δ, it holds that

F1(k) 6 (4 + 6
√

2)
√
SB

∑
s,a

vk(s, a)

√
V?
s,a

Nk(s, a)+
+ 63ΨS3/2B3/2

∑
s,a

vk(s, a)

Nk(s, a)+
.

Lemma 21 Let k ∈ N be the index of an episode such that M ∈ Mk. Assuming that
Nk(s, a) > `s,a for all s, a, it holds that

F2(k) + (g? − g̃k)vk1 6
(
2
√

32SB + 1
)∑
s,a

vk(s, a)√
Nk(s, a)+

.

Analysis of Term F3. Now we bound the term
∑m(T )

k=1 F3(k). To this end, similarly to the
proof of (Jaksch et al., 2010, Theorem 2) and (Filippi et al., 2010, Theorem 1), we define the
martingale difference sequence (Zt)t>1, where Zt = (p(·|st, at)−est+1)b̃k(t)I{M ∈Mk(t)} for
t ∈ {tk, tk+1−1}, where k(t) denotes the episode containing t. Note that for all t, |Zt| 6 2D.
Now applying Azuma-Hoeffding inequality, we deduce that with probability at least 1− δ

m(T )∑
k=1

F3(k) 6
T∑
t=1

Zt + 2m(T )D

6 D
√

2T log(1/δ) + 2DSA log2
(
8T
SA

)
.
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The regret due to under-sampled state-action pairs. To analyze the under-sampled
regime, where some state-action pair is not sufficiently sampled, we borrow some techniques
from (Auer and Ortner, 2007). For any state-action pair (s, a), let Ls,a denote the set of
indexes of episodes in which (s, a) is chosen and yet (s, a) is under-sampled; namely k ∈ Ls,a
if π̃k(s) = a and Nk(s, a) 6 `s,a. Furthermore, let τk(s, a) denote the length of such an
episode.

Consider an episode k ∈ Ls,a. By Markov’s inequality, with probability at least 1
2 , it

takes at most 2TM to reach state s from any state s′ in k, where TM is the mixing time of
M . Let us divide episode k into b τk(s,a)2TM

c sub-episodes, each with length greater than 2TM .

It then follows that in each sub-episode, (s, a) is visited with probability at least 1
2 .

Using Hoeffding’s inequality, if we consider n such sub-episodes, with probability at least
1− δ

SA ,

N(s, a) > n/2−
√
n log(SA/δ).

Now we find n that implies N(s, a) < `s,a. Noting that x 7→ x
2 −
√
αx is increasing for

x > α, we have that for n > 10 max(`s,a, log(SA/δ)),

n/2−
√
n log(SA/δ) > 5 max(`s,a, log(SA/δ))−

√
10 max(`s,a, log(SA/δ)) log(SA/δ)

> max(`s,a, log(SA/δ)) .

Hence, with probability at least 1− δ
SA , it holds that∑

k∈Ls,a

⌊τk(s, a)

2TM

⌋
6 10 max(`s,a, log(SA/δ)) .

Hence, the regret due to under-sampled state-action pairs can be upper bounded by∑
s,a

∑
k∈Ls,a

τk(s, a) 6 20TM
∑
s,a

max(`s,a, log(SA/δ)) + 2TM
∑
s,a

|Ls,a|

6 20TM
∑
s,a

max(`s,a, log(SA/δ)) + 2TMS
2A2 log2

(
8T
SA

)
,

with probability at least 1− δ. Here we used that |Ls,a| 6 m(T ).
Now applying Lemmas 20 and 21 together with the above bounds, and using the fact

Cµ 6 B/1.99, we deduce that with probability at least 1− 3δ

m(T )∑
k=1

∆kI{M ∈Mk} 6 (4 + 6
√

2)
√
SB

∑
s,a

vk(s, a)√
Nk(s, a)+

√
V?
s,a

+ (2
√

32SB + 3
√
B + 1)

∑
s,a

vk(s, a)√
Nk(s, a)+

+ 63ΨS3/2B3/2
∑
s,a

vk(s, a)

Nk(s, a)+

+D
√

2T log(1/δ) + 2DSA log2
(
8T
SA

)
+ 20TM

∑
s,a

max(`s,a, log(SA/δ)) + 2TMS
2A2 log2

(
8T
SA

)
.
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To simplify the above bound, we will use Lemmas 23, 24, and 25 together with Jensen’s
inequality:

m(T )∑
k=1

∑
s,a

vk(s, a)√
Nk(s, a)+

6 c
∑
s,a

√
NT (s, a) 6 c

√
SAT ,

m(T )∑
k=1

∑
s,a

vk(s, a)√
Nk(s, a)+

√
V?
s,a 6 c

∑
s,a

√
V?
s,aNT (s, a) 6 c

√
T
∑

s,a V?
s,a ,

m(T )∑
k=1

∑
s,a

vk(s, a)

Nk(s, a)+
6 2

∑
s,a

log(NT (s, a)) + SA 6 2SA log
(
T
SA

)
+ SA .

Putting everything together, we deduce that with probability at least 1− 6δ,

RA,T 6
m(T )∑
k=1

∆kI{M ∈Mk}+
√

1
2T log(1/δ)

6 31

√
S
∑
s,a

V?
s,aTB + 35S

√
ATB + (

√
2D + 1)

√
T log(1/δ)

+ 126S5/2AB5/2 log
(
T
SA

)
+ 2DSA log2

(
8T
SA

)
+ 20TM

∑
s,a

max(`s,a, log(SA/δ)) + 2TMS
2A2 log2

(
8T
SA

)
+ 63S5/2A .

Hence,

RA,T 6 31

√
S
∑
s,a

V?
s,aTB + 35S

√
ATB + (

√
2D + 1)

√
T log(1/δ)

+ Õ
(
SA(TMSA+D + S3/2) log(T )

)
.

Noting that B = O(log(log(T )/δ)) gives the desired scaling and completes the proof. �

Next we prove Lemmas 20 and 21.

C.1 Proof of Lemma 20

We have
F1(k) = vk(P̂k − Pk)b?︸ ︷︷ ︸

G1

+ vk(P̃k − P̂k)b?︸ ︷︷ ︸
G2

Next we provide upper bounds for G1 and G2.

Term G1. We have

G1 =
∑
s

vk(s, πk(s))
∑
s′

b?(s′)
(
p̂k(s

′|s, πk(s))− p(s′|s, πk(s))
)

6
∑
s,a

vk(s, a)
∑
s′

b?(s′)
(
p̂k(s

′|s, a)− p(s′|s, a)
)
.
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Fix s ∈ S and a ∈ A. Define the short-hands p = p(·|s, a), p̂k = p̂k(·|s, a), and
N+
k = Nk(s, a)+. Applying Corollary 11 (the first statement) and using the fact that

M ∈Mk give: ∑
s′

b?(s′)(p̂k(s
′)− p(s′)) 6

√
2V?

s,aKL(p̂k, p) +
2

3
ΨKL(p̂k, p)

6
√

8SV?
s,aB/N

+
k +

8ΨSB

3N+
k

.

Therefore,

G1 6
√

8SB
∑
s,a

vk(s, a)
√

V?
s,a/Nk(s, a)+ +

8

3
ΨSB

∑
s,a

vk(s, a)/Nk(s, a)+ .

Term G2. We have

G2 6
∑
s,a

vk(s, a)
∑
s′

b?(s′)
(
p̃k(s

′|s, a)− p̂k(s′|s, a)
)
.

Fix s ∈ S and a ∈ A. Define the short-hands p̂k = p̂k(·|s, a), p̃k = p̃k(·|s, a), and
N+
k = Nk(s, a)+. An application of Lemma 12 and Lemma 13 gives∑
s′

b?(s′)(p̃k(s
′)− p̂k(s′)) 6

(√
Vp̃k,p̂k(b?) +

√
Vp̂k,p̃k(b?)

)√
2KL(p̂k, p̃k) + ΨKL(p̂k, p̃k)

6 c
√

2Vp̂k(b?)KL(p̂k, p̃k) + Ψ(1 + 3
√

2S)KL(p̂k, p̃k) ,

where c = 1 +
√

2. Note that when M ∈ Mk, an application of Lemma 16 implies that,
with probability at least 1− δ,

∑
s′

b?(s′)(p̃k(s
′)− p̂k(s′)) 6 4c

√
SV?

s,aB/N
+
k +

ΨS3/2B3/2

N+
k

(12c
√

2 + 12
√

2 + 4/
√
S)

6 4c
√
SV?

s,aB/N
+
k +

61ΨS3/2B3/2

N+
k

,

where we used that S > 2. Multiplying by vk(s, a) and summing over s, a yields

G2 6 4c
√
SB

∑
s,a

vk(s, a)
√

V?
s,a/Nk(s, a)+ + 61ΨS3/2B3/2

∑
s,a

vk(s, a)/Nk(s, a)+ .

The lemma follows by combing bounds on G1 and G2.

�

C.2 Proof of Lemma 21

Let k > 1 be the index of an episode such that M ∈ Mk. Let ?̃ := ?̃k denote the optimal
policy in Mk. The proof proceeds in three steps.
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Step 1. We remark that by definition of the bias functions, it holds that

b̃k − b? = (g? − g̃k)1 + µ̃k + P̃kb
? − µ? − P?b? + P̃k(b̃k − b?)

6 (g̃?̃ − g̃k)1 + µ̃k − µk + (P̃k − Pk)b? + P̃k(b̃k − b?)− ϕk ,

where we define ϕk(s) := ϕ(s, π̃k(s)) for all s. Defining

ξk(s) = 2
√
Cµ/Nk(s, π̃k(s))+, ζk(s) = Ψ

√
32SB/Nk(s, π̃k(s))+ ,

we obtain the following bound:

b̃k − b? 6
1√
tk

1 + ξk + ζk − ϕk + P̃k(b̃k − b?) .

It is straightforward to check that the assumption Nk(s, π̃k(s)) > `s,π̃k(s) for all s implies

b̃k − b? 6 P̃k(b̃k − b?) . (17)

Note also that ϕ(s, π̃k(s)) > 0 since ? is b?-improving.
On the other hand, it holds that

b? − b̃?̃ = (g̃?̃ − g?)1 + µ? + P?b
? − µ̃?̃ − P̃?̃b̃?̃

6 (g̃?̃ − g?)1 + µ? + P?b
? − µ? − P?b̃?̃

= (g̃?̃ − g?)1 + P?(b
? − b̃?̃) .

Noting P?1 = 1, and since all entries of P? are non-negative, we thus get for all J ∈ N,

b? − b̃?̃ 6 J(g̃?̃ − g?)1 + P J? (b? − b̃?̃) .

Step 2. Let us now introduce S+s = {x ∈ S : P̃k(s, x) > Pk(s, x)} as well as its comple-
mentary set S−s = S \ S+s . Using (17), b̃k − b? 6 0 so that

vk(P̃k − Pk)(b̃k − b?) =
∑
s

vk(s, π̃k(s))
∑
x∈S

(P̃k(s, x)− Pk(s, x))(b̃k(x)− b?(x))

6
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x)︸ ︷︷ ︸
>0

)(b?(x)− b̃k(x)) .

We thus obtain

vk(P̃k − Pk)(b̃k − b?) 6
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(b?(x)− b̃?̃(x))

+
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(b̃?̃(x)− b̃k(x))

6
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))[P J? (b? − b̃?̃)](x)

+
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(b̃?̃(x)− b̃k(x))

− J
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(g? − g̃?̃) . (18)
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We thus get∑
s

vk(s, π̃k(s))

(
(P̃k − Pk)(b̃k − b?)(s) + g? − g̃?̃

)
6
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))[P J? (b? − b̃?̃)](x) + ηk

+
∑
s

vk(s, π̃k(s))

[
1− J

∑
x∈S−s

(Pk(s, x)− P̃k(s, x))

]
(g? − g̃?̃) , (19)

where ηk :=
∑

s vk(s, π̃k(s))
∑

x∈S−s (Pk(s, x) − P̃k(s, x))(b̃?̃(x) − b̃k(x)) is controlled by the

error of computing b̃k in episode k. In particular, for the considered variant of the algorithm,

ηk 6
∑
s

vk(s, π̃k(s))‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1
1√
tk

6
√

32SB
∑
s

vk(s, π̃k(s))

Nk(s, π̃k(s))+
,

where we used tk > Nk(s, π̃k(s)) for all s.

Step 3. It remains to choose J . To this end, we remark that the mapping induced by P?
is a contractive mapping, namely there exists some γ < 1 such that for any function f ,

S(P?f) 6 γS(f) .

Let us choose J > log(D)
log(1/γ) , so that with a simple upper bound, it comes∑

s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))[P J? (b? − b̃?̃)](x)

6
∑
s

vk(s, π̃k(s))‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1
S(P J? (b? − b̃??̃))

2

6
∑
s

vk(s, π̃k(s))‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1De− log(D)

6
∑
s

vk(s, π̃k(s))

√
32SB

Nk(s, π̃k(s))+
.

In the sequel, we take J = log(D)
log(1/γ) . This enables us to control the first two terms in (19)

and it remains to control the term∑
s

vk(s, π̃k(s))

[
1− J

∑
x∈S−s

(Pk(s, x)− P̃k(s, x))

]
(g? − g̃?̃) .

In particular we would like to ensure that the term in brackets is non-negative, since in
that case, it is multiplied by a term that is negative. To this end, we note that the term in
brackets is lower bounded by

1− J‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1 > 1− log(D)

log(1/γ)

√
32SB

Nk(s, π̃k(s))+
,
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and is thus guaranteed to be non-negative since

Nk(s, π̃k(s)) > `s,π̃k(s) > 32SB
( log(D)

log(1/γ)

)2
.

Putting together, we finally have shown that

vk(P̃k − Pk)(b̃k − b?) + vk(g
? − g̃k)1 6 vk(P̃k − Pk)(b̃k − b?) + vk(g

? − g̃?̃)1 +
1√
tk
vk1

6
(
2
√

32SB + 1
)∑

s

vk(s, π̃k(s))√
Nk(s, π̃k(s))+

6
(
2
√

32SB + 1
)∑
s,a

vk(s, a)√
Nk(s, a)+

,

which completes the proof. �

Appendix D. Technical Lemmas

In this section we provide supporting lemmas for the regret analysis. The following lemma
provides a local version of Pinsker’s inequality for two probability distributions, which can be
seen as the extension of (Garivier et al., 2016, Lemma 2) for the case of discrete probability
measures.

Lemma 22 Let P and Q be two probability distributions on a finite alphabet X . Then,

KL(P,Q) >
1

2

∑
x:P (x)6=Q(x)

(P (x)−Q(x))2

max(P (x), Q(x))
.

Proof. The first and second derivatives of KL satisfy:

∂

∂P (x)
KL(P,Q) = 1 + log

P (x)

Q(x)
, ∀x ∈ X ,

∂2

∂P (x)∂P (y)
KL(P,Q) =

I{x = y}
P (x)

, ∀x, y ∈ X .

By Taylor’s Theorem, there exists a probability vector Ξ, where Ξ = tP + (1− t)Q for
some t ∈ (0, 1), so that

KL(P,Q) = KL(Q,Q) +
∑
x

(P (x)−Q(x))
∂

∂P
KL(Q,Q)

+
1

2

∑
x,y

(P (x)−Q(x))(P (y)−Q(y))
∂2

∂P (x)∂P (y)
KL(Ξ, Q)

=
∑
x

(P (x)−Q(x)) +
∑
x

(P (x)−Q(x))2

2Ξ(x)

>
∑

x:P (x)6=Q(x)

(P (x)−Q(x))2

2 max(P (x), Q(x))
,

thus concluding the proof. �
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Lemma 23 ((Jaksch et al., 2010, Lemma 19)) Consider the sequence (zk)16k6n with
0 6 zk 6 Zk−1 := max

{
1,
∑k−1

i=1 zi
}

for k > 1 and Z0 > 1. Then,

n∑
k=1

zk√
Zk−1

6 (
√

2 + 1)
√
Zn .

Lemma 24 Consider a sequence (zk)16k6n with 0 6 zk 6 Zk−1 := max
{

1,
∑k−1

i=1 zi
}

for
k > 1 and Z0 = z1. Then,

n∑
k=1

zk
Zk−1

6 2 log(Zn) + 1 .

Proof. We prove the lemma by induction over n. For n = 1, we have z1/Z0 = 1. Since
Z1 = max{1, z1}, it holds that z1/Z0 6 2 log(Z1) + 1.

Now consider n > 1. By the induction hypothesis, it holds that
∑n−1

k=1 zk/Zk−1 6
2 log(Zn−1) + 1. Now it follows from the facts zn = Zn −Zn−1 and Zn−1 6 Zn 6 2Zn−1 for
n > 2, that

n∑
k=1

zk
Zk−1

6 2 log(Zn−1) +
zn
Zn−1

+ 1

6 2 log(Zn−1) + 2
Zn − Zn−1

Zn
+ 1

= 2 log(Zn−1) + 2
(

1− 1

Zn/Zn−1

)
+ 1 6 2 log(Zn) + 1 ,

where the last inequality follows from log(x) > 1− 1
x valid for all x > 1 (see, e.g., (Topsøe,

2006)). This concludes the proof. �

Lemma 25 Let αi, . . . , αd be non-negative numbers and T > 1, and denote by V the optimal
value of the following problem:

max
x

d∑
i=1

√
αixi

s.t.
d∑
i=1

xi = T .

Then, V =
√
T
∑d

i=1 αi.

Proof. Introduce the Lagrangian

L(x, λ) =
d∑
i=1

√
αixi + λ

(
T −

d∑
i=1

xi

)
.
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Writing KKT conditions, we observe that the optimal point x?i , i = 1, . . . , d satisfies

αi

2
√
x?i
− λ = 0, ∀i, and

d∑
i=1

x?i − T = 0 .

Hence, we obtain x?i = αi/(4λ
2). Plugging this into the equality constraint, it follows that

λ =
√

1
4T

∑d
j=1 αj , thus giving x?i = αiT/

∑d
j=1 αj . Therefore,

V =
d∑
i=1

√
αix?i =

d∑
i=1

αi∑d
j=1 αj

√
T
∑d

j=1 αj =
√
T
∑d

j=1 αj ,

which completes the proof. �

Appendix E. Background Material on Undiscounted MDPs

In this section, we provide the proof of a number of standard results for the sake of self-
containedness, and as we believe it helps get intuition on learning in MDPs.

E.1 Proof of Lemma 4

We provide below a short proof of this standard result for the sake of self-containedness.

The fundamental matrix. We first prove the relation involving the fundamental matrix.
We note that by direct application of the relation P πPπ = PπP π = P πP π = P π, it comes

(I − Pπ + P π)bπ =

∞∑
t=1

(I − Pπ)(P t−1π − P π)µπ + P π(P t−1π − P π)︸ ︷︷ ︸
0

µπ

=
∞∑
t=1

(I − Pπ)P t−1π µπ − (I − Pπ)P π︸ ︷︷ ︸
0

µπ =
∞∑
t=1

(
P t−1π − P tπ

)
µπ .

Thus, it remains to show that the latter sum equals I − P π. When Pπ is aperiodic, then
the limit limt P

t
π exists and is equal to P π. Thus, we easily get

∞∑
t=1

P t−1π − P tπ = lim
T→∞

(I − P Tπ ) = I − lim
T→∞

P Tπ = I − P π .

The general case is more intricate, and we refer to (Puterman, 2014).

Bellman equation. Now in order to obtain the Bellman equation, we simply note that

Pπbπ =
∞∑
t=1

(P tπ − P π)µπ =
∞∑
t=2

(P t−1π − P π)µπ

= bπ − (I − P π)µπ = bπ − µπ + gπ .
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E.2 Value Iteration and Stopping Criterion

Definition 26 (Value iteration) The value iteration procedure defines a sequence of func-
tions (un)n∈N and policies (πn)n∈N according to the following equations

∀n ∈ N

{
un+1(s) = maxa∈A µ(s, a) + (Paun)(s) , where u0 = 0

πn+1(s) = U
(

Argmaxa∈A µ(s, a) + (Paun)(s)
)
,

where U(B) denotes the uniform distribution over a set B.

The following result is useful in order to better understand the effect of the classical
stopping criterion used for the value iteration procedure.

Lemma 27 (Value and gain) Let us assume that n is such that S(un+1−un) 6 ε. Then
it holds that

g? − gπn+1 6 ε, |un+1 − un − g?| 6 ε, and |un+1 − un − gπn+1| 6 ε .

Proof. We first show that the average gain satisfies Pπgπ = gπ and

∀n ∈ N, P πn+1 [un+1 − un] 6 gπn+1 6 g? 6 P ?[un+1 − un] .

Indeed, we note that since P ?P? = P ?, then for any function f , g? = P ?[µ? + P?f − f ].
Applying to the function un, it comes

g? = P ?[µ? + P?un − un]

6 P ?[µπn+1 + Pπn+1un − un]

= P ?(un+1 − un) ,

where in the second line, we used the maximal property of πn+1. On the other hand, we
use the equality

gπn+1 = P πn+1 [µπn+1 + Pπn+1un − un] = P πn+1(un+1 − un) ,

together with the fact that by optimality of ?, g? > gπn+1 .
Thus, all in all it holds on the one hand

g? − gπn+1 6 P ?[un+1 − un]− P πn+1 [un+1 − un]

6 max
s∈S

(un+1 − un)(s)−min
s∈S

[un+1 − un] = S(un+1 − un) .

On the other hand, using similar steps,

0 6 P ?[un+1 − un]− g? 6 max
s∈S

[un+1 − un]− g?

6 max
s∈S

[un+1 − un]− P πn+1 [un+1 − un] 6 S(un+1 − un) .

Thus, for all s ∈ S, (un+1 − un)(s) − g? 6 ε. Likewise, we get the reverse inequality
0 6 g? −mins∈S(un+1 − un)(s) 6 S(un+1 − un) 6 ε. The last bound is immediate from the
relation gπn+1 = P πn+1(un+1 − un). �
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E.3 Pseudo-Regret

The following result relates the effective regret to the pseudo-regret

Lemma 28 (Effective regret to pseudo-regret reduction) Let π be any stationary pol-
icy. Then it comes for all T ,

E[Rπ,T (s1)] =
(
[P T−1π − I]b?

)
(s1) +

∑
s,a

E[NT (s, a)]ϕ(s, a)

6 D +
∑
s,a

E[NT (s, a)]ϕ(s, a) .

Proof. Since g? is a constant function, it first comes

E[Rπ,T ] =

T∑
t=1

(
g? − P t−1π µπ

)
=

T∑
t=1

P t−1π

(
g? − µπ

)
.

Then, we note that by construction, it holds that g? − µ? = (P? − I)b?. Introducing the
sub-optimality gap ϕπ(s) := ϕ(s, π(s)) = µ?(s) + (P?b?)(s) − µπ(s) − (Pπb?)(s), it then
comes

g? − µπ = ϕπ + g? − µ? − P?b? + Pπ̃b? = (Pπ − I)b? + ϕπ .

Thus far, we have we obtained that

E[Rπ,T ] =
T∑
t=1

P t−1π ϕπ +
T∑
t=1

P t−1π (Pπ − I)b? =
T∑
t=1

P t−1π ϕπ + (P T−1π − I)b? .

In order to conclude, we note that

(

T∑
t=1

P t−1πk
ϕπk)(s1) =

T∑
t=1

Est−1 [ϕπk(st−1)]

=
∑
s,a

ϕ(s, a)

T∑
t=1

Est−1 [I{st−1 = s, πk(s) = a}] =
∑
s,a

ϕ(s, a)E[NT (s, a)] .

For the inequality, we use the simple bound [P T−1π −I]b? 6 ‖P T−1π −I‖1 12S(b?) 6 D . Putting
these together concludes the proof. �
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