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Abstract. In [4, 5, 6], we have introduced the technique of classical realizability, which permits

to extend the Curry-Howard correspondence between proofs and programs, to Zermelo-Fraenkel

set theory. The models of ZF we obtain in this way, are called realizability models ; this technique

is an extension of the method of forcing, in which the ordered sets (sets of conditions) are replaced

with more complex first order structures called realizability algebras.

We show here that every realizability model N of ZF contains a transitive submodel, which

has the same ordinals as N , and which is an elementary extension of the ground model. It

follows that the constructible universe of a realizability model is an elementary extension of the

constructible universe of the ground model.

We obtain this result by showing the existence of an ultrafilter on the characteristic Boolean

algebra 2ג of the realizability model, which is defined in [5, 6].

Introduction

We use here the basic notions and notations of the theory of classical realizability, which
was developed in [4, 5, 6].
We consider a model M of ZF + V = L, which we call the ground model 1 and, in M,
a realizability algebra A = (Λ,Π,Λ ⋆Π,QP,⊥⊥).
Λ is the set of terms, Π is the set of stacks, Λ ⋆ Π is the set of processes, QP ⊂ Λ is the
set of proof-like terms, and ⊥⊥ is a distinguished subset of Λ ⋆Π.
They satisfy the axioms of realizability algebra, which are given in [4] or [6].
In the model M, we use the language of ZF with the binary relation symbols /∈,⊂ and
function symbols, which we shall define when needed, by means of formulas of ZF.
We can now build (see [4]) the realizability model N , which has the same set of individuals
as M, the truth value set of which is P(Π), endowed with a suitable Boolean algebra
structure.

1In fact, it suffices that M satisfy the choice principle CP, which is written as follows, in the language
of ZF with a new binary relation symbol ⊳ : “ ⊳ is a well ordering relation on M”.

It is well known that, in every countable model of ZFC, we can define such a binary symbol, so as to get
a model of ZF + CP. Thus, ZF + CP is a conservative extension of ZFC.
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The language of this model has three binary relation symbols ε/ , /∈,⊂, and the same
function symbols as the model M, with the same interpretation.

The formulas are built as usual, from atomic formulas, with the only logical symbols
⊥,→, ∀. We shall use the notations :
¬F for F → ⊥ ; F1, . . . , Fn → F for (F1 → (. . .→ Fn) → F ;
∃xF for ¬∀x¬F ; ∃x{F1, . . . , Fn} for ¬∀x(F1, . . . , Fn → ⊥).

Notation. We shall often use the notation ~x for a finite sequence x1, . . . , xn ; for instance, we

shall write F [~x] for F [x1, . . . , xn].

By means of the completeness theorem, we obtain from N an ordinary model N ′, with
truth values in {0, 1}. The set of individuals of N ′ generally strictly contains N .
The elements of N ′ (resp. M) are called individuals of N (resp. M). The individuals
are generally denoted by a, b, c, . . . , a0, a1, . . .

In [4] or [5], we define a theory ZFε, written in this language. We show that it is a
conservative extension of ZF, and that the model N satisfies the axioms of ZFε, which
means that each of these axioms is realized by a proof-like term.
Given a term ξ ∈ Λ and a closed formula F [a1, . . . , an] in the language of ZFε, with
parameters a1, . . . , an in N (or, which is the same, in M), we shall write :
ξ ‖− F [a1, . . . , an] in order to say that the term ξ realizes F [a1, . . . , an].
The truth value of this formula is a subset of Π, denoted by ‖F [a1, . . . , an]‖.
We write ‖−F [a1, . . . , an] in order to say that F [a1, . . . , an] is realized by some proof-like
term.

Thus, the model N ′ satisfies ZFε ; therefore, in N ′, we can define a model of ZF, de-
noted N ′

∈, in which the equality is interpreted by the extensional equivalence denoted by
x ≃ y (that is x ⊂ y ∧ y ⊂ x).

The general properties of the realizability models are described in [6] ; we shall use the
definitions and notations of this paper.

In what follows, unless otherwise stated, each formula of ZFε must be interpreted in N
(its truth value is a subset of Π) or, if one prefers, in N ′ (then its truth value is 0 or 1).
If the formula must be interpreted in M, (in that case, it does not contains the symbol
6ε) it will be explicitly stated.

Function symbols

Notations. The formula ∀z(z ε/ y → z ε/ x) is denoted by x ⊆ y (strong inclusion) ;
the formula x ⊆ y ∧ y ⊆ x is denoted by x ∼= y (strong extensional equivalence).
We recall that ⊂ and ≃ are the symbols of inclusion and of extensional equivalence of ZF :
x ⊂ y ≡ ∀z(z /∈ y → z ε/ x) ; x ≃ y ≡ (x ⊂ y ∧ y ⊂ x).

Function symbols associated with axioms of ZFε

In this section, we define a function symbol for each of the following axioms of ZFε :

comprehension, pairing, union, power set and collection.
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Comprehension.

For each formula F [y, ~z] of ZFε, (where ~z is a finite sequence of variables z1, . . . , zn) we
define, in M, a symbol of function of arity n+1, denoted provisionally by ComprF (x, ~z),
(Compr is an abbreviation for Comprehension) by setting :
ComprF (a,~c) = {(b, ξ . π) ; (b, π) ∈ a, ξ ‖− F [b,~c]}.
It was shown in [6] (and it is easily checked) that we have :
‖b ε/ComprF (a,~c)‖ = ‖F [b,~c] → b ε/ a‖. Thus, we have :
I ‖− ∀x∀y∀~z(y ε/ComprF (x, ~z) → (F [y, ~z] → y ε/ x)) ;
I ‖− ∀x∀y∀~z((F [y, ~z] → y ε/ x) → y ε/ComprF (x, ~z)).
Therefore, instead of ComprF (x, ~z), we shall use for this function symbol, the more intu-
itive notation {y ε x ; F [y, ~z]}, in which y is a bounded variable.

Pairing.

We define the following binary function symbol :
pair(x, y) = {z ε {x, y}×Π ; (z = x) ∨ (z = y)}.

It is easily checked that we have the desired property :
‖− ∀x∀y∀z(z ε pair(x, y) ↔ z = x ∨ z = y).

Remark. We could also define a symbol pair(x, y), with this property, directly inM, as follows :

pair(x, y) = {(x, 1 .π) ; π ∈ Π} ∪ {(y, 0 .π) ; π ∈ Π}.

In the sequel, when working in N , we shall use the (natural) abbreviations :
{x, y} for pair(x, y) ; (x, y) for pair(pair(x, x), pair(x, y)).

Union and power set.

We define below two unary function symbols
⋃

x and P(x), such that :

‖− ∀x∀z(z ε
⋃

x↔ (∃y ε x) z ε y).

‖− ∀x(∀y εP(x))(∀z ε y)(z ε x) ; ‖− ∀x∀y(∃y′ εP(x))∀z(z ε y′ ↔ z ε x ∧ z ε y).

Theorem 1. Let V,Q be the unary function symbols defined in M as follows :
V(a) = Cl(a)×Π and Q(a) = P(Cl(a)×Π)×Π
where Cl(a) is the transitive closure of a. Then, we have :
i) I ‖− ∀x∀y∀z(z ε y, z ε/V(x) → y ε/ x).
ii) I ‖− ∀x∀~z ({y ε x ; F [y, ~z]} εQ(x)) for every formula F [x, ~z] of ZFε.

i) Let a, b, c be individuals in M, ξ, η ∈ Λ and π ∈ Π such that :
ξ ‖− c ε b, η ‖− c ε/V(a) and π ∈ ‖b ε/ a‖ ; we have therefore (b, π) ∈ a.
We must show ξ ⋆ η . π ∈ ⊥⊥.
We show that ‖c ε/ b‖ ⊂ ‖c ε/V(a)‖ : indeed, if ρ ∈ ‖c ε/ b‖, then we have (c, ρ) ∈ b. But we
have (b, π) ∈ a and thus c ∈ Cl(a) and it follows that ‖c ε/V(a)‖ = Π.
Therefore, η ‖− c ε/ b ; by hypothesis on ξ, we have ξ ⋆ η . π ∈ ⊥⊥.

ii) Let a,~c be individuals in M ; we must show I ‖−AεQ(a), where A = {y ε a ; F [y,~c]}.
We have A = {(b, ξ .π) ; (b, π) ∈ a, ξ ‖− F [b,~c]} and therefore A ⊂ Cl(a)×Π. But we
have :
‖Aε/Q(a)‖ = {π ∈ Π ; (A, π) ∈ Q(a)} = Π and therefore I ‖− AεQ(a).

q.e.d.

We can now define the function symbols
⋃

and P by setting :
⋃

x = {z εV(x) ; (∃y ε x) z ε y} ; P(x) = {y εQ(x) ; y ⊆ x}.
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Collection.

We shall use in the following, function symbols associated with a strong form of the
collection scheme.
In order to define these function symbols, it is convenient to decompose them, which is
done in theorems 2, 3 and 4.

Theorem 2. For each formula F (x, ~z) of ZFε, we have :
‖− ∀~z (∃xF (x, ~z) → (∃x ε φF (~z))F (x, ~z)) ; ‖− ∀~z(∀x ε φF (~z))F (x, ~z)

where φF is a function symbol defined in M.

We show λx(x) I ‖− ∀x(x εΦF (~z) → F (x, ~z)) → ∀xF (x, ~z) where the function symbol
ΦF is defined as follows :

By means of the collection scheme in M, we define a function symbol Ψ(~z) such that :
‖∀xF (x, ~z)‖ =

⋃

x∈Ψ(~z) ‖F (x, ~z)‖ and we set ΦF (~z) = Ψ(~z)×Π.

Let ξ ‖− ∀x(x εΦF (~z) → F (x, ~z)) and π ∈ ‖∀xF (x, ~z)‖.
Then π ∈ ‖F (x, ~z)‖ for some x ∈ Ψ(~z), and therefore I ‖− x εΦF (~z) and ξ ⋆ I .π ∈ ⊥⊥.

Therefore, by replacing F with ¬F , we have ‖− ∃xF (x, ~z) → (∃x εΦ¬F (~z))F (x, ~z).

Thus, we only need to set φF (~z) = {x εΦ¬F (~z) ; F (x, ~z)}.
q.e.d.

Theorem 3. For every formula F (y, ~z) of ZFε, we have :
‖− ∀~z (∃x∀y(F (y, ~z) → y ε x) → ∀y(F (y, ~z) ↔ y ε γF (~z)))

where γF is a function symbol defined in M.

By theorem 2, we have :

‖− ∀~z (∃x∀y(F (y, ~z) → y ε x) → (∃x ε φ(~z))∀y(F (y, ~z) → y ε x))

where φ is a function symbol. Therefore we have, by definition of
⋃

φ(~z) :

‖− ∀~z
(

∃x∀y(F (y, ~z) → y ε x) → ∀y(F (y, ~z) → y ε
⋃

φ(~z))
)

.

Now, we only need to set γF (~z) = {y ε
⋃

φ(~z) ; F (y, ~z)} (comprehension scheme).
q.e.d.

When the hypothesis ∃x∀y(F (y, ~z) → y ε x) is satisfied, we say that the formula F (y, ~z)
defines a set.
For the function symbol γF (~z), we shall use the more intuitive notation {y ; F (y, ~z)},
where y is a bounded variable.

Theorem 4.

Let f(x, ~z) be a (n+ 1)-ary function symbol (defined in M). Then, we have :
‖− ∀a∀y∀~z (y ε φf(a, ~z) ↔ (∃x ε a)(y = f(x, ~z)))

where φf is a (n + 1)-ary function symbol.

We define, in M, the symbol φf as follows :
Let a0, y0, ~z0 be fixed individuals in M ; we set φf(a0, ~z0) = {(f(x, ~z0), π) ; (x, π) ∈ a0}.
Then, we have immediately ‖y0 ε/ φf(a0, ~z0)‖ = ‖∀x(y0 = f(x, ~z0) →֒ x ε/ a0)‖. Therefore :
‖− ∀x(y0 = f(x, ~z0) →֒ x ε/ a0) ↔ y0 ε/ φf(a0, ~z0) which gives the desired result.

q.e.d.
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Remark. The connective →֒ is defined in [5, 6].

For the function symbol φf(a, ~z), we shall use the more intuitive notation {f(x, ~z) ; x ε a},
where x is a bounded variable. We call it image of a by the function f(x).

Symbols for characteristic functions

LetR(x1, . . . , xn) be a n-ary relation defined inM. Its characteristic function, with values
in {0, 1}, will be denoted by 〈R(x1, . . . , xn)〉. Therefore, we have : M |= ∀~x(R(~x) ↔
〈R(~x)〉 = 1).
Therefore, in the realizability model N , the function symbol 〈R(~x)〉 takes its values in .2ג

The theorem 8 below, shows that, if a binary relation y ≺ x is well founded in M, then
the relation 〈y ≺ x〉 = 1 is well founded in N .

Miscellaneous symbols

In the following, we shall use some function symbols, the definition and properties of
which are given in [6]. We simply recall their definition below.

• The unary function symbol ,ג defined in M by xג = x×Π.
For any individual E of M, the restricted quantifier ∀xגE is defined in [5] or [6] by :
‖∀xגEF [x]‖ =

⋃

x∈E ‖F [x]‖ and we have ‖− ∀xגEF [x] ↔ ∀x(x ε Eג → F [x]).
In the realizability model N , the formula x ε Eג may be intuitively understood as
“x is of type E”. For instance, 2ג may be considered as the type of booleans and Nג

as the type of integers.

• the function symbols ∧, ∨, ¬, with domains {0, 1}×{0, 1} and {0, 1}, and values in
{0, 1}, are defined in M by means of the usual truth tables.
These functions define, in N , a structure of Boolean algebra on .2ג
We call it the characteristic Boolean algebra of the realizability model N .

• a binary function symbol with domain {0, 1}×M, denoted by (α, x) 7→ αx, by
setting :

0x = ∅ ; 1x = x.
In the model N , the domain of this function is N×2ג .

• a binary function symbol ⊔ with domain M×M, by setting x ⊔ y = x ∪ y.
Remark. The extension of this function to the model N is not the union ∪, which

explains the use of another symbol.

Lemma 5 (Linearity).
Let f be a binary function symbol, defined in M. Then, we have :
i) I ‖− ∀α2ג∀x∀y(αf(x, y) = αf(αx, y)).
ii) Moreover, if f(∅, ∅) = ∅, then :
I ‖− ∀α2ג∀α′2ג∀x∀y∀x′∀y′ (α∧α′ = 0 →֒ f(αx ⊔ α′x′, αy ⊔ α′y′) = αf(x, y) ⊔ α′f(x′, y′)).
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Remark. The connective →֒ is defined in [5, 6].

It suffices to check :
for (i) the two cases α = 0, 1 ;
for (ii) the three cases (α, α′) = (0, 0), (0, 1), (1, 0) ;
which is is trivial.

q.e.d.

Well founded relations

In this section, we study properties of well founded relations in N . All the results obtained
here are, of course, trivial in ZF. The difficulties come from the fact that the relation ε
of strong membership, does not satisfy extensionality.

Given a binary relation ≺, an individual a is said minimal for ≺, if we have ∀x¬(x ≺ a).
The binary relation ≺ is called well founded if we have :

∀X (∀x(∀y(y ≺ x→ y ε/X) → x ε/X) → ∀x(x ε/X)).

The intuitive meaning is that each non empty individual X has an ε-element minimal
for ≺.

Theorem 6.

If the relation x ≺ y is well founded then, for every formula F [x, ~z] of ZFε, we have :
∀~z (∀x(∀y(y ≺ x→ F [y, ~z]) → F [x, ~z]) → ∀xF [x, ~z]).

Proof by contradiction ; we consider, in N , an individual a and a formula G[x] such that :
(1) G[a] ; ∀x (G[x] → ∃y{G[y], y ≺ x}).
We apply the axiom scheme of infinity of ZFε :
(2) ∃c {a ε c, (∀x ε c) (∃y F (x, y) → (∃y ε c)F (x, y))}
by setting F (x, y) ≡ G[x] ∧ G[y] ∧ y ≺ x. Let b = {x ε c ; G(x)} ; by (1) and (2), we
get a ε b.
We obtain a contradiction with the hypothesis, by showing (∀x ε b)(∃y ε b)(y ≺ x).
Therefore, we suppose x ε c and G[x] ; by (2), we have :

∃y{G[x], G[y], y ≺ x} → (∃y ε c){G[x], G[y], y ≺ x}.
By G[x] and (1), we have ∃y{G[x], G[y], y ≺ x}.
Therefore, we have (∃y ε c){G[y], y ≺ x}, hence the result.

q.e.d.

Therefore, in order to show ∀xF [x], it suffices to show ∀x (∀y(y ≺ x → F [y]) → F [x]).
Then, we say that we have shown ∀xF [x] by induction on x, following the well founded
relation ≺.

Theorem 7. The binary relation x ∈ y is well founded.

We must show ∀x(∀y(y ∈ x→ y ε/X) → x ε/X) → ∀x(x ε/X).
We apply theorem 6 to the well founded relation x ε y and the formula F [x] ≡ x /∈ X .
This gives : ∀x(∀y(y ε x→ y /∈ X) → x /∈ X) → ∀x(x /∈ X).
Now, we have immediately ‖− x /∈ X → x ε/X . Thus, it remains to show :
‖− ∀x(∀y(y ∈ x→ y ε/X) → x ε/X) → ∀x(∀y(y ε x→ y /∈ X) → x /∈ X).
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But we have x /∈ X ≡ ∀x′(x′ ≃ x→ x′ ε/X). Therefore, we need to show :
‖− ∀x(∀y(y ∈ x→ y ε/X) → x ε/X), ∀y(y ε x→ y /∈ X), x′ ≃ x→ x′ ε/X ; or else :
‖− ∀y(y ε x→ y /∈ X), x′ ≃ x→ ∀y(y ∈ x′ → y ε/X).
Now, from x′ ≃ x, y ∈ x′, we deduce y ∈ x. Thus, there is some y′ ≃ y such that y′ ε x.
Then, from ∀y(y ε x→ y /∈ X), we deduce y′ /∈ X , and therefore y ε/X .

q.e.d.

For instance, in the following, we shall use the fact that, if there is an ordinal ρ such that
F [ρ], then there exists a least such ordinal, for any formula F [ρ] written in the language
of ZFε. This results from theorem 7.

Preservation of well-foundedness

Theorem 8. Let ≺ be a well founded binary relation, defined in the ground model M.
Then, the relation 〈y ≺ x〉 = 1 is well founded in N . In fact, we have :

Y ‖− ∀X (∀x(∀y(〈y ≺ x〉 = 1 →֒ y ε/X) → x ε/X) → ∀x(x ε/X))
where Y = (λxλf(f)(x)xf)λxλf(f)(x)xf (Turing fixpoint combinator).

Let ξ ∈ Λ be such that ξ ‖− ∀x(∀y(〈y ≺ x〉 = 1 →֒ y ε/X0) → x ε/X0), X0 being
any individual in M. We set F [x] ≡ (∀π ∈ ‖x ε/X0‖)(Y ⋆ ξ . π ∈ ⊥⊥), and we have to
show ∀xF [x].
Since ≺ is a well founded relation, it suffices to show ∀x (∀y(y ≺ x→ F [y]) → F [x]), or
else ¬F [x0] → (∃y ≺ x0)¬F [y], for any individual x0.
By the hypothesis ¬F [x0], there exists π0 ∈ ‖x0 ε/X0‖ such that Y ⋆ ξ .π0 /∈ ⊥⊥ and
therefore, we have ξ ⋆ Yξ .π0 /∈ ⊥⊥.
By hypothesis on ξ, we deduce Yξ 6||− ∀y(〈y ≺ x0〉 = 1 →֒ y ε/X0).
Thus, there exists y0 ≺ x0 such that Yξ 6||− y0 ε/X0.
Therefore, we have (∃π ∈ ‖y0 ε/X0‖)(Y ⋆ ξ .π /∈ ⊥⊥), that is ¬F [y0].

q.e.d.

Definition of a rank function

Definition. A function with domain D is an individual φ such that :
(∀z ε φ)(∃x εD)∃y(z = (x, y)) ; (∀x εD)∃y((x, y) ε φ) ;
∀x∀y∀y′((x, y) ε φ, (x, y′) ε φ→ y = y′).

Let φ be a function with domain D and F [y, ~z] a formula of ZFε. Then, the formula :
∃y{(x, y) ε φ, F [y, ~z]} is denoted by F [φ(x), ~z].

Remark. Beware, despite the same notation φ(x), it is not a function symbol.

By means of theorem 3, we define the binary function symbol Im by setting :
Im(φ,D) = {y ; (∃x εD) (x, y) ε φ}.

When φ is a function with domain D, we shall use, for Im(φ,D), the more intuitive
notation {φ(x) ; x εD}, which we call image of the function φ.

Let D′ ⊆ D, that is ∀x(x ε/D → x ε/D′) ; a restriction of φ to D′ is, by definition, a
function φ′ with domain D′ such that φ′ ⊆ φ.
For instance, {z ε φ ; (∃x εD′)∃y(z = (x, y))} is a restriction of φ to D′.
If φ′

0, φ
′
1 are both restrictions of φ to D′, then φ′

0
∼= φ′

1.

7



Definition.

A binary relation ≺ is called ranked, if we have ∀x∃y∀z(z ≺ x → z ε y), in other words :
the minorants of any individual form a set.
By theorem 3, if the relation ≺ is ranked and defined by a formula P [x, y, ~u] of ZFε with
parameters ~u in N , we have :
N |= ∀x∀y(x ≺ y ↔ x ε f(y, ~u)), for some symbol of function f , defined in M.

In what follows, we suppose that ≺ is a ranked transitive binary relation.

A function φ with domain {x ; x ≺ a} will be called a-inductive for ≺, if we have :
φ(x) ≃ {φ(y) ; y ≺ x} for every x ≺ a. In other words :
(∀x ≺ a)(∀y ≺ x)φ(y) ∈ φ(x) ; (∀x ≺ a)(∀z ε φ(x))(∃y ≺ x) z ≃ φ(y).

If φ is a-inductive for ≺, we set O(φ, a) = {φ(x) ; x ≺ a} (image of φ).

Lemma 9. Let φ, φ′ be two functions, a-inductive for ≺. Then :
i) φ(x) ≃ φ′(x) for every x ≺ a.
ii) O(φ, a) ≃ O(φ′, a).
iii) (∀x ≺ a)On(φ(x)) ; O(φ, a) is an ordinal, called ordinal of φ.

i) Proof by induction on φ(x), following ∈ : if u ε φ(x), then u ≃ φ(y) with y ≺ x.
Since φ(y) ∈ φ(x), we have φ(y) ≃ φ′(y) by the induction hypothesis ;
therefore φ(y) ∈ φ′(x) and φ(x) ⊂ φ′(x).
Conversely, if u ε φ′(x), then u ≃ φ′(y) with y ≺ x. Thus, we have φ(y) ∈ φ(x), and
therefore φ(y) ≃ φ′(y) by the induction hypothesis ; therefore u ∈ φ(x) and φ′(x) ⊂ φ(x).

ii) Immediate, by (i).

iii) We show On(φ(x)) by induction on φ(x), for the well founded relation ∈ :
If u ε φ(x), we have u ≃ φ(y) with y ≺ x ; therefore, we have On(u) by the induction
hypothesis. If v ε u, then v ε φ(y), therefore v ≃ φ(z) with z ≺ y ; therefore v ∈ φ(x).
It follows that φ(x) is a transitive set of ordinals, thus an ordinal.
Then, O(φ, a) is also a transitive set of ordinals, and therefore an ordinal.

q.e.d.

Lemma 10. If φ is a-inductive for ≺, and if b ≺ a, then every restriction ψ of φ to the
domain {x ; x ≺ b} is a b-inductive function for ≺.

Indeed, we have, ψ(x) = φ(x) ≃ {φ(y) ; y ≺ x} ≃ {ψ(y) ; y ≺ x}.
q.e.d.

By means of theorem 2, we define a unary function symbol Φ, such that :
∀x(∀f εΦ(x))(f is a x-inductive function) ;

∀x∀f
(

f is a x-inductive function → ∃f(f εΦ(x))
)

.

In other words, Φ(x) is a set of x-inductive functions, which is non void if there exists at
least one such function.
Finally, we define the unary function symbol Rk, using theorem 4, by setting :

Rk(x) =
⋃

{O(f, x) ; f εΦ(x)}
(the symbol

⋃

is defined after theorem 1).
Therefore, Rk(x) is the union of the ordinals of the x-inductive functions in the set Φ(x).
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Since all these ordinals are extensionally equivalent, by lemma 9(ii), their union Rk(x) is
also an equivalent ordinal.

Remarks.

If there exists no x-inductive function, then Rk(x) is void.

The function symbols O,Φ,Rk have additional arguments, which are the parameters ~u of the

formula P [x, y, ~u] which defines the relation y ≺ x.

We suppose now that ≺ is a ranked transitive relation, which is well founded. It is
therefore a strict ordering.

Lemma 11. Every restriction of Rk to the domain {x ; x ≺ a} is an a-inductive function
for ≺.

Proof by induction on a, following ≺.
Let f be a restriction of Rk to the domain {x ; x ≺ a} and let x ≺ a. We must show
that f(x) ≃ {f(y) ; y ≺ x}, in other words, that we have :

Rk(x) ≃ {Rk(y) ; y ≺ x}.
Let ψ be any restriction of Rk to the domain {y ; y ≺ x}. By the induction hypothesis,
ψ is a x-inductive function for ≺.
We now show that Rk(x) ≃ {Rk(y) ; y ≺ x} :

i) If u εRk(x) then u εO(φ, x) for some function φ which is x-inductive for ≺, provided
that there exists such a function. Now, there exists effectively one, otherwise Rk(x) would
be void.
Therefore, by definition of O(φ, x), we have u = φ(y) with y ≺ x. But Rk(y) ≃ φ(y),
since φ, ψ are both x-inductive functions for ≺, and ψ(y) = Rk(y) (lemma 9(i)).
Therefore, we have u ≃ Rk(y), with y ≺ x.
ii) Conversely, if y ≺ x, then Rk(y) = ψ(y). Let φ εΦ(x) ; then φ, ψ are x-inductive
for ≺ ; therefore φ(y) ≃ ψ(y) (lemma 9(i)).
Now φ(y) εO(φ, x), and therefore φ(y) εRk(x) by definition of Rk(x).
It follows that Rk(y) = ψ(y) ∈ Rk(x).

q.e.d.

Theorem 12. We have Rk(x) ≃ {Rk(y) ; y ≺ x} for every x.

Proof by induction on x, following ≺ ; let ψ be any restriction of Rk to the domain
{y ; y ≺ x}. By lemma 11, ψ is a x-inductive function for ≺.
Then, we finish the proof, by repeating paragraphs (i) and (ii) of the proof of lemma 11.

q.e.d.

Rk is called the rank function of the ranked, well founded and transitive relation ≺.
Rk(x) is, for every x, a representative of the ordinal of any x-inductive function for ≺.

The values of the rank function Rk form an initial segment of On, which we shall call the
image of Rk. It is therefore, either an ordinal, or the whole of On.

Proposition 13. Let ≺0,≺1 be two ranked transitive well founded relations, and f a
function such that ∀x∀y(x ≺0 y → f(x) ≺1 f(y)).
If Rk0,Rk1 are their rank functions, then we have ∀x (Rk0(x) ≤ Rk1(f(x))), and the image
of Rk0 is an initial segment of the image of Rk1.

9



We show immediately ∀x (Rk0(x) ≤ Rk1(f(x))) by induction following ≺0. Hence the
result, since the image of a rank function is an initial segment of On.

q.e.d.

An ultrafilter on 2ג

In all of the following, we write y < x for y ∈ Cl(x) in M, where Cl(x) denotes the
transitive closure of x. It is a strict well founded ordering (many other such orderings
would do the job, for instance the relation rank(y) < rank(x)).
The binary function symbol 〈y < x〉 is therefore defined in N , with values in .2ג
By theorem 8, the binary relation 〈y < x〉 = 1 is well founded in N .

Theorem 14. ‖− There exists an ultrafilter D on ,2ג which is defined as follows :
D = {α ε 2ג ; the relation 〈y < x〉 ≥ α is well founded }.

Remark. By lemma 5, the formula 〈y < x〉 ≥ α may be written 〈αy < αx〉 = α.

The formula α εD, which we shall also write D[α], is therefore :

D[α] ≡ ∀X (∀x(∀y(〈y < x〉 ≥ α →֒ y ε/X) → x ε/X) → ∀x(x ε/X))

Remark. We have :

D[1] ≡ ∀X (∀x(∀y(〈y < x〉 = 1 →֒ y ε/X) → x ε/X) → ∀x(x ε/X)).

D[0] ≡ ∀X((∅ ε/X → ∅ ε/X) → ∅ ε/X).

We have immediately : λxx I ‖− ¬D[0] ; Y ‖− D[1] ;
I ‖− ∀α2ג∀β2ג (α ≤ β →֒ (D[α] → D[β])) (more precisely : ‖D[1]‖ ⊂ ‖D[0]‖).

Therefore, in order to prove theorem 14, it suffices to show :
‖− ∀α2ג∀β2ג (α∧β = 0 →֒ (D[α∨β] → D[α] ∨ D[β])) ; see theorem 15 ;
‖− ∀α2ג∀β2ג (α∧β = 0 →֒ (D[α],D[β] → ⊥)) ; or even only :
‖− ∀α2ג(D[α],D[¬α] → ⊥) ; see theorem 22.

Notation. For α ε ,2ג we shall write x <α y for 〈x < y〉 ≥ α.

Theorem 15.

i) ‖− ∀α2ג∀β2ג (α∧β = 0 →֒ (D[α∨β] → D[α] ∨ D[β])).
ii) ‖− ∀α2ג∀β2ג (D[α∨β] → D[α] ∨ D[β]).

i) Let α, β ε 2ג be such that α∧β = 0,¬D[α],¬D[β]. We have to show ¬D[α∨β].
By hypothesis on α and β, there exists individuals a0, A (resp. b0, B) such that a0 εA
(resp. b0 εB) and A (resp. B) has no minimal ε-element for <α (resp. for <β). We set :

c0 = αa0 ⊔ βb0 and C = {αx ⊔ βy ; x εA, y εB}.

Therefore, we have c0 ε C ; it suffices to show that C has no minimal ε-element for <α∨β.
Let c ε C, c = αa ⊔ βb, with a εA, b εB. By hypothesis on A,B, there exists a′ εA and
b′ εB such that a′ <α a, b

′ <β b. If we set c′ = αa′ ⊔ βb′, we have c′ ε C, as needed. We
also have :
〈c′ = a′〉 ≥ α, 〈a′ < a〉 ≥ α, 〈c = a〉 ≥ α ; it follows that 〈c′ < c〉 ≥ α.
In the same way, we have 〈c′ < c〉 ≥ β and therefore, finally, 〈c′ < c〉 ≥ α∨β.

ii) We set β ′ = β∧(¬α) ; we have α∧β ′ = 0 and α∨β ′ = α∨β. Therefore, we have :
D[α∨β] → D[α] ∨ D[β ′]. Now, we have β ′ ≤ β and therefore D[β ′] → D[β].

q.e.d.
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Lemma 16.

i) I ‖− ∀x∀y(〈x < y〉 6= 1 → x ε/ y).
ii) If M |= u ∈ v, then I ‖− u ε .vג
iii) I ‖− ∀x∀y∀α2ג (〈x < y〉 ≥ α →֒ αx ε .(Cl({y})ג
iv) ‖− ∀x∀y (〈x < y〉 = 1 ↔ x ε .(Cl(y)ג

Let a, b be two individuals.
i) Let ξ ‖− 〈a < b〉 6= 1, π ∈ ‖a ε/ b‖ ; then (a, π) ∈ b, therefore 〈a < b〉 = 1 and ξ ‖− ⊥ ;
therefore ξ ⋆ π ∈ ⊥⊥.

ii) Indeed, we have ‖u ε/ ‖vג = {π ∈ Π ; (u, π) ∈ v×Π} = Π.

iii) Let α ∈ {0, 1} and a, b ∈ M such that 〈a < b〉 ≥ α.
If α = 0, we must show I ‖− ∅ ε Cl({y})ג which follows from (ii).
If α = 1, then 〈a < b〉 = 1, that is a ∈ Cl(b), therefore a ∈ Cl({b}).
From (ii), it follows that I ‖− a ε .Cl({b})ג

iv) Indeed, if a, b are individuals of M, we have trivially :
‖〈a < b〉 6= 1‖ = ‖a ε/ .‖Cl(b)ג

q.e.d.

Lemma 17. The well founded relation 〈x < y〉 = 1 is ranked, and its rank function R

has for image the whole of On.

Lemma 16(iv) shows that this relation is ranked.
Let ρ be an ordinal and r an individual ≃ ρ. We show, by induction on ρ, that R(r) ≥ ρ.
Indeed, for every ρ′ ∈ ρ, there exists r′ ε r such that r′ ≃ ρ′. We have R(r′) ≥ ρ′ by
induction hypothesis, and 〈r′ < r〉 = 1 from lemma 16(i). Therefore, we have ρ′ ∈ R(r)
by definition of R, and finally R(r) ≥ ρ. This shows that the image of R is not bounded
in On. Since it is an initial segment, it is the whole of On.

q.e.d.

Theorem 18. Let F (x, y) be a formula of ZFε, with parameters. Then, we have :
I ‖− ∀x∀y

(

ΠFג̟∀ (x, f(x,̟)) → F (x, y)
)

for some function symbol f , defined dans M, with domain M×Π.

Since the ground model M satisfies V = L (or only the choice principle), we can define,
in M, a function symbol f such that :

∀x∀y(∀̟ ∈ Π) (̟ ∈ ‖F (x, y)‖ → ̟ ∈ ‖F (x, f(x,̟))‖).
Let a, b be individuals, ξ ‖− ΠFג̟∀ (a, f(a,̟)) and π ∈ ‖F (a, b)‖.
Thus, we have π ∈ ‖F (a, f(a, π))‖, and therefore ξ ⋆ π ∈ ⊥⊥.

q.e.d.

Definitions. Let a be any individual of N and κ an ordinal (therefore, κ is not an
individual of N , but an equivalence class for ≃).
A function or application from κ into a is, by definition, a binary relation R(ρ, x) such
that : ∀x∀x′(∀ρ, ρ′ ∈ κ) (R(ρ, x), R(ρ′, x′), ρ ≃ ρ′ → x = x′)) ; (∀ρ ∈ κ)(∃x ε a)R(ρ, x).
It is an injection if we have ∀x(∀ρ, ρ′ ∈ κ) (R(ρ, x), R(ρ′, x) → ρ ≃ ρ′).
A surjection from a onto κ is a function f of domain a such that :
(∀ρ ∈ κ)(∃x ε a) f(x) ≃ ρ.
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Theorem 19.

For any individual a, there exists an ordinal κ, such that there is no surjection from a
onto κ.

Let f be a surjection from a onto an ordinal ρ. We define a strict ordering relation ≺f

by setting x ≺f y ⇔ x ε a ∧ y ε a ∧ f(x) < f(y). It is clear that this relation is well
founded, that f is an a-inductive function, and that O(f, a) ≃ ρ.
We may consider this relation as a subset of a×a.
By means of the axioms of union, power set and collection given above (theorems 1 4),
we define an ordinal κ0, which is the union of the O(f, a) for all the functions f which are
a-inductive for some well founded strict ordering relation on a.
In fact, we consider the set :

B(a) = {X εP(a×a) ; X is a well founded strict ordering relation on a}.
Then, we set κ0 =

⋃

{O(f, a) ; X εB(a), f εΦ(X, a)}.
In this definition, we use the function symbol Φ, defined after lemma 10, which associates
with each well founded strict ordering relation X on a, a non void set of a-inductive
functions for this relation.

Then, there exists no surjection from a onto κ0 + 1.
q.e.d.

We denote by ∆ the first ordinal of N such that there is no surjection from Πג onto ∆ :
for every function φ, there exists δ ∈ ∆ such that ∀xגΠ(φ(x) 6≃ δ).

For each α ε ,2ג we denote by Nα the class defined by the formula x = αx.

Lemma 20. Let α0, α1 ε ,2ג α0∧α1 = 0 and R0 (resp. R1) be a functional relation of
domain Nα0

(resp. Nα1
) with values in On. Then, either R0, or R1, is not surjective

onto ∆.

Proof by contradiction : we suppose that R0 and R1 are both surjective onto ∆.
We apply theorem 18 to the formula F (x0, x1) ≡ ¬(R0(α0x0) ≃ R1(α1x1)), and we get :

∀x0
(

∃x1(R0(α0x0) ≃ R1(α1x1)) → Π(R0(α0x0)ג̟∃ ≃ R1(α1f(x0, ̟)))
)

where f is a suitable function symbol (therefore defined in M).
Replacing x0 with α0x0, we obtain :

∀x0
(

∃x1(R0(α0x0) ≃ R1(α1x1)) → Π(R0(α0x0)ג̟∃ ≃ R1(α1f(α0x0, ̟)))
)

.
But, by lemma 5(i), we have α1f(α0x,̟) = α1f(α1α0x,̟) = α1f(∅, ̟). It follows that :

∀x0
(

∃x1(R0(α0x0) ≃ R1(α1x1)) → Π(R0(α0x0)ג̟∃ ≃ R1(α1f(∅, ̟)))
)

.

By hypothesis, we have (∀ρ ∈ ∆)∃x0∃x1(ρ ≃ R0(α0x0) ≃ R1(α1x1)). It follows that :
(∀ρ ∈ ∆)∃x0∃̟גΠ (ρ ≃ R0(α0x0) ≃ R1(α1f(∅, ̟))) ; therefore, we have :
(∀ρ ∈ Πג̟∃(∆ (ρ ≃ R1(α1f(∅, ̟))).

Therefore, the function ̟ 7→ R1(α1f(∅, ̟)) is a surjection from Πג onto ∆. But this is a
contradiction with the definition de ∆.

Remark. We should write f(α0, α1, x0,̟) instead of f(x0,̟), since the function symbol f

depends on the four variables α0, α1, x0,̟. In fact, it depends also on the parameters which

appear in R0, R1. The proof does not change.

q.e.d.
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Corollary 21. Let α0, α1 ε ,2ג α0∧α1 = 0, and ≺0,≺1 be two well founded ranked strict
ordering relations with respective domains Nα0

,Nα1
. Let Rk0, Rk1 be their rank functions.

Then, either the image of Rk0, or that of Rk1 is an ordinal < ∆.

In order to be able to define the rank functions Rk0, Rk1, we consider the relations ≺′
0,≺

′
1,

with domain the whole of N , defined by x ≺′
i y ≡ (x = αix) ∧ (y = αiy) ∧ (x ≺i y) for

i = 0, 1.
These strict ordering relations are well founded and ranked.
Their rank functions Rk′0, Rk

′
1 take the value 0 outside Nα0

,Nα1
respectively : indeed,

all the individuals outside Nαi
are minimal for ≺′

i.

By lemma 20, one of them, Rk′0 for instance, is not surjective onto ∆.
Since the image of any rank function is an initial segment of On, the image of Rk0 is an
ordinal < ∆.

q.e.d.

Theorem 22.

i) ‖− ∀α2ג
0 ∀α

2ג
1 (α0∧α1 = 0 →֒ (D[α0],D[α1] → ⊥)).

ii) ‖− ∀α2ג
0 ∀α

2ג
1 (D[α0],D[α1] → D[α0∧α1]).

i) In N , let α0, α1 ε 2ג be such that α0∧α1 = 0 and the relations 〈x < y〉 ≥ α0, 〈x < y〉 ≥
α1 be well founded. Therefore, we have α0, α1 6= 0, 1.
Therefore, the relations x ≺i y ≡ (x = αix) ∧ (y = αiy) ∧ (〈x < y〉 = αi) for i = 0, 1, are
well founded strict orderings.
From lemma 16(iii), it follows that these relations are ranked.
Now, by lemma 5, we have : ‖− ∀x∀y∀α2ג(〈x < y〉 = 1 → 〈αx < αy〉 = α).
But, by lemma 17, the rank function of the well founded relation 〈x < y〉 = 1 has for image
the whole of On. Therefore, by proposition 13, the same is true for the rank functions of
the well founded strict order relations x ≺0 y and x ≺1 y.
But this contradicts corollary 21.

ii) We have α0 ≤ (α0∧α1)∨(¬α1). Therefore, by D[α0] and theorem 15, we have D[α0∧α1]
or D[¬α1]. But D[¬α1] is impossible, by D[α1] and (i).

q.e.d.

Corollary 23. D[α] is equivalent with each one of the following propositions :
i) There exists a well founded ranked strict ordering relation ≺ with domain Nα, the
rank function of which has an image ≥ ∆.
ii) There exists a function with domain Nα which is surjective onto ∆.

D[α] ⇒ (i) :
By definition of D[α], the binary relation (x = αx) ∧ (y = αy) ∧ (〈x < y〉 = α) is
well founded. By lemma 16(iii), this relation is ranked. We have seen, in the proof of
theorem 22, that the image of its rank function is the whole of On.

(i) ⇒ (ii) : obvious.

(ii) ⇒ D[α] :
Since D is an ultrafilter, it suffices to show ¬D[¬α]. But, (ii) and D[¬α] contradict
lemma 20.

q.e.d.
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Theorem 24.

If 2ג is non trivial, there exists no set, which is totally ordered by ε, the ordinal of which
is ≥ ∆.

Let α ε ,2ג α 6= 0, 1 and X be a set which is totally ordered by ε , and equipotent with ∆.
Then, we show that the application x 7→ αx is an injection from X into Nα :
Indeed, by lemma 16(i), we have x ε y → 〈x < y〉 = 1 and, by lemma 5, we have :
〈x < y〉 = 1 → 〈αx < αy〉 = α. Therefore, if x, y εX and x 6= y, we have, for instance
x ε y, therefore 〈αx < αy〉 = α and therefore αx 6= αy since α 6= 0.

Thus, there exists a function with domain Nα which is surjective onto ∆. The same
reasoning, applied to ¬α gives the same result for ¬α. But this contradicts lemma 20.

q.e.d.

Remark. Theorem 24 shows that it is impossible to define Von Neumann ordinals in N , with

ε instead of ∈, unless 2ג is trivial, i.e. the realizability model is, in fact, a forcing model.

The model MD

For each formula F [x1, . . . , xn] of ZF, we have defined, in the ground model M, an n-ary
function symbol with values in {0, 1}, denoted by 〈F [x1, . . . , xn]〉, by setting, for any
individuals a1, . . . , an of M : 〈F [a1, . . . , an]〉 = 1 ⇔ M |= F [a1, . . . , an].
In N , the function symbol 〈F [x1, . . . , xn]〉 takes its values in the Boolean algebra .2ג

We define, in N , two binary relations ∈D and =D, by setting :
(x ∈D y) ≡ D[〈x ∈ y〉] ; (x =D y) ≡ D[〈x = y〉].

The class N , equipped with these relations, will be denoted MD.

For each formula F [~x, y] of ZF, with n + 1 free variables x1, . . . , xn, y, we can define, by
means of the choice principle in M, an n-ary function symbol fF , such that :

M |= ∀~x (F [~x, fF (~x)] → ∀y F [~x, y]) ;
fF is called the Skolem function of the formula F [~x, y].

Lemma 25.

i) I ‖− ∀~x∀y (〈∀y F [~x, y]〉 ≤ 〈F [~x, y]〉)
ii) I ‖− ∀~x∀y (〈∀y F [~x, y]〉 = 〈F [~x, fF (~x)]〉).

Trivial.
q.e.d.

For each formula F [~x] of ZF, we define, by recurrence on F , a formula of ZFε, which has
the same free variables, and that we denote MD |= F [~x].

• F is atomic :
(MD |= x1 ∈ x2) is x1 ∈D x2 ; (MD |= x1 = x2) is x1 =D x2 ; (MD |= ⊥) is ⊥.

• F ≡ F0 → F1 : then (MD |= F ) is the formula (MD |= F0) → (MD |= F1).

• F [~x] ≡ ∀y G[~x, y] : then (MD |= F [~x]) is the formula ∀y(MD |= G[~x, y]).

Lemma 26. For each formula F [~x] of ZF , we have ‖− ∀~x
(

(MD |= F [~x]) ↔ D〈F [~x]〉
)

.
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Proof by recurrence on the length of F .

If F is atomic, we have I ‖− ∀~x
(

(MD |= F [~x]) → D〈F [~x]〉
)

and I ‖− ∀~x
(

D〈F [~x]〉 → (MD |= F [~x])
)

since (MD |= F [~x]) is identical with D〈F [~x]〉.

If F ≡ F0 → F1, the formula (MD |= F ) ↔ D〈F 〉 is :
((MD |= F0) → (MD |= F1)) ↔ D〈F0 → F1〉.
Since D is an ultrafilter, this formula is equivalent with :
((MD |= F0) → (MD |= F1)) ↔ (D〈F0〉 → D〈F1〉), which is a logical consequence of :
(MD |= F0) ↔ D〈F0〉 and (MD |= F1) ↔ D〈F1〉.
Hence the result, by the recurrence hypothesis.

If F [~x] ≡ ∀y G[~x, y], let fG(~x) be the Skolem function of G.
Then, we have (MD |= ∀y G[~x, y]) ≡ ∀y(MD |= G[~x, y]), and therefore :
I ‖− (MD |= ∀y G[~x, y]) → (MD |= G[~x, fG(~x)]).
Therefore, by the recurrence hypothesis, we have :
‖− (MD |= ∀y G[~x, y]) → D〈G[~x, fG(~x)]〉.
Applying lemma 25(ii), we obtain ‖− (MD |= ∀y G[~x, y]) → D〈∀y G[~x, y]〉.
Conversely, by lemma 25(i), we have ‖− ∀y (D〈∀y G[~x, y]〉 → D〈G[~x, y]〉).
Therefore, applying the recurrence hypothesis, we obtain :
‖− D〈∀y G[~x, y]〉 → ∀y(MD |= G[~x, y]), and thus, by definition of (MD |= ∀y G[~x, y]) :
‖− D〈∀y G[~x, y]〉 → (MD |= ∀y G[~x, y]).

q.e.d.

Theorem 27. MD is an elementary extension of the ground model M.

Let F [~a] be a closed formula of ZF, with parameters a1, . . . , an in M.
If M |= F [~a], we have 〈F [~a]〉 = 1 (by definition), and therefore, of course, ‖− D〈F [~a]〉.
Therefore, by lemma 26, we have ‖− (MD |= F [~a]).
If M 6|= F [~a], then M |= ¬F [~a] ; therefore, we have ‖− (MD |= ¬F [~a]).

q.e.d.

Remark. Theorem 27 is, in fact, true for any ultrafilter on ,2ג with the same proof.

Theorem 28. Let ⊏ be a well founded binary relation, defined in the ground model M.
Then the relation D〈x ⊏ y〉 is well founded in the realizability model N .

Remark. Theorem 28 is an improvement on theorem 8.

Notations. We shall write x ⊏D y for 〈x ⊏ y〉 εD.
Recall that x < y means x ∈ Cl(y) ; and that x <α y means 〈x < y〉 ≥ α, for α ε .2ג

We define, in the model M, a binary relation ⊏⊏ on the class {0, 1}×M, by setting, for
any α, α′ ∈ {0, 1} and a, a′ in M :

(α′, a′) ⊏⊏ (α, a) ⇔ (α′ < α) ∨ (α = α′ = 0 ∧ a′ < a) ∨ (α = α′ = 1 ∧ a′ ⊏ a).
The relation ⊏⊏ is the ordered direct sum of the relations ⊏, <.
It is easily shown that it is well founded in M.

The binary function symbol associated with this relation, of domain {0, 1}×M and values
in {0, 1}, is given by :

〈(α′, a′) ⊏⊏ (α, a)〉 = (¬α′
∧α)∨(¬α′

∧¬α∧〈a′ < a〉)∨(α′
∧α∧〈a′ ⊏ a〉).
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This definition gives, in N , a binary function symbol with arguments in N×2ג , and values
in .2ג
By theorem 8, the binary relation 〈(α′, a′) ⊏⊏ (α, a)〉 = 1 is well founded in N .

Proof of theorem 28.
Proof by contradiction : we assume that the binary relation ⊏D is not well founded.
Thus, there exists a0, A0 such that a0 εA0 and A0 has no minimal ε-element for ⊏D.
We define, in N , the class X of ordered pairs (α, x), such that :
There exists X such that x εX and X has no minimal ε-element, neither for ⊏D nor
for <¬α.
Therefore, the formula X (α, x) is :

α ε 2ג ∧ ∃X
{

x εX, (∀u εX){(∃v εX)(v ⊏D u), (∃w εX)(w <¬α u)}
}

.

If (α, x) is in X , then we have D(α) : indeed, the set X is non void and has no minimal
ε-element for <¬α. Therefore, we have ¬D(¬α), and thus D(α), since D is an ultrafilter.

We obtain the desired contradiction by showing that the class X is non void and has no
minimal element for the binary relation 〈(α′, x′) ⊏⊏ (α, x)〉 = 1.

The ordered pair (1, a0) is in X : indeed, we have x <0 x for every x, and therefore A0

has no minimal ε-element for <0.

Now let (α, a) be in X ; we search for (α′, a′) in X such that 〈(α′, a′) ⊏⊏ (α, a)〉 = 1.

By hypothesis on (α, a), there exists A such that a εA and A has no minimal ε-element,
neither for ⊏D nor for <¬α. Thus, there exists a0, a1 εA such that we have D〈a0 ⊏ a〉
and a1 <¬α a.
We set α′ = (α∧〈a0 ⊏ a〉) and therefore, we have D(α′). We set β = ¬α′

∧α ; therefore
α′,¬α, β form a partition of 1 in the Boolean algebra .2ג
We have ¬D(β) ; therefore, by definition of D, the relation <β is not well founded. Thus,
there exists b, B such that b εB and B has no minimal ε-element for <β. Then, we set :

a′ = α′a0 ⊔ (¬α)a1 ⊔ βb and A′ = {α′x ⊔ (¬α)y ⊔ βz ; x, y εA, z εB}.

Therefore, we have a′ εA′, as needed ; moreover :
¬α′

∧¬α∧〈a′ < a〉 = ¬α, since ¬α′ ≥ ¬α and 〈a′ < a〉 ≥ ¬α∧〈a1 < a〉 = ¬α ;
α′

∧α∧〈a′ ⊏ a〉 = α′
∧〈a′ ⊏ a〉 = α′

∧〈a0 ⊏ a〉 = α′.
By definition of 〈(α′, a′) ⊏⊏ (α, a)〉, it follows that 〈(α′, a′) ⊏⊏ (α, a)〉 = β∨¬α∨α′ = 1.

It remains to show that A′ has no minimal ε-element for ⊏D and for <¬α′ .
Therefore, let u εA′, thus u = α′x ⊔ (¬α)y ⊔ βz with x, y εA and z εB.
By hypothesis on A,B, there exists x′, y′ εA, x′ ⊏D x, y′ <¬α y and z′ εB, z′ <β z.
Then, if we set u′ = α′x′ ⊔ (¬α)y′ ⊔ βz′, we have u′ εA′.
Moreover, we have 〈u′ ⊏ u〉 ≥ α′

∧〈x′ ⊏ x〉, and therefore D〈u′ ⊏ u〉, that is u′ ⊏D u.
Finally, 〈u′ < u〉 ≥ (¬α∧〈y′ < y〉)∨(β∧〈z′ < z〉) = ¬α∨β = ¬α′ ; therefore, we have
u′ <¬α′ u.

q.e.d.

Theorem 29. MD is well founded, and therefore has the same ordinals as N ′
∈.

We apply theorem 28 to the binary relation ∈ which is well founded in M. We deduce
that the relation D〈x ∈ y〉, that is x ∈D y, is well founded in N .

q.e.d.
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The relation ∈D is well founded and extensional, which means that we have, in N :
∀x∀y (∀z(z ∈D x↔ z ∈D y) → ∀z(x ∈D z → y ∈D z)).

It follows that we can define a collapsing, by means of a function symbol Φ, which is an
isomorphism of (MD,∈D) on a transitive class in the model N∈ of ZF, which contains
the ordinals. This means that we have :

∀x∀y(y ∈D x→ Φ(y) ∈ Φ(x)) ; ∀x(∀z ∈ Φ(x))(∃y ∈D x) z ≃ Φ(y).

The definition of Φ is analogous with that of the rank function already defined for a
transitive well founded relation. The details will be given in a later version of this paper.
Il follows that :

Theorem 30. The realizability model N∈ contains a transitive class, which contains the
ordinals and is an elementary extension of the ground model M.

Corollary 31. The class LM of constructible sets in M is an elementary submodel
of LN .
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