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Introduction

We use here the basic notions and notations of the theory of classical realizability, which was developed in [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF][START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF][START_REF] Krivine | Realizability algebras III : some examples[END_REF]. We consider a model M of ZF + V = L, which we call the ground model 1 and, in M, a realizability algebra A = (Λ, Π, Λ ⋆ Π, QP, ⊥ ⊥). Λ is the set of terms, Π is the set of stacks, Λ ⋆ Π is the set of processes, QP ⊂ Λ is the set of proof-like terms, and ⊥ ⊥ is a distinguished subset of Λ ⋆ Π. They satisfy the axioms of realizability algebra, which are given in [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF] or [START_REF] Krivine | Realizability algebras III : some examples[END_REF].

In the model M, we use the language of ZF with the binary relation symbols / ∈, ⊂ and function symbols, which we shall define when needed, by means of formulas of ZF. We can now build (see [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF]) the realizability model N , which has the same set of individuals as M, the truth value set of which is P(Π), endowed with a suitable Boolean algebra structure.

The language of this model has three binary relation symbols ε / , / ∈, ⊂, and the same function symbols as the model M, with the same interpretation. The formulas are built as usual, from atomic formulas, with the only logical symbols ⊥, →, ∀. We shall use the notations : ¬F for F → ⊥ ; F 1 , . . . , F n → F for (F 1 → (. . . → F n ) → F ; ∃x F for ¬∀x¬F ; ∃x{F 1 , . . . , F n } for ¬∀x(F 1 , . . . , F n → ⊥).

Notation. We shall often use the notation x for a finite sequence x 1 , . . . , x n ; for instance, we shall write F [ x] for F [x 1 , . . . , x n ].

By means of the completeness theorem, we obtain from N an ordinary model N ′ , with truth values in {0, 1}. The set of individuals of N ′ generally strictly contains N . The elements of N ′ (resp. M) are called individuals of N (resp. M). The individuals are generally denoted by a, b, c, . . . , a 0 , a 1 , . . . In [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF] or [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF], we define a theory ZF ε , written in this language. We show that it is a conservative extension of ZF, and that the model N satisfies the axioms of ZF ε , which means that each of these axioms is realized by a proof-like term. Given a term ξ ∈ Λ and a closed formula F [a 1 , . . . , a n ] in the language of ZF ε , with parameters a 1 , . . . , a n in N (or, which is the same, in M), we shall write : ξ -F [a 1 , . . . , a n ] in order to say that the term ξ realizes F [a 1 , . . . , a n ]. The truth value of this formula is a subset of Π, denoted by F [a 1 , . . . , a n ] . We write -F [a 1 , . . . , a n ] in order to say that F [a 1 , . . . , a n ] is realized by some proof-like term. Thus, the model N ′ satisfies ZF ε ; therefore, in N ′ , we can define a model of ZF, denoted N ′ ∈ , in which the equality is interpreted by the extensional equivalence denoted by x ≃ y (that is x ⊂ y ∧ y ⊂ x). The general properties of the realizability models are described in [START_REF] Krivine | Realizability algebras III : some examples[END_REF] ; we shall use the definitions and notations of this paper. In what follows, unless otherwise stated, each formula of ZF ε must be interpreted in N (its truth value is a subset of Π) or, if one prefers, in N ′ (then its truth value is 0 or 1). If the formula must be interpreted in M, (in that case, it does not contains the symbol ε) it will be explicitly stated.

Function symbols

Notations. The formula ∀z(z ε / y → z ε / x) is denoted by x ⊆ y (strong inclusion) ; the formula x ⊆ y ∧ y ⊆ x is denoted by x ∼ = y (strong extensional equivalence). We recall that ⊂ and ≃ are the symbols of inclusion and of extensional equivalence of ZF :

x ⊂ y ≡ ∀z(z / ∈ y → z ε / x) ; x ≃ y ≡ (x ⊂ y ∧ y ⊂ x).

Function symbols associated with axioms of ZF ε

In this section, we define a function symbol for each of the following axioms of ZF ε : comprehension, pairing, union, power set and collection.

Comprehension.

For each formula F [y, z] of ZF ε , (where z is a finite sequence of variables z 1 , . . . , z n ) we define, in M, a symbol of function of arity n + 1, denoted provisionally by Compr F (x, z), (Compr is an abbreviation for Comprehension) by setting :

Compr F (a, c) = {(b, ξ . π) ; (b, π) ∈ a, ξ -F [b, c]}.
It was shown in [START_REF] Krivine | Realizability algebras III : some examples[END_REF] (and it is easily checked) that we have :

b ε / Compr F (a, c) = F [b, c] → b ε / a
. Thus, we have :

I -∀x∀y∀ z(y ε / Compr F (x, z) → (F [y, z] → y ε / x)) ; I -∀x∀y∀ z((F [y, z] → y ε / x) → y ε / Compr F (x, z))
. Therefore, instead of Compr F (x, z), we shall use for this function symbol, the more intuitive notation {y ε x ; F [y, z]}, in which y is a bounded variable.

Pairing.

We define the following binary function symbol : pair(x, y) = {z ε {x, y}×Π ; (z = x) ∨ (z = y)}. It is easily checked that we have the desired property :

-∀x∀y∀z(z ε pair(x, y) ↔ z = x ∨ z = y).

Remark. We could also define a symbol pair(x, y), with this property, directly in M, as follows :

pair(x, y) = {(x, 1 . π) ; π ∈ Π} ∪ {(y, 0 . π) ; π ∈ Π}.
In the sequel, when working in N , we shall use the (natural) abbreviations : {x, y} for pair(x, y) ; (x, y) for pair(pair(x, x), pair(x, y)).

Union and power set.

We define below two unary function symbols x and P(x), such that :

-∀x∀z(z ε x ↔ (∃y ε x) z ε y).

-∀x(∀y ε P(x))(∀z ε y)(z ε x) ; -∀x∀y(∃y ′ ε P(x))∀z(z ε y ′ ↔ z ε x ∧ z ε y).

Theorem 1. Let V, Q be the unary function symbols defined in M as follows : V(a) = Cl(a)×Π and Q(a) = P(Cl(a)×Π)×Π where Cl(a) is the transitive closure of a. Then, we have :

i) I -∀x∀y∀z(z ε y, z ε / V(x) → y ε / x). ii) I -∀x∀ z ({y ε x ; F [y, z]} ε Q(x)) for every formula F [x, z] of ZF ε . i) Let a, b, c be individuals in M, ξ, η ∈ Λ and π ∈ Π such that : ξ -c ε b, η -c ε / V(a) and π ∈ b ε / a ; we have therefore (b, π) ∈ a.
We must show ξ ⋆ η . π ∈ ⊥ ⊥. q.e.d. We can now define the function symbols and P by setting :

We show that c ε / b ⊂ c ε / V(a) : indeed, if ρ ∈ c ε / b ,
x = {z ε V(x) ; (∃y ε x) z ε y} ; P(x) = {y ε Q(x) ; y ⊆ x}.

Collection.

We shall use in the following, function symbols associated with a strong form of the collection scheme. In order to define these function symbols, it is convenient to decompose them, which is done in theorems 2, 3 and 4.

Theorem 2. For each formula F (x, z) of ZF ε , we have :

-∀ z (∃x F (x, z) → (∃x ε φ F ( z))F (x, z)) ; -∀ z(∀x ε φ F ( z))F (x, z) where φ F is a function symbol defined in M. We show λx(x) I -∀x(x ε Φ F ( z) → F (x, z)) → ∀x F (x, z)
where the function symbol Φ F is defined as follows : By means of the collection scheme in M, we define a function symbol Ψ( z) such that :

∀x F (x, z) = x∈Ψ( z) F (x, z) and we set Φ F ( z) = Ψ( z)×Π. Let ξ -∀x(x ε Φ F ( z) → F (x, z)) and π ∈ ∀x F (x, z) .
Then π ∈ F (x, z) for some x ∈ Ψ( z), and therefore Ix ε Φ F ( z) and ξ ⋆ I . π ∈ ⊥ ⊥.

Therefore, by replacing F with ¬F , we have -∃x F (x, z) → (∃x ε Φ ¬F ( z)) F (x, z). Thus, we only need to set φ

F ( z) = {x ε Φ ¬F ( z) ; F (x, z)}.
q.e.d.

Theorem 3. For every formula F (y, z) of ZF ε , we have :

-∀ z (∃x∀y(F (y, z) → y ε x) → ∀y(F (y, z) ↔ y ε γ F ( z))) where γ F is a function symbol defined in M.
By theorem 2, we have :

-∀ z (∃x∀y(F (y, z) → y ε x) → (∃x ε φ( z))∀y(F (y, z) → y ε x)) where φ is a function symbol. Therefore we have, by definition of φ( z) :

-∀ z ∃x∀y(F (y, z) → y ε x) → ∀y(F (y, z) → y ε φ( z)) . Now, we only need to set γ F ( z) = {y ε φ( z) ; F (y, z)} (comprehension scheme).

q.e.d. When the hypothesis ∃x∀y(F (y, z) → y ε x) is satisfied, we say that the formula F (y, z) defines a set. For the function symbol γ F ( z), we shall use the more intuitive notation {y ; F (y, z)}, where y is a bounded variable.

Theorem 4.

Let f (x, z) be a (n + 1)-ary function symbol (defined in M). Then, we have :

-∀a∀y∀ z (y ε φ f (a, z) ↔ (∃x ε a)(y = f (x, z))) where φ f is a (n + 1)-ary function symbol.
We define, in M, the symbol φ f as follows : Let a 0 , y 0 , z 0 be fixed individuals in M ; we set φ f (a 0 , z

0 ) = {(f (x, z 0 ), π) ; (x, π) ∈ a 0 }. Then, we have immediately y 0 ε / φ f (a 0 , z 0 ) = ∀x(y 0 = f (x, z 0 ) ֒→ x ε / a 0 ) . Therefore : -∀x(y 0 = f (x, z 0 ) ֒→ x ε / a 0 ) ↔ y 0 ε / φ f (a 0 , z 0 )
which gives the desired result. q.e.d.

Remark. The connective ֒→ is defined in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF][START_REF] Krivine | Realizability algebras III : some examples[END_REF].

For the function symbol φ f (a, z), we shall use the more intuitive notation {f (x, z) ; x ε a}, where x is a bounded variable. We call it image of a by the function f (x).

Symbols for characteristic functions

Let R(x 1 , . . . , x n ) be a n-ary relation defined in M. Its characteristic function, with values in {0, 1}, will be denoted by R(x 1 , . . . , x n ) . Therefore, we have :

M |= ∀ x(R( x) ↔ R( x) = 1).
Therefore, in the realizability model N , the function symbol R( x) takes its values in .2ג

The theorem 8 below, shows that, if a binary relation y ≺ x is well founded in M, then the relation y ≺ x = 1 is well founded in N .

Miscellaneous symbols

In the following, we shall use some function symbols, the definition and properties of which are given in [START_REF] Krivine | Realizability algebras III : some examples[END_REF]. We simply recall their definition below.

• The unary function symbol ,ג defined in M by גx = x×Π.

For any individual E of M, the restricted quantifier ∀x גE is defined in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF] or [START_REF] Krivine | Realizability algebras III : some examples[END_REF] by :

∀x גE F [x] = x∈E F [x] and we have -∀x גE F [x] ↔ ∀x(x ε גE → F [x]
). In the realizability model N , the formula x ε גE may be intuitively understood as "x is of type E". For instance, 2ג may be considered as the type of booleans and גN as the type of integers.

• the function symbols ∧, ∨, ¬, with domains {0, 1}×{0, 1} and {0, 1}, and values in {0, 1}, are defined in M by means of the usual truth tables. These functions define, in N , a structure of Boolean algebra on .2ג

We call it the characteristic Boolean algebra of the realizability model N .

• a binary function symbol with domain {0, 1} × M, denoted by (α, x) → αx, by setting : 0x = ∅ ; 1x = x. In the model N , the domain of this function is ×2גN .

• a binary function symbol ⊔ with domain M×M, by setting x ⊔ y = x ∪ y.

Remark. The extension of this function to the model N is not the union ∪, which explains the use of another symbol.

Lemma 5 (Linearity).

Let f be a binary function symbol, defined in M. Then, we have :

i) I -∀α 2ג ∀x∀y(αf (x, y) = αf (αx, y)). ii) Moreover, if f (∅, ∅) = ∅, then : I -∀α 2ג ∀α 2ג′ ∀x∀y∀x ′ ∀y ′ (α∧α ′ = 0 ֒→ f (αx ⊔ α ′ x ′ , αy ⊔ α ′ y ′ ) = αf (x, y) ⊔ α ′ f (x ′ , y ′ )).
It suffices to check : for (i) the two cases α = 0, 1 ; for (ii) the three cases (α, α ′ ) = (0, 0), (0, 1), (1, 0) ; which is is trivial.

q.e.d.

Well founded relations

In this section, we study properties of well founded relations in N . All the results obtained here are, of course, trivial in ZF. The difficulties come from the fact that the relation ε of strong membership, does not satisfy extensionality. Given a binary relation ≺, an individual a is said minimal for ≺, if we have ∀x ¬(x ≺ a).

The binary relation ≺ is called well founded if we have :

∀X (∀x(∀y(y ≺ x → y ε / X) → x ε / X) → ∀x(x ε / X))
. The intuitive meaning is that each non empty individual X has an ε-element minimal for ≺.

Theorem 6.

If the relation x ≺ y is well founded then, for every formula F [x, z] of ZF ε , we have :

∀ z (∀x(∀y(y ≺ x → F [y, z]) → F [x, z]) → ∀x F [x, z]).
Proof by contradiction ; we consider, in N , an individual a and a formula G[x] such that : q.e.d. Therefore, in order to show ∀x F [x], it suffices to show ∀x (∀y(y

≺ x → F [y]) → F [x]).
Then, we say that we have shown ∀x F [x] by induction on x, following the well founded relation ≺.

Theorem 7. The binary relation x ∈ y is well founded.

We must show ∀x(∀y(y ∈ x → y ε / X) → x ε / X) → ∀x(x ε / X). We apply theorem 6 to the well founded relation x ε y and the formula F [x] ≡ x / ∈ X. This gives : ∀x(∀y(y ε x → y / ∈ X) → x / ∈ X) → ∀x(x / ∈ X). Now, we have immediatelyx / ∈ X → x ε / X. Thus, it remains to show :

-∀x(∀y(y ∈ x → y ε / X) → x ε / X) → ∀x(∀y(y ε x → y / ∈ X) → x / ∈ X).
But we have x / ∈ X ≡ ∀x ′ (x ′ ≃ x → x ′ ε / X). Therefore, we need to show : -∀x(∀y(y ∈ x → y ε / X) → x ε / X), ∀y(y ε x → y / ∈ X), x ′ ≃ x → x ′ ε / X ; or else : -∀y(y ε x → y / ∈ X), x ′ ≃ x → ∀y(y ∈ x ′ → y ε / X). Now, from x ′ ≃ x, y ∈ x ′ , we deduce y ∈ x. Thus, there is some y ′ ≃ y such that y ′ ε x. Then, from ∀y(y ε x → y / ∈ X), we deduce y ′ / ∈ X, and therefore y ε / X. q.e.d. For instance, in the following, we shall use the fact that, if there is an ordinal ρ such that F [ρ], then there exists a least such ordinal, for any formula F [ρ] written in the language of ZF ε . This results from theorem 7.

Preservation of well-foundedness

Theorem 8. Let ≺ be a well founded binary relation, defined in the ground model M. Then, the relation y ≺ x = 1 is well founded in N . In fact, we have :

Y -∀X (∀x(∀y( y ≺ x = 1 ֒→ y ε / X) → x ε / X) → ∀x(x ε / X)) where Y = (λxλf (f )(x)xf )λxλf (f )(x)xf (Turing fixpoint combinator). Let ξ ∈ Λ be such that ξ -∀x(∀y( y ≺ x = 1 ֒→ y ε / X 0 ) → x ε / X 0 ), X 0 being any individual in M. We set F [x] ≡ (∀π ∈ x ε / X 0 )(Y ⋆ ξ . π ∈ ⊥ ⊥
), and we have to

show ∀x F [x]. Since ≺ is a well founded relation, it suffices to show ∀x (∀y(y ≺ x → F [y]) → F [x]), or else ¬F [x 0 ] → (∃y ≺ x 0 )¬F [y], for any individual x 0 . By the hypothesis ¬F [x 0 ], there exists π 0 ∈ x 0 ε / X 0 such that Y ⋆ ξ . π 0 /
∈ ⊥ ⊥ and therefore, we have ξ ⋆ Yξ . π 0 / ∈ ⊥ ⊥. By hypothesis on ξ, we deduce Yξ || -∀y( y ≺ x 0 = 1 ֒→ y ε / X 0 ). Thus, there exists y 0 ≺ x 0 such that Yξ ||y 0 ε / X 0 . Therefore, we have (∃π ∈ y 0 ε

/ X 0 )(Y ⋆ ξ . π / ∈ ⊥ ⊥), that is ¬F [y 0 ]. q.e.d.

Definition of a rank function

Definition. A function with domain D is an individual φ such that : (∀z ε φ)(∃x ε D)∃y(z = (x, y)) ; (∀x ε D)∃y((x, y) ε φ) ; ∀x∀y∀y ′ ((x, y) ε φ, (x, y ′ ) ε φ → y = y ′ ). Let φ be a function with domain D and F [y, z] a formula of ZF ε . Then, the formula :

∃y{(x, y) ε φ, F [y, z]} is denoted by F [φ(x), z].
Remark. Beware, despite the same notation φ(x), it is not a function symbol.

By means of theorem 3, we define the binary function symbol Im by setting :

Im(φ, D) = {y ; (∃x ε D) (x, y) ε φ}. When φ is a function with domain D, we shall use, for Im(φ, D), the more intuitive notation {φ(x) ; x ε D}, which we call image of the function φ.

Let D ′ ⊆ D, that is ∀x(x ε / D → x ε / D ′ ) ; a restriction of φ to D ′ is, by definition, a function φ ′ with domain D ′ such that φ ′ ⊆ φ. For instance, {z ε φ ; (∃x ε D ′ )∃y(z = (x, y))} is a restriction of φ to D ′ . If φ ′ 0 , φ ′ 1 are both restrictions of φ to D ′ , then φ ′ 0 ∼ = φ ′ 1 .

Definition.

A binary relation ≺ is called ranked, if we have ∀x∃y∀z(z ≺ x → z ε y), in other words : the minorants of any individual form a set. By theorem 3, if the relation ≺ is ranked and defined by a formula P [x, y, u] of ZF ε with parameters u in N , we have : N |= ∀x∀y(x ≺ y ↔ x ε f (y, u)), for some symbol of function f , defined in M.

In what follows, we suppose that ≺ is a ranked transitive binary relation.

A function φ with domain {x ; x ≺ a} will be called a-inductive for ≺, if we have : φ(x) ≃ {φ(y) ; y ≺ x} for every x ≺ a. In other words :

(∀x ≺ a)(∀y ≺ x) φ(y) ∈ φ(x) ; (∀x ≺ a)(∀z ε φ(x))(∃y ≺ x) z ≃ φ(y).
If φ is a-inductive for ≺, we set O(φ, a) = {φ(x) ; x ≺ a} (image of φ).

Lemma 9. Let φ, φ ′ be two functions, a-inductive for ≺.

Then : i) φ(x) ≃ φ ′ (x) for every x ≺ a. ii) O(φ, a) ≃ O(φ ′ , a). iii) (∀x ≺ a)On(φ(x)) ; O(φ, a) is an ordinal, called ordinal of φ.
i) Proof by induction on φ(x), following ∈ : if u ε φ(x), then u ≃ φ(y) with y ≺ x.

Since φ(y) ∈ φ(x), we have φ(y) ≃ φ ′ (y) by the induction hypothesis ; therefore φ(y) ∈ φ ′ (x) and φ(x) ⊂ φ ′ (x). Conversely, if u ε φ ′ (x), then u ≃ φ ′ (y) with y ≺ x. Thus, we have φ(y) ∈ φ(x), and therefore φ(y) ≃ φ ′ (y) by the induction hypothesis ; therefore u ∈ φ(x) and φ ′ (x) ⊂ φ(x). q.e.d. By means of theorem 2, we define a unary function symbol Φ, such that :

∀x(∀f ε Φ(x))(f is a x-inductive function) ; ∀x∀f f is a x-inductive function → ∃f (f ε Φ(x)) .
In other words, Φ(x) is a set of x-inductive functions, which is non void if there exists at least one such function. Finally, we define the unary function symbol Rk, using theorem 4, by setting : Rk(x) = {O(f, x) ; f ε Φ(x)} (the symbol is defined after theorem 1). Therefore, Rk(x) is the union of the ordinals of the x-inductive functions in the set Φ(x).

Since all these ordinals are extensionally equivalent, by lemma 9(ii), their union Rk(x) is also an equivalent ordinal.

Remarks.

If there exists no x-inductive function, then Rk(x) is void. The function symbols O, Φ, Rk have additional arguments, which are the parameters u of the formula P [x, y, u] which defines the relation y ≺ x.

We suppose now that ≺ is a ranked transitive relation, which is well founded. It is therefore a strict ordering.

Lemma 11. Every restriction of Rk to the domain {x ; x ≺ a} is an a-inductive function for ≺.

Proof by induction on a, following ≺. Let f be a restriction of Rk to the domain {x ; x ≺ a} and let x ≺ a. We must show that f (x) ≃ {f (y) ; y ≺ x}, in other words, that we have : Rk(x) ≃ {Rk(y) ; y ≺ x}. Let ψ be any restriction of Rk to the domain {y ; y ≺ x}. By the induction hypothesis, ψ is a x-inductive function for ≺. We now show that Rk(x) ≃ {Rk(y) ; y ≺ x} : i) If u ε Rk(x) then u ε O(φ, x) for some function φ which is x-inductive for ≺, provided that there exists such a function. Now, there exists effectively one, otherwise Rk(x) would be void. Therefore, by definition of O(φ, x), we have u = φ(y) with y ≺ x. But Rk(y) ≃ φ(y), since φ, ψ are both x-inductive functions for ≺, and ψ(y) = Rk(y) (lemma 9(i)). Therefore, we have u ≃ Rk(y), with y ≺ x. ii) Conversely, if y ≺ x, then Rk(y) = ψ(y). Let φ ε Φ(x) ; then φ, ψ are x-inductive for ≺ ; therefore φ(y) ≃ ψ(y) (lemma 9(i)). Now φ(y) ε O(φ, x), and therefore φ(y) ε Rk(x) by definition of Rk(x). It follows that Rk(y) = ψ(y) ∈ Rk(x).

q.e.d.

Theorem 12. We have Rk(x) ≃ {Rk(y) ; y ≺ x} for every x.

Proof by induction on x, following ≺ ; let ψ be any restriction of Rk to the domain {y ; y ≺ x}. By lemma 11, ψ is a x-inductive function for ≺.

Then, we finish the proof, by repeating paragraphs (i) and (ii) of the proof of lemma 11. q.e.d. Rk is called the rank function of the ranked, well founded and transitive relation ≺. Rk(x) is, for every x, a representative of the ordinal of any x-inductive function for ≺. The values of the rank function Rk form an initial segment of On, which we shall call the image of Rk. It is therefore, either an ordinal, or the whole of On.

Proposition 13. Let ≺ 0 , ≺ 1 be two ranked transitive well founded relations, and f a function such that ∀x∀y(x ≺ 0 y → f (x) ≺ 1 f (y)). If Rk 0 , Rk 1 are their rank functions, then we have ∀x (Rk 0 (x) ≤ Rk 1 (f (x))), and the image of Rk 0 is an initial segment of the image of Rk 1 .

Lemma 16. i) I -∀x∀y( x < y = 1 → x ε / y). ii) If M |= u ∈ v, then I -u ε גv. iii) I -∀x∀y∀α 2ג ( x < y ≥ α ֒→ αx ε גCl({y})). iv) -∀x∀y ( x < y = 1 ↔ x ε גCl(y)). Let a, b be two individuals. i) Let ξ -a < b = 1, π ∈ a ε / b ; then (a, π) ∈ b, therefore a < b = 1 and ξ -⊥ ; therefore ξ ⋆ π ∈ ⊥ ⊥. ii) Indeed, we have u ε / גv = {π ∈ Π ; (u, π) ∈ v×Π} = Π. iii) Let α ∈ {0, 1} and a, b ∈ M such that a < b ≥ α. If α = 0, we must show I -∅ ε גCl({y}) which follows from (ii). If α = 1, then a < b = 1, that is a ∈ Cl(b), therefore a ∈ Cl({b}).
From (ii), it follows that Ia ε גCl({b}). iv) Indeed, if a, b are individuals of M, we have trivially :

a < b = 1 = a ε / גCl(b) . q.e.d.
Lemma 17. The well founded relation x < y = 1 is ranked, and its rank function R has for image the whole of On.

Lemma 16(iv) shows that this relation is ranked. Let ρ be an ordinal and r an individual ≃ ρ. We show, by induction on ρ, that R(r) ≥ ρ. Indeed, for every ρ ′ ∈ ρ, there exists r ′ ε r such that r ′ ≃ ρ ′ . We have R(r ′ ) ≥ ρ ′ by induction hypothesis, and r ′ < r = 1 from lemma 16(i). Therefore, we have ρ ′ ∈ R(r) by definition of R, and finally R(r) ≥ ρ. This shows that the image of R is not bounded in On. Since it is an initial segment, it is the whole of On.

q.e.d.

Theorem 18. Let F (x, y) be a formula of ZF ε , with parameters. Then, we have :

I -∀x∀y ∀̟ גΠ F (x, f (x, ̟)) → F (x, y)
for some function symbol f , defined dans M, with domain M×Π.

Since the ground model M satisfies V = L (or only the choice principle), we can define, in M, a function symbol f such that :

∀x∀y(∀̟ ∈ Π) (̟ ∈ F (x, y) → ̟ ∈ F (x, f (x, ̟))
). Let a, b be individuals, ξ -∀̟ גΠ F (a, f (a, ̟)) and π ∈ F (a, b) . Thus, we have π ∈ F (a, f (a, π)) , and therefore ξ ⋆ π ∈ ⊥ ⊥.

q.e.d. Definitions. Let a be any individual of N and κ an ordinal (therefore, κ is not an individual of N , but an equivalence class for ≃). A function or application from κ into a is, by definition, a binary relation R(ρ, x) such that :

∀x∀x ′ (∀ρ, ρ ′ ∈ κ) (R(ρ, x), R(ρ ′ , x ′ ), ρ ≃ ρ ′ → x = x ′ )) ; (∀ρ ∈ κ)(∃x ε a)R(ρ, x). It is an injection if we have ∀x(∀ρ, ρ ′ ∈ κ) (R(ρ, x), R(ρ ′ , x) → ρ ≃ ρ ′ ).
A surjection from a onto κ is a function f of domain a such that : (∀ρ ∈ κ)(∃x ε a) f (x) ≃ ρ.

Corollary 21. Let α 0 , α 1 ε ,2ג α 0 ∧α 1 = 0, and ≺ 0 , ≺ 1 be two well founded ranked strict ordering relations with respective domains N α 0 , N α 1 . Let Rk 0 , Rk 1 be their rank functions. Then, either the image of Rk 0 , or that of Rk 1 is an ordinal < ∆.

In order to be able to define the rank functions Rk 0 , Rk 1 , we consider the relations ≺ ′ 0 , ≺ ′ 1 , with domain the whole of N , defined by x ≺ ′ i y ≡ (x = α i x) ∧ (y = α i y) ∧ (x ≺ i y) for i = 0, 1. These strict ordering relations are well founded and ranked. Their rank functions Rk ′ 0 , Rk ′ 1 take the value 0 outside N α 0 , N α 1 respectively : indeed, all the individuals outside N α i are minimal for ≺ ′ i . By lemma 20, one of them, Rk ′ 0 for instance, is not surjective onto ∆. Since the image of any rank function is an initial segment of On, the image of Rk 0 is an ordinal < ∆.

q.e.d.

Theorem 22. i) -∀α 2ג 0 ∀α 2ג 1 (α 0 ∧α 1 = 0 ֒→ (D[α 0 ], D[α 1 ] → ⊥)). ii) -∀α 2ג 0 ∀α 2ג 1 (D[α 0 ], D[α 1 ] → D[α 0 ∧α 1 ]
). i) In N , let α 0 , α 1 ε 2ג be such that α 0 ∧α 1 = 0 and the relations x < y ≥ α 0 , x < y ≥ α 1 be well founded. Therefore, we have α 0 , α 1 = 0, 1. Therefore, the relations x ≺ i y ≡ (x = α i x) ∧ (y = α i y) ∧ ( x < y = α i ) for i = 0, 1, are well founded strict orderings. From lemma 16(iii), it follows that these relations are ranked. Now, by lemma 5, we have : -∀x∀y∀α 2ג ( x < y = 1 → αx < αy = α). But, by lemma 17, the rank function of the well founded relation x < y = 1 has for image the whole of On. Therefore, by proposition 13, the same is true for the rank functions of the well founded strict order relations x ≺ 0 y and x ≺ 1 y. But this contradicts corollary 21. ii) We have α 0 ≤ (α 0 ∧α 1 )∨(¬α 1 ). Therefore, by D[α 0 ] and theorem 15, we have D

[α 0 ∧α 1 ] or D[¬α 1 ]. But D[¬α 1 ] is impossible, by D[α 1 ] and (i).
q.e.d.

Corollary 23. D[α] is equivalent with each one of the following propositions :

i) There exists a well founded ranked strict ordering relation ≺ with domain N α , the rank function of which has an image ≥ ∆.

ii) There exists a function with domain N α which is surjective onto ∆. q.e.d.

Theorem 24.

If 2ג is non trivial, there exists no set, which is totally ordered by ε, the ordinal of which is ≥ ∆.

Let α ε ,2ג α = 0, 1 and X be a set which is totally ordered by ε , and equipotent with ∆. Then, we show that the application x → αx is an injection from X into N α : Indeed, by lemma 16(i), we have x ε y → x < y = 1 and, by lemma 5, we have :

x < y = 1 → αx < αy = α. Therefore, if x, y ε X and x = y, we have, for instance x ε y, therefore αx < αy = α and therefore αx = αy since α = 0. Thus, there exists a function with domain N α which is surjective onto ∆. The same reasoning, applied to ¬α gives the same result for ¬α. But this contradicts lemma 20.

q.e.d. 

Trivial.

q.e.d. For each formula F [ x] of ZF, we define, by recurrence on F , a formula of ZF ε , which has the same free variables, and that we denote 

M D |= F [ x]. • F is atomic : (M D |= x 1 ∈ x 2 ) is x 1 ∈ D x 2 ; (M D |= x 1 = x 2 ) is x 1 = D x 2 ; (M D |= ⊥) is ⊥. • F ≡ F 0 →

  then we have (c, ρ) ∈ b. But we have (b, π) ∈ a and thus c ∈ Cl(a) and it follows that c ε / V(a) = Π. Therefore, ηc ε / b ; by hypothesis on ξ, we have ξ ⋆ η . π ∈ ⊥ ⊥. ii) Let a, c be individuals in M ; we must show I -A ε Q(a), where A = {y ε a ; F [y, c]}. We have A = {(b, ξ . π) ; (b, π) ∈ a, ξ -F [b, c]} and therefore A ⊂ Cl(a)×Π. But we have : A ε / Q(a) = {π ∈ Π ; (A, π) ∈ Q(a)} = Π and therefore I -A ε Q(a).

( 1 )

 1 G[a] ; ∀x (G[x] → ∃y{G[y], y ≺ x}). We apply the axiom scheme of infinity of ZF ε : (2) ∃c {a ε c, (∀x ε c) (∃y F (x, y) → (∃y ε c)F (x, y))} by setting F (x, y) ≡ G[x] ∧ G[y] ∧ y ≺ x. Let b = {x ε c ; G(x)} ; by (1) and (2), we get a ε b. We obtain a contradiction with the hypothesis, by showing (∀x ε b)(∃y ε b)(y ≺ x). Therefore, we suppose x ε c and G[x] ; by (2), we have : ∃y{G[x], G[y], y ≺ x} → (∃y ε c){G[x], G[y], y ≺ x}. By G[x] and (1), we have ∃y{G[x], G[y], y ≺ x}. Therefore, we have (∃y ε c){G[y], y ≺ x}, hence the result.

  ii) Immediate, by (i). iii) We show On(φ(x)) by induction on φ(x), for the well founded relation ∈ : If u ε φ(x), we have u ≃ φ(y) with y ≺ x ; therefore, we have On(u) by the induction hypothesis. If v ε u, then v ε φ(y), therefore v ≃ φ(z) with z ≺ y ; therefore v ∈ φ(x). It follows that φ(x) is a transitive set of ordinals, thus an ordinal. Then, O(φ, a) is also a transitive set of ordinals, and therefore an ordinal.q.e.d.Lemma 10. If φ is a-inductive for ≺, and if b ≺ a, then every restriction ψ of φ to the domain {x ; x ≺ b} is a b-inductive function for ≺.Indeed, we have, ψ(x) = φ(x) ≃ {φ(y) ; y ≺ x} ≃ {ψ(y) ; y ≺ x}.

D

  [α] ⇒ (i) : By definition of D[α], the binary relation (x = αx) ∧ (y = αy) ∧ ( x < y = α) is well founded. By lemma 16(iii), this relation is ranked. We have seen, in the proof of theorem 22, that the image of its rank function is the whole of On. (i) ⇒ (ii) : obvious. (ii) ⇒ D[α] : Since D is an ultrafilter, it suffices to show ¬D[¬α]. But, (ii) and D[¬α] contradict lemma 20.

  The model M DFor each formula F [x 1 , . . . , x n ] of ZF, we have defined, in the ground model M, an n-ary function symbol with values in {0, 1}, denoted by F [x 1 , . . . , x n ] , by setting, for any individuals a 1 , . . . , a n of M :F [a 1 , . . . , a n ] = 1 ⇔ M |= F [a 1 , . . . , a n ]. In N , the function symbol F [x 1 , . . . , x n ]takes its values in the Boolean algebra .2ג We define, in N , two binary relations ∈ D and = D , by setting : (x ∈ D y) ≡ D[ x ∈ y ] ; (x = D y) ≡ D[ x = y ]. The class N , equipped with these relations, will be denoted M D . For each formula F [ x, y] of ZF, with n + 1 free variables x 1 , . . . , x n , y, we can define, by means of the choice principle in M, an n-ary function symbol f F , such that : M |= ∀ x (F [ x, f F ( x)] → ∀y F [ x, y]) ; f F is called the Skolem function of the formula F [ x, y]. Lemma 25. i) I -∀ x∀y ( ∀y F [ x, y] ≤ F [ x, y] ) ii) I -∀ x∀y ( ∀y F [ x, y] = F [ x, f F ( x)] ).

F 1 :

 1 then (M D |= F ) is the formula (M D |= F 0 ) → (M D |= F 1 ). • F [ x] ≡ ∀y G[ x, y] : then (M D |= F [ x]) is the formula ∀y(M D |= G[ x, y]). Lemma 26. For each formula F [ x] of ZF , we have -∀ x (M D |= F [ x]) ↔ D F [ x] .The relation ∈ D is well founded and extensional, which means that we have, in N :∀x∀y (∀z(z ∈ D x ↔ z ∈ D y) → ∀z(x ∈ D z → y ∈ D z)). It follows that we can define a collapsing, by means of a function symbol Φ, which is an isomorphism of (M D , ∈ D ) on a transitive class in the model N ∈ of ZF, which contains the ordinals. This means that we have : ∀x∀y(y ∈ D x → Φ(y) ∈ Φ(x)) ; ∀x(∀z ∈ Φ(x))(∃y ∈ D x) z ≃ Φ(y). The definition of Φ is analogous with that of the rank function already defined for a transitive well founded relation. The details will be given in a later version of this paper. Il follows that :Theorem 30. The realizability model N ∈ contains a transitive class, which contains the ordinals and is an elementary extension of the ground model M.Corollary 31. The class L M of constructible sets in M is an elementary submodel of L N .

  Remark. Theorem 24 shows that it is impossible to define Von Neumann ordinals in N , with ε instead of ∈, unless 2ג is trivial, i.e. the realizability model is, in fact, a forcing model.

In fact, it suffices that M satisfy the choice principle CP, which is written as follows, in the language of ZF with a new binary relation symbol ⊳ : " ⊳ is a well ordering relation on M". It is well known that, in every countable model of ZFC, we can define such a binary symbol, so as to get a model of ZF + CP. Thus, ZF + CP is a conservative extension of ZFC.

An ultrafilter on 2ג

In all of the following, we write y < x for y ∈ Cl(x) in M, where Cl(x) denotes the transitive closure of x. It is a strict well founded ordering (many other such orderings would do the job, for instance the relation rank(y) < rank(x)). The binary function symbol y < x is therefore defined in N , with values in .2ג By theorem 8, the binary relation y < x = 1 is well founded in N .

Theorem 14. -There exists an ultrafilter D on ,2ג which is defined as follows : D = {α ε 2ג ; the relation y < x ≥ α is well founded }.

Remark. By lemma 5, the formula y < x ≥ α may be written αy < αx = α.

The formula α ε D, which we shall also write D[α], is therefore : D[α] ≡ ∀X (∀x(∀y( y < x ≥ α ֒→ y ε / X) → x ε / X) → ∀x(x ε / X))

Remark. We have :

We have immediately : Notation. For α ε ,2ג we shall write x < α y for x < y ≥ α.

By hypothesis on α and β, there exists individuals a 0 , A (resp. b 0 , B) such that a 0 ε A (resp. b 0 ε B) and A (resp. B) has no minimal ε-element for < α (resp. for < β ). We set : c 0 = αa 0 ⊔ βb 0 and C = {αx ⊔ βy ; x ε A, y ε B}. Therefore, we have c 0 ε C ; it suffices to show that C has no minimal ε-element for < α∨β . Let c ε C, c = αa ⊔ βb, with a ε A, b ε B. By hypothesis on A, B, there exists a ′ ε A and b ′ ε B such that a ′ < α a, b ′ < β b. If we set c ′ = αa ′ ⊔ βb ′ , we have c ′ ε C, as needed. We also have :

In the same way, we have c ′ < c ≥ β and therefore, finally, c ′ < c ≥ α∨β. ii) We set β ′ = β∧(¬α) ; we have α∧β ′ = 0 and α∨β ′ = α∨β. Therefore, we have :

q.e.d.

Theorem 19.

For any individual a, there exists an ordinal κ, such that there is no surjection from a onto κ.

Let f be a surjection from a onto an ordinal ρ. We define a strict ordering relation ≺ f by setting x ≺ f y ⇔ x ε a ∧ y ε a ∧ f (x) < f (y). It is clear that this relation is well founded, that f is an a-inductive function, and that O(f, a) ≃ ρ.

We may consider this relation as a subset of a×a.

By means of the axioms of union, power set and collection given above (theorems 1 4), we define an ordinal κ 0 , which is the union of the O(f, a) for all the functions f which are a-inductive for some well founded strict ordering relation on a.

In fact, we consider the set : B(a) = {X ε P(a×a) ; X is a well founded strict ordering relation on a}. Then, we set

In this definition, we use the function symbol Φ, defined after lemma 10, which associates with each well founded strict ordering relation X on a, a non void set of a-inductive functions for this relation. Then, there exists no surjection from a onto κ 0 + 1.

q.e.d. We denote by ∆ the first ordinal of N such that there is no surjection from גΠ onto ∆ : for every function φ, there exists δ ∈ ∆ such that ∀x גΠ (φ(x) ≃ δ). For each α ε ,2ג we denote by N α the class defined by the formula x = αx. Lemma 20. Let α 0 , α 1 ε ,2ג α 0 ∧α 1 = 0 and R 0 (resp. R 1 ) be a functional relation of domain N α 0 (resp. N α 1 ) with values in On. Then, either R 0 , or R 1 , is not surjective onto ∆.

Proof by contradiction : we suppose that R 0 and R 1 are both surjective onto ∆. We apply theorem 18 to the formula F (x 0 , x 1 ) ≡ ¬(R 0 (α 0 x 0 ) ≃ R 1 (α 1 x 1 )), and we get :

where f is a suitable function symbol (therefore defined in M). Replacing x 0 with α 0 x 0 , we obtain :

) is a surjection from גΠ onto ∆. But this is a contradiction with the definition de ∆.

Remark. We should write f (α 0 , α 1 , x 0 , ̟) instead of f (x 0 , ̟), since the function symbol f depends on the four variables α 0 , α 1 , x 0 , ̟. In fact, it depends also on the parameters which appear in R 0 , R 1 . The proof does not change.

q.e.d.

Proof by recurrence on the length of F .

If F is atomic, we have

Since D is an ultrafilter, this formula is equivalent with : 

Therefore, by the recurrence hypothesis, we have : q.e.d.

Remark. Theorem 27 is, in fact, true for any ultrafilter on ,2ג with the same proof.

Theorem 28. Let ⊏ be a well founded binary relation, defined in the ground model M.

Then the relation D x ⊏ y is well founded in the realizability model N .

Remark. Theorem 28 is an improvement on theorem 8.

Notations. We shall write x ⊏ D y for x ⊏ y ε D.

Recall that x < y means x ∈ Cl(y) ; and that x < α y means x < y ≥ α, for α ε .2ג

We define, in the model M, a binary relation ⊏ ⊏ on the class {0, 1}×M, by setting, for any α, α ′ ∈ {0, 1} and a, a ′ in M :

It is easily shown that it is well founded in M. The binary function symbol associated with this relation, of domain {0, 1}×M and values in {0, 1}, is given by :

This definition gives, in N , a binary function symbol with arguments in ×2גN , and values in .2ג By theorem 8, the binary relation

Proof of theorem 28.

Proof by contradiction : we assume that the binary relation ⊏ D is not well founded. Thus, there exists a 0 , A 0 such that a 0 ε A 0 and A 0 has no minimal ε-element for ⊏ D . We define, in N , the class X of ordered pairs (α, x), such that :

There exists X such that x ε X and X has no minimal ε-element, neither for ⊏ D nor for < ¬α . Therefore, the formula X (α, x) is :

If (α, x) is in X , then we have D(α) : indeed, the set X is non void and has no minimal ε-element for < ¬α . Therefore, we have ¬D(¬α), and thus D(α), since D is an ultrafilter. We obtain the desired contradiction by showing that the class X is non void and has no minimal element for the binary relation (α ′ , x ′ ) ⊏ ⊏ (α, x) = 1.

The ordered pair (1, a 0 ) is in X : indeed, we have x < 0 x for every x, and therefore A 0 has no minimal ε-element for < 0 . Now let (α, a) be in X ; we search for (α ′ , a ′ ) in X such that (α ′ , a ′ ) ⊏ ⊏ (α, a) = 1. By hypothesis on (α, a), there exists A such that a ε A and A has no minimal ε-element, neither for ⊏ D nor for < ¬α . Thus, there exists a 0 , a 1 ε A such that we have D a 0 ⊏ a and a 1 < ¬α a.

We set α ′ = (α∧ a 0 ⊏ a ) and therefore, we have D(α ′ ). We set β = ¬α ′ ∧α ; therefore α ′ , ¬α, β form a partition of 1 in the Boolean algebra .2ג

We have ¬ D(β) ; therefore, by definition of D, the relation < β is not well founded. Thus, there exists b, B such that b ε B and B has no minimal ε-element for < β . Then, we set : a ′ = α ′ a 0 ⊔ (¬α)a 1 ⊔ βb and A ′ = {α ′ x ⊔ (¬α)y ⊔ βz ; x, y ε A, z ε B}. Therefore, we have a ′ ε A ′ , as needed ; moreover :

By definition of (α ′ , a ′ ) ⊏ ⊏ (α, a) , it follows that (α ′ , a ′ ) ⊏ ⊏ (α, a) = β∨¬α∨α ′ = 1. It remains to show that A ′ has no minimal ε-element for ⊏ D and for < ¬α ′ . Therefore, let u ε A ′ , thus u = α ′ x ⊔ (¬α)y ⊔ βz with x, y ε A and z ε B. By hypothesis on A, B, there exists x ′ , y ′ ε A, x ′ ⊏ D x, y ′ < ¬α y and z ′ ε B, z ′ < β z. Then, if we set u ′ = α ′ x ′ ⊔ (¬α)y ′ ⊔ βz ′ , we have u ′ ε A ′ . Moreover, we have u ′ ⊏ u ≥ α ′ ∧ x ′ ⊏ x , and therefore D u ′ ⊏ u , that is u ′ ⊏ D u. Finally, u ′ < u ≥ (¬α∧ y ′ < y )∨(β∧ z ′ < z ) = ¬α∨β = ¬α ′ ; therefore, we have u ′ < ¬α ′ u.

q.e.d.

Theorem 29. M D is well founded, and therefore has the same ordinals as N ′ ∈ . We apply theorem 28 to the binary relation ∈ which is well founded in M. We deduce that the relation D x ∈ y , that is x ∈ D y, is well founded in N .

q.e.d.