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a b s t r a c t

Cold gas scale model experiments (1/30) demonstrate that coupling of vortex shedding with

acoustic standing waves can produce pressure oscillations of the same level as observed in

large Solid Rocket Motors. An analytical acoustical energy balance model is proposed in which

the system is described as a single mode acoustic resonator and the pulsations are assumed

to be purely harmonic. The selected acoustic mode number is an input to the model. Quasi-

steady linear models are used to describe losses of acoustic energy by vortex shedding at a

thermal inhibitor ring, radiation at the nozzle and friction within the porous injection wall

used for gas injection. The sound production is predicted by using a 2-D planar point vortex

model combined with the Vortex Sound Theory. The model demonstrates that the sound pro-

duction due to interaction of the vortex with the cavity surrounding the integrated nozzle is

dominant, explaining previous results of cold gas and hot-gas scale models. The effect of vor-

tex ingestion by the nozzle is negligible. Aspects of the nozzle geometry, other than the cavity

volume, are not critical. The model predicts pressure pulsations within a factor 2, when the

circulation of the vortices is taken one third of the maximum available circulation. This reduc-

tion factor of the circulation is assumed to be a consequence of turbulence. The Mach number

corresponding to the maximum of pulsation is predicted within 20% in a range comparable to

results obtained by axis-symmetrical numerical flow simulations.
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1. Introduction

Solid Rocket Motors (SRMs) can display strong acoustic oscillations [1–3]. For small engines these are often driven by a

coupling between the combustion and acoustic standing waves in the engine [4,5]. In large SRMs the oscillations can be sustained

by coupling between vortex shedding and acoustic standing waves [6,7]. A modulation of the combustion rate by the acoustic

field may also alter these pulsations, but is not absolutely necessary to sustain pulsations.

Detailed numerical simulations (CFD) of these sustained pressure oscillations in SRMs stil remain challenging and were

recently reviewed in Ref. [3]. This makes systematic parametric CFD studies of this phenomenon in SRMs wildly impractical.

Thus, there is a need for simplified models to accompany these numerical investigations, providing fast results which can suggest
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if an envisioned numerical run is beneficial and providing a framework for interpretation of simulation results. These could

eventually be used for interpolation or extrapolation of experimental or numerical results.

Most of the past analytical research effort focuses on growth of instabilities [8–10] which is described using linear theory

and as such is not capable of predicting limit cycle amplitudes. The main results were also derived for combustion related

instabilities with limited progress made for instabilities triggered by hydrodynamic interactions [8].

Originally [11] it was believed that vortex shedding at thermal inhibitor rings between segments of the propellant, so called

Obstacle Vortex Shedding (OVS), was the only possible cause of vortex shedding. However, Vuillot [6] and Dotson et al. [12]

showed that vortices can be formed in the absence of inhibitors. This is due to the intrinsic instability of the so-called Taylor

flow generated by the combustion [13,14] and is referred to as Surface Vortex Shedding (SVS). Vortex shedding can also occur

at the edge of an abrupt expansion in the combustion chamber cross-section. This is called Angle Vortex Shedding (AVS) and

this process is similar to OVS. In this paper OVS is focused on as a mechanism for vortex shedding and a model is developed to

understand how OVS vortices interact with the sound field in a SRM.

The experimental results display oscillation bursts in specific Mach number ranges corresponding to a particular acoustic

mode and a hydrodynamic mode. At the pulsation maximum the oscillation frequency coincides with the acoustic mode eigen-

frequency. Within such a burst the oscillation frequency increases with increasing Mach number as observed in actual SRMs

[12,15,16]. A famous example of such data is shown in Fig. 1.

Fig. 1 is a reproduction of the high amplitude pulsations detected in Titan 4 SRM. One observes bursts of pulsations around

the eigenfrequency of the first acoustic mode corresponding to a standing wave of approximately one half wavelength along the

combustion chamber. The Mach number at the nozzle inlet decreases with time as the combustion chamber diameter increases

due to combustion while the chocked nozzle throat remains almost constant. Within one burst, the frequency decreases as a

function of time, hence it increases with increasing Mach number. This frequency signature is a consequence of the time delay

in the convection of vortices between the vortex shedding position in the combustion chamber and the nozzle, where sound is

generated. Fig. 1 has motivated investigations of OVS as a strong source of instabilities [15–19] in SRMs.

It is known that vortical structures will produce sound by hydrodynamic interaction with the nozzle, but can also as sug-

gested by Matveev and Culick [20] generate sound by a modulation of the combustion. The focus here is on the hydrodynamic

interaction with the nozzle.

Anthoine et al. [17–19] confirmed the importance of vortex nozzle interaction in sound production. In the cold gas experi-

ments [17] the combustion is replaced by injection of air through a porous wall to reproduce the flow at a 1/30 scale in a Ariane

5 SRM. Anthoine [17] found, ratios prms∕p of the root-mean-square (rms) acoustic pulsation amplitude prms to static pressure p

of the order of 10−3. This corresponds to the amplitudes observed in full scale firing test [15] and scale models with combustion

[15,21]. Anthoine observed the characteristic frequency signatures observed in SRMs [12,15,16], an increasing frequency around

the acoustic mode frequency with increasing Mach number around each maximum of pulsation amplitude. This confirms that

these signatures can be accounted for by convective delay of vortices.

Anthoine et al. [17,18] proposed an analytical model to estimate the pulsation amplitude by balancing the vortex sound

power to radiation losses at the nozzle. In the present paper an improved analytical model is provided based on the Vortex

Sound Theory in which the losses are estimated using quasi-steady linear models. This includes radiation at the nozzle, the

effect of the vortex shedding at the inhibitor [22] and the sound absorption by the porous wall [23]. The effect of convection in

the nozzle radiation model, ignored by Anthoine [17], is also included using the expressions from Marble and Candel [24] and

Fig. 1. Time dependence of the frequency of pulsations observed in a SRM. Titan 4 data, Figure after Fig. 4 in Ref. [12]. One observes six sets of measurements corre-

sponding to bursts of high amplitude pulsation. Within each burst the frequency of oscillation decreases with increasing time, corresponding to an increase of oscillation

frequency with increasing Mach number.



Culick [8].

The objective of this paper is to develop an analytical framework that can be used to simulate limit cycles in SRMs focusing

on sources of sound due to vortex dynamics only. Another aim is to use the model for parametric investigations of effects due to

changes of the nozzle geometry. As a first validation step the proposed model is compared to cold-gas scale model experimental

data [17,25].

The first model considered is a nonlinear energy balance, in which saturation of the amplitude is assumed to be reached as

a result of the formation of discrete vortical structures. The circulation and path of these vortical structures is assumed to be

independent of the acoustical pulsation amplitude, because the acoustically induced velocity perturbations are typically two

orders of magnitude smaller than the main flow velocity. Hirschberg et al. [26] developed a model using the same nonlinear

energy balance modeling approach. However, the model in Ref. [26], used a crude vortex dynamics model with what amounts

to three fit-parameters. The model presented in this paper includes an improved vortex dynamics description that reduces the

number of fit parameters to one. It allows for the parametric study of the influence of the shape of the nozzle inlet which was

not possible using the model in Ref. [26]. Moreover, the present model takes into account both the contributions of the nozzle

cavity volume Vc and the ingestion of the vortex by the nozzle as sources of sound, allowing for an analytical investigation of

the contribution of these effects that has not been carried out previously.

Additionally to the energy balance, a lumped model is developed. The lumped model allows a prediction of the Mach number

dependence of the oscillation frequency (M∕f ) (df∕dM) due to above mentioned convective effects.

Section 2 describes the cold gas experiments of Anthoine [17] used as a test case for the proposed model. In this section the

low amplitude and moderate amplitude regimes are discussed. The model is developed in section 3. Succinct descriptions of the

acoustic loss model and of the vortex dynamics model which are used are also made in this section. The mathematical details

are given in A and B. Predictions are compared to cold gas experimental data in section 4. Changes of the nozzle shape and the

cavity volume Vc are also investigated in the section. Conclusions are summarized in section 5.

2. Cold gas model with axial injection

Fig. 2 shows a sketch of the axial injection (1/30) scale model of the Ariane 5 booster used by Anthoine [17]. The cylindrical

pipe of inner radius rp and length Lp is terminated at the upstream end by a porous wall through which air is injected. This

air is provided by a reservoir at a pressure pr ≃ 5 bar and room temperature. The static pressure in the pipe is around p =
pr∕(1 + 19M) [17], where M is the cross-sectional averaged Mach number in the pipe. In the experiments this Mach number

varies in the range 0.05 ≤ M ≤ 0.20. At the downstream pipe end a submerged (integrated) nozzle is placed. This integrated

nozzle has a cavity volume Vc representative of the acoustically accessible cavity volume which occurs during full scale firing

test. Different nozzle models are used to vary Vc (see Table 1). The Mach number M in the pipe can be varied by reducing the

nozzle throat area by the introduction of a needle. A solid sharp edged orifice of radius ro < rp is placed at a distance Lo from

the nozzle inlet. This orifice represents a thermal inhibitor emerging from the propellant. It is the vortex generator in the axial

injection experiments, which are considered here.

Anthoine [17] considered various models of the cavity corresponding to various stages during a firing test. In the present

discussion the focus is on the data for the largest cavities (nozzles 1,7 and 9 in Table 1). Anthoine et al. [18] observed that the

pulsation level prms∕p measured at the upstream head-end wall was proportional to the cavity volume Vc. This is predicted by

the theory, if it is assumed that the sound is generated when the vortices travel along the cavity opening and neglecting the

sound generated by the ingestion of the vortices by the nozzle.

A typical result of experiments by Anthoine [17] is shown in Fig. 3 for Lp = 0.393 m, L0 = 0.071 m, rp = 0.038 m and r0 =
0.029 m. In this figure the measured root-mean-square amplitude prms of the pressure pulsations measured at the head-end

normalized with static pressure prms∕p, is shown as a function of the Mach number M. In applications with combustion such

as in Ref. [12] the Mach number decreases as a function of time because for a fixed throat diameter the nozzle inlet diameter

Fig. 2. Axial injection cold gas scale experimental setup. The nozzle inlet is positioned at x = 0. The positive flow direction is from right to left. Air is injected through the

upstream porous head end wall (light grey), the injection is indicated with a big black arrow pointing to the nozzle on the axis of symmetry. The inlet Mach number M is

varied by introduction of a needle (dark grey) in the nozzle throat.



Table 1

Nozzle numbers (column 1) and associated cavity volumes Vc

(column 2) used in cold gas experiments at the VKI [17,25,29]. The

scaling factor 𝛼 ≡ Vnozzle 7∕Vc is shown in column 3.

Nozzle Vc(m3) × 10−5 𝛼

1 20.3 0.906

2 10.0 1.84

5 6.71 2.74

7 18.4 1.00

9 21.8 0.844

Fig. 3. Pulsation frequency with respect to the acoustic mode frequency (left) and relative rms pressure oscillation level (right) as a function of the Mach number.

Figure after Fig. 4.27a in Ref. [17].

increases in time.

The oscillation frequency f is represented in the dimensionless form f∕fn in Fig. 3. For each acoustic mode the oscillation

frequency increases monotonically with increasing Mach number. The oscillation frequencies are close to the acoustic modes of

a closed-closed pipe of length Leff:

fn = n
c

2Leff

, (1)

with n = 1, 2, 3… where c is the speed of sound in the pipe and

Leff = Lp − 𝛿Lp +
Vc

𝜋r2
p

(2)

where Vc is the nozzle cavity volume and 𝛿Lp is the depth of the nozzle cavity. As a first low frequency approximation the

acoustic effect of this cavity is taken into account by increasing the pipe length by Vc∕(𝜋r2
p
). The influence of the orifice on the

resonance frequency is neglected here. The mean pressure loss across the porous head end wall is large enough to approximate it

as a solid wall for the calculation of the resonance frequency. However, the effect of porosity on the acoustic losses is accounted

for in the next section. Note that in the acoustic model the head end wall is at x = −Leff.

Due to flow separation at the sharp edges of the orifice a free jet develops downstream of the orifice with a radius rjet smaller

than the orifice radius ro. The ratio (rjet∕ro)2 ≡ Υ is called the vena contracta factor. It is a function of ro∕rp. Empirical data by

Gilbarg [27] is used to determine this vena contracta factor. Here dependence of the vena contracta factor on the Mach number

is neglected [28]. For the cases considered by Anthoine [17,29], the pipe radius is rp = 0.038 m and three different orifice radii

are used ro = 0.029 m, 0.031 m and 0.034 m. The vena contracta factors are in these cases Υ = 0.68, 0.71, 0.78 respectively.

The fluctuation of the acoustic velocity at the edge of the orifice, induces a modulation of the vorticity in the shear-layer

bounding the jet. This triggers a hydrodynamic instability of the shear layer and the formation of coherent vortical structures

(vortices). An empirical estimate of the convection velocity UΓ of these vortices is UΓ = 0.4Ujet = 0.4U(rp∕rjet)2 [26,30] where

U = Mc. Using this estimate, one can estimate the number mh of vortices between the orifice and the nozzle inlet, as:

mh = fnLo

UΓ
= Υ

0.4M

(
n

2

)(
Lo

Leff

)(
ro

rp

)2

. (3)

Maxima in pulsation amplitudes appear to correspond to an integer number of vortices mh, which is called a hydrodynamic

mode. Each hydrodynamic mode corresponds to a Mach number M = U∕c for which the pulsation amplitude reaches a maxi-



mum and the frequency coincides with an eigenfrequency fn of an acoustic mode n given by Eq. (1). Around the coincidence, the

frequency f of the oscillation increases with increasing Mach number as shown by Figs. 1 and 3.

In a previous model [26] the empirical expression of UΓ was used and the convection velocity was supposed to remain

constant. In the present work a 2-D incompressible planar potential flow model is used to calculate the vortex velocity and

path. Assuming a standing wave one can estimate the relative acoustic velocity fluctuations urms∕U upstream of the orifice

using:

urms

U
= prms

𝛾pM
|sin

(
knxo

)|, (4)

where prms corresponds to the fluctuations at the pressure anti-node at the upstream head end, and 𝛾 = 1.4 is the ratio

between the heat capacity at constant pressure and the heat capacity at constant volume i.e. the Poisson constant. In Eq. (4),

kn = 2𝜋fn∕c is the wavenumber and xo = Lo + Vc∕𝜋r2
p

is the effective position of the orifice. The maximum of the observed

pressure pulsation level is in the range 10−3 ≤ prms∕p ≤ 10−2. Hence this corresponds for M = (10−1) to velocity fluctu-

ations of the order 10−2 ≤ urms∕U ≤ 10−1. This corresponds to moderate amplitude levels according to the classification

of Bruggeman et al. [30,31]. Further downstream the shear layer breaks down into discrete vortices. One new vortex is

formed each time the acoustic velocity in the main flow direction just upstream from the inhibitor passes through a zero

amplitude increasing to positive values. This phase condition proposed by Nelson et al. [32] and Bruggeman et al. [30] pre-

dicts the moderate amplitude behaviour in many low Mach number self-sustained flow instabilities in cavities and pipe

systems.

While the phase of the vortex shedding is controlled by the acoustic field, the magnitude of the circulation of the vortex is

independent of the acoustic amplitude. The circulation Γmax corresponding to the amount of vorticity shed during one period

of oscillation is an upper bound for the circulation Γ of the vortices that reach the nozzle. Once a new vortex is formed at time

t = 𝜏 , its circulation Γ is assumed to grow linearly in time over one period of oscillation 2𝜋∕𝜔 until it reaches maturity and its

circulation remains constant. The present model assumes for t − 𝜏 < 2𝜋∕𝜔 that:

Γ = K
Γmax𝜔

2𝜋
(t − 𝜏) (5)

where

Γmax = 0.5U2
jet

2𝜋

𝜔
(6)

where Ujet is the flow velocity in the jet formed by flow separation at the orifice. K is a constant, supposed to describe the

reduction of the circulation of the coherent structures due to turbulent diffusion.

When using this model with K = 1 assuming that all the vorticity was concentrated into a line vortex, Bruggeman

et al. [30] and Tonon et al. [33] found pulsation amplitudes in pipe systems with closed side branches which were

about a factor 5 too high. Considering axially symmetric numerical simulations of hot gas scale model experiments Gal-

lier et al. [21] found a reduction of 30% to 50% of the predicted pulsation amplitude when turbulence was taken into

account with a URANS numerical model compared to laminar flow simulations. Similarly when considering sound pro-

duction by a compact cavity in a corrugated pipe Golliard et al. [34] also found reduction of acoustic power by a fac-

tor 2 when turbulence was taken into account. Hence, one expects that K should be in the range 1∕5 ≤ K ≤ 1∕2. The

parameter K will be fitted to one experiment, and the ability of the model to predict other experiments will be veri-

fied.

The linear stability theory for a parallel shear layer flow [35] shows that the growth of linear perturbations of a shear

layer is limited to low frequencies such that the hydrodynamic wavelength of the perturbation is about ten times the shear

layer momentum thickness. Due to turbulence the shear layer width increases linearly with the distance from the separation

point. At low pulsation amplitudes the perturbations may reach the critical shear layer width for which the layer becomes

linearly stable before the vorticity has been fully concentrated into a coherent vortical structure. This explains that below a

certain pulsation amplitude the vortices have a lower circulation, which is amplitude dependent. The “moderate amplitude”

model fails typically for |𝐮′|∕U < 10−2 where U = cM. At these low amplitudes the model tends to overestimate the pulsation

level.

In the numerical simulations of Gallier et al. [21] excellent predictions of the pulsation amplitudes are obtained in most of the

experiments considered. The only exception is that the model drastically over-predicts or under-predicts the pulsation ampli-

tude in cases for which the observed pulsations were very low. This indicates that in the low amplitude regime the pulsation

amplitude is difficult to predict. In experiments one actually observes that the pulsation amplitude in the low amplitude regime

can change by orders of magnitude as a result of small modifications in the set-up. At very low amplitudes the circulation Γ of

the vortices is proportional to the amplitude of the local acoustic velocity fluctuations where the vortices are shed. In that case

both losses and sound production depend quadratically on the pulsation amplitude, which implies that the limit cycle amplitude

is undetermined.

An overview of the available experimental data is provided in Table 2. One observes that the pulsation amplitude is in most

cases in the moderate amplitude regime. Experiments with low amplitudes are indicated by an asterisk.



Table 2

Overview of the results of experiments, with axial injection obtained with the cold flow scale model of the VKI. In the tables repeating

values in columns are replaced by a dashed line.

Num. Nozzle Lp(m) Lo(m) × 10−2 ro(m) × 10−2 Υ n mh
urms

U
× 10−2

(a) Analysis and overview of relevant experimental data from Ref. [17].

1 7 0.393 7.1 2.9 0.68 2 2.1 1.8

2 ∣ 0.393 ∣ ∣ ∣ 3 1.8 2.6

3 ∣ 0.305 ∣ ∣ ∣ 2 1.9 2.0

4 ∣ 0.188 ∣ ∣ ∣ 1 2.2 1.2

5* ∣ 0.188 ∣ ∣ ∣ 2 2.8 0.65

6 ∣ 0.163 7.1 ∣ ∣ 1 2.0 1.1

7* ∣ 0.393 12.6 ∣ ∣ 1 2.1 0.47

8 ∣ ∣ 4.6 ∣ ∣ 2 0.85 7.2

9 ∣ ∣ 4.6 2.9 0.68 3 2.1 1.5

10 ∣ ∣ 7.1 3.1 0.72 2 1.9 2.3

11* ∣ ∣ ∣ 3.4 0.79 1 2.3 0.45

12 7 ∣ ∣ 3.4 0.79 2 2.0 1.2

13 1 ∣ ∣ 2.9 0.68 ∣ 2.1 2.1

14 2 ∣ ∣ ∣ ∣ ∣ 2.3 1.2

15 9 ∣ ∣ ∣ ∣ 2 2.0 1.9

16 9 ∣ ∣ ∣ ∣ 3 1.8 4.6

17* 5 ∣ 7.1 ∣ ∣ 2 2.3 0.71

18 1 ∣ 4.6 ∣ ∣ 3 2.3 1.9

19 1 0.393 4.6 2.9 0.68 2 1.2 2.4

(b) Overview and analysis of experimental data from Ref. [29].

20 9 0.393 4.6 2.9 0.68 2 0.78 4.8

21 ∣ ∣ ∣ 2.9 0.78 3 2.2 3.8

22 ∣ ∣ ∣ 3.1 0.72 2 2.4 2.4

23 ∣ ∣ ∣ 3.1 0.72 3 2.0 4.4

24 ∣ ∣ ∣ 3.4 0.79 2 1.9 3.0

25 9 0.393 4.6 0.68 0.79 3 1.9 5.1

3. Theoretical analysis

3.1. Single degree of freedom oscillator model

As proposed by Howe [36] for low Mach number flows, the acoustic field is described in terms of solutions of d’Alembert’s

equation for the total enthalpy fluctuation B′ . As the frequency of the oscillation is low compared to the cut-on frequency for

transversal pipe modes, the acoustic field can be described in terms of traveling plane acoustic waves. One can also describe the

acoustic field in terms of a series of standing waves [1].

Here the crudest approximation is used for which only one dominating standing wave is considered corresponding to the

resonance frequency fn. Furthermore the discussion is restricted to the limit cycle, which is assumed to be dominated by a single

harmonic oscillation. This implies that the acoustic field described in terms of total enthalpy fluctuations B′ is

B′ = −|bn| cos(knx) cos(𝜔t + Φn), (7)

where kn = 2𝜋fn∕c = 𝜔n∕c is the wavenumber, 𝜔 = 2𝜋f is the angular frequency, |bn| is the amplitude of the total enthalpy

fluctuations and x is the distance from the nozzle inlet. The phase Φn is chosen such that vortex shedding occurs at t = 0.

For a one-dimensional flow of time averaged velocity U and velocity fluctuation u′, the total enthalpy fluctuation are related

to the pressure fluctuation p′ by

B′ = p′

𝜌0

+ u′U (8)

where 𝜌0 is the density of the unperturbed mean flow. The acoustic power flux (energy per unit time and unit surface area), also

called the acoustic intensity I is given by the following relation [36].

I = m′B′ (9)

where m′ is the fluctuation in mass flux, i.e. one has

m′ = 𝜌′U + 𝜌0u′. (10)

The acoustic velocity u′ is obtained by using the linearized equation of Euler in the form

𝜕u′

𝜕t
= −𝜕B′

𝜕x
. (11)



Using Eq. (7), one finds:

u′ = − |bn|
c

(
𝜔n

𝜔

)
sin(knx) sin(𝜔t). (12)

As proposed by Culick [1] this system is described as a damped single degree of freedom harmonic oscillator driven by a

source term vortex

eff

d2bn

dt2
+ 𝛾eff

dbn

dt
+ Keffbn = vortex. (13)

The effective mass eff is defined, such that

1

2
eff

(
db

dt

)2

(14)

corresponds to the kinetic energy in the acoustic standing wave, viz.

eff =
4𝜋r2

p

(𝜔n|bn|)2

⟨
∫

Leff

0

1

2
𝜌0(u′)2

𝜔=𝜔n
dx

⟩
=
𝜌0𝜋r2

p
Leff

2(𝜔nc)2
(15)

where the brackets ⟨· · ·⟩ indicate time averaging over a period of oscillation. By definition the spring constant is related to the

resonance frequency 𝜔n = 2𝜋fn by:

Keff = eff𝜔
2
n

(16)

The time averaged acoustic power ⟨diss⟩ dissipated at the limit cycle is given by:

⟨diss⟩ =⟨
𝛾eff

(
db

dt

)2
⟩

(17)

where 𝛾eff is the effective damping.

The acoustic energy produced by the vortex flow during the interaction with the nozzle is estimated from the energy corollary

of Howe [37]:

⟨vortex⟩ = −𝜌
⟨
∫V

(𝝎 × 𝐯) · 𝐮′d3x

⟩
(18)

by using a two-dimensional incompressible potential flow model assuming a line vortex 𝝎 = (0, 0,Γ𝛿(x − xΓ)𝛿(y − yΓ)) for the

vortex path traveling at a velocity 𝐯 where the vortex position is (xΓ, yΓ, 0). In Eq. (18), 𝐮′ denotes the local acoustic velocity.

3.2. Linear damping

The linear damping 𝛾eff in Eq. (13) is the sum of losses due to sound radiation at the nozzle 𝛾nozzle, vortex shedding at the

orifice 𝛾orifice and viscous dissipation in the porous wall 𝛾porous:

𝛾eff = 𝛾nozzle + 𝛾orifice + 𝛾porous. (19)

In the axial flow injection case, the visco-thermal damping along the pipe wall appears to be negligible compared to the

other contributions. Models for these losses are described in Ref. [26] and are summarized in A.

3.3. Vortex path

The flow model used to predict the vortex path and its interaction with the local acoustic field at the nozzle inlet is a

two dimensional incompressible potential flow model. For convenience the flow in a quarter of the channel cross-section is

considered. The nozzle is represented as an abrupt contraction in a two dimensional channel from a square section of width

S1 =
√
𝜋rp∕2 to a rectangular channel of height S2 and width S1 where S2 is chosen following the formula:

S2 = S1M

(
𝛾 + 1

2(1 + 𝛾−1

2
M2)

) 𝛾+1

2(𝛾−1)

(20)

such that for an inlet Mach number M in a section of area S2
1

the channel area S1S2 after the 2-Dimensional contraction corre-

sponds to the area of the chocked nozzle throat, as calculated using quasi-one dimensional steady flow gas dynamics [38].

The vortex path is calculated using the following simplifying assumptions:

1. The vortex does not interfere with other vortices that are shed earlier or later.



Fig. 4. Conformal mapping, Schwarz-Christoffel transformation of backward facing step with uniform approach flow. The inner points in z-plane are mapped to the upper

two quadrants in the 𝜁-plane.

2. A new vortex is shed each oscillation period when the acoustic velocity u′ calculated with Eq. (12) vanishes at the orifice

x = xo turning in the direction of the main flow towards the nozzle.

3. The vortex circulation Γ increases linearly during the first oscillation period after it is shed, following the model of Eq. (5).

4. The vortex circulation Γ remains constant after one period of oscillation.

5. The acoustic flow does not influence the vortex path.

6. The cavity surrounding the nozzle inlet does not influence the vortex path.

By using the conformal mapping in the complex plane z = x + iy = f (𝜁 ) where i2 ≡ −1, the physical plane (x, y) is mapped

into the half plane above the real axis in the complex 𝜁 plane as shown in Fig. 4.

A modified Schwarz-Christoffel transformation as proposed by Henrici is used [39]. Details of the transformation can be

found in Ref. [40]. The Henrici transformation introduces the contraction length d, in the z plane as shown in Fig. 4. Calculations

are presented for a sharp square edge d = 0 and for a rounded nozzle inlet with d = S1∕2. This will provide some insight into

the effect of the nozzle geometry on the sound production.

The solution for the potential of the flow is obtained with the method of images. The vortex velocity and path zΓ are then

obtained by standard methods. Details are provided in Appendix B.

3.4. Acoustic field

The acoustic field in the pipe is approximated by a plane acoustic standing wave Eq. (12). A more detailed description of the

local acoustic field in the vicinity of the nozzle inlet is needed when applying the energy corollary Eq. (18). By definition the

acoustic field is a potential flow (frictionless). In the vicinity of the nozzle inlet there are two contributions to the acoustic veloc-

ity: the flow corresponding to the radiation of sound through the nozzle 𝐮′n and the flow 𝐮′c induced by the acoustic compression

of the gas in the cavity surrounding the nozzle inlet. At low frequencies as considered here, one can assume a quasi-steady

acoustic flow through the nozzle. This is in the incompressible potential flow model a harmonically oscillating flow induced by

a line (2-D point) source positioned at 𝜁 = 0 corresponding to points B and B′ in Fig. 4. The source strength Qn is given by:

Qn = 𝛾 − 1

2
M
|bn|

c
S1 cos(𝜔t + Φn), (21)

with scalar potential

𝜙n = Qn

𝜋
ln(𝜁 ). (22)

The acoustic field induced by the cavity is represented by a line source Qc of length S1 positioned at the corner just before the

contraction of the nozzle inlet, at point D in Fig. 4. Fig. 4 shows the cross-sectional two dimensional plane out of which the line

source protrudes. Point D is at z = 0 which corresponds to 𝜁 = a (see B). As the volume Vc of the cavity is small compared to the

acoustic wavelength one can assume a uniform pressure in the cavity and estimate Qc from an integral mass balance neglecting

the steady flow velocity

Qc = − Vc

4S1𝜌0c2

dp′

dt
= − Vc

4S1c2

dbn

dt
(23)

with scalar potential

𝜙c =
Qc

𝜋
ln(𝜁 − a). (24)



In order to investigate the effect of the geometry of the cavity opening, some calculations are carried out in which the volume

flux Qc is distributed between two line sources, placed along the real axis in the 𝜁 -plane.

The acoustic velocity (in complex notation) in the z-plane is given by:

u′ =
[

d(𝜙n + 𝜙c)
dz

]∗
=
⎡⎢⎢⎢⎣

d(𝜙n + 𝜙c)
d𝜁

1(
df

d𝜁

)
𝜁L

⎤⎥⎥⎥⎦
∗

(25)

where (…)∗ denotes the complex conjugate.

3.5. Energy balance

The power vortex (Eq. (18)) generated by a line vortex of circulation Γ of length 2S1 and position zΓ is given in complex

notation by Ref. [41].

vortex(t) = −4S1Re

[
i𝜌0Γu∗

ac

dzΓ
dt

]
= −4S1Re

[
i𝜌0Γu∗

ac

d𝜁Γ
dt

(
df

d𝜁

)
𝜁Γ

]
. (26)

As the vortex position 𝜁Γ and its velocity d𝜁Γ∕dt are known in the 𝜁 -plane as a function of the time the power generated by

a vortex can be obtained. The time averaged power generated by the vortices is calculated as

⟨vortex⟩ = 𝜔

2𝜋 ∫
tmax

0

vortex(t)dt. (27)

where the origin of time is taken at the moment the vortex is shed from the orifice at z0 and tmax is a time after which the vortex

has passed the contraction and does not produce sound anymore, because its path is parallel to the acoustic streamlines in the

channel. When there are more than one vortex between the orifice and the nozzle this integration time is larger than one period

of oscillation 2𝜋∕𝜔. The contribution of all vortices within one period of oscillation equals the contribution of a single vortex

over its entire active life 0 < t < tmax.

Assuming the oscillation frequency to correspond to the eigenfrequency of a mode𝜔 = 𝜔n the energy balance is given by

⟨vortex⟩ = ⟨
𝛾eff

(
dbn

dt

)2
⟩

, (28)

where ⟨vortex⟩ is calculated using Eq. (26) combined with Eq. (27). This yields a first order equation for the amplitude |bn| of

the standing wave in the pipe. Indeed the energy losses scale with the square of the amplitude |bn|2 while the sound production

scales with the amplitude |bn|. This is a consequence of the assumption that, both the circulation Γ and the vortex path are

assumed to be independent of the amplitude of the acoustic perturbation. In the model, only the phase of the vortex shedding

at the orifice is determined by the acoustic oscillation.

3.6. Lumped model

The energy balance does not allow the prediction of the variation of oscillation frequency with the Mach number M as

observed in Figs. 1 and 3. A lumped model is developed here for this purpose. Analogous to Culick [8] one can develop the

solution B′ of the aeroacoustic analogy in a series of orthogonal modes 𝜓n:

B′ =
∑

n

bn𝜓n, (29)

where 𝜓n is the solution of the Helmholtz equation

∇2𝜓n + kn𝜓n = 0 (30)

with the boundary condition 𝐧 · ∇𝜓n = 0 on a surface S with outer unit normal 𝐧 enclosing the combustion chamber. The

wavenumber kn = 𝜔n∕c corresponds to the acoustic resonance frequency 𝜔n . It can be shown that for such loss free bound-

ary conditions, one has

∫V

𝜓n𝜓md3x = E2
n
𝛿n m, (31)

where 𝛿n m is the Kronecker delta and En is a normalization factor. The volume V is enclosed by the surface S.

For a low Mach number homentropic flow with main steady velocity field 𝐔0 the analogy of Howe [36] can be written as

1

c2

𝜕2B′

𝜕t2
−∇2B′ = ∇ · (𝝎 × 𝐯) − 1

𝜌0

𝐔0 · ∇
(
𝜕B′

𝜕t

)
. (32)



The second term on the right hand side of Eq. (32) is usually neglected. It is, however, essential in order to take into account

convective losses at the nozzle and porous wall. Using Green’s function G(𝐱, 𝐲, t − 𝜏) developed in modes 𝜓n and neglecting

second order terms in the Mach number, one finds a set of ordinary differential equations for the mode amplitudes:

d2bn

dt2
+ 𝛾eff eff

dbn

dt
+𝜔2

n
bn = −

(
c

En

)2

∫V

(𝝎 × 𝐯) · ∇𝐲𝜓nd3y. (33)

In the derivation of Eq. (33) the volume integral

∫
Θ

−Θ ∫V

∇𝐲G · 𝐔0
𝜕𝜌′

𝜕𝜏
d3yd𝜏 (34)

averaged over a long time interval [−Θ,Θ] has been neglected. In the particular case considered here ∇𝐲G scales with ∇𝜓n, 𝜌′

scales with 𝜓n, and 𝐔0 is almost uniform along the pipe. Thus the volume integral is expected to vanish, because ∇𝐲𝜓n · 𝐔0 ∼
sin(kny1) while 𝜓n ∼ cos(kny1).

For a stable limit cycle bn = |bn| cos(𝜔t +Φn), the phase Φn is chosen such that t = 0 corresponds to the moment at which a

new vortex is shed. Substitution in Eq. (33) and multiplying by sin(𝜔t + Φn) one obtains, by averaging over a period of oscilla-

tion:

|bn| = −2eff

𝛾eff

(
c

En

)2 ⟨
∫V

(𝝎 × 𝐯) · ∇𝐲𝜓nd3y sin(𝜔t +Φn)
⟩

. (35)

Substitution in Eq. (33) and multiplying by cos(𝜔t + Φn) and time averaging over one period of oscillation yields a second

equation for |bn|. Combining this second equation for |bn| with the one above, one finds

𝜔n −𝜔 = 𝛾effeff(𝜔 + 𝜔n)

⟨∫
V
(𝝎 × 𝐯) · ∇𝐲𝜓nd3y cos(𝜔t + Φn)

⟩
⟨∫

V
(𝝎 × 𝐯) · ∇𝐲𝜓nd3y sin(𝜔t + Φn)

⟩ . (36)

When substituting the approximation𝜔 = 𝜔n in the first equation one obtains the same expression for |bn|, as for the energy

balance in the case where sound is only generated by the interaction of a vortex with the acoustic field generated by the cavity

Vc i.e. when sound production due to ingestion of a vortex by the nozzle is neglected.

The gradient of the eigenfunction ∇𝜓n accurately describes the acoustic flow in the combustion chamber including the

effect of the cavity volume Vc. Due to the radiation free boundary condition 𝐧 · ∇𝜓n = 0 this is a poor approximation for the

local acoustic velocity field induced by radiation through the nozzle. However, as noted by Culick [8] the energy losses due to

radiation are correctly described and included in 𝛾eff.

Substituting𝜔 = 𝜔n in the right hand side of Eq. (36), yields an estimate for the deviation𝜔n − 𝜔 of the oscillation frequency

𝜔 from the resonance frequency 𝜔n. This approximation is used to obtain a theoretical value of the slope (M∕𝜔)d𝜔∕dM of the

frequency as a function of the Mach number M around a pulsation maximum. A more accurate solution can be obtained by

successive substitution of approximations of 𝜔 [8]. Only the initial approximation described above is considered here. It is

obvious from this approximation that the slope is a measure for the quality factor  ≡ eff𝜔n∕𝛾eff of the resonator.

4. Results

4.1. Comparison of model with experiments

Table 1 contains the nozzle numbers, as defined by Anthoine [17] and associated cavity volumes Vc, used in cold gas scale

experiments carried out at the von Karman Institute (VKI).

In the following tables the experimental data are given for maxima of pulsation levels observed as a function of the Mach

number. An overview of the pulsation maxima in all the available axial injection experiments is shown in Table 2. For all the

experiments the pipe radius rp is fixed at rp = 3.8 × 10−2 m. In column 8 of Table 2 the estimated acoustic mode number n of

the experiments is shown. The estimated hydrodynamic mode number mh is calculated using Eq. (3). The results for mh are

shown in column 9 of Table 2. It is noteworthy that most of the experiments are in the second hydrodynamic mode, for which

mh ≃ 2. This means that in most experiments two vortices, with a phase delay of a period of oscillation between them, are

traveling simultaneously from the orifice to the nozzle. For measurements 8 and 19 (Table 2), which both have a small distance

Lo = 4.6 × 10−2 m between the orifice and the nozzle inlet, a hydrodynamic mode number mh ≃ 1 is observed. This means that

a single vortex is present between the orifice and the nozzle in these experiments.

The relative acoustic velocity fluctuation urms∕U is calculated with Eq. (4). The results are shown in column 10 of Table 2. If

10−2 ≤ urms∕U ≤ 10−1, the measurement is in the moderate amplitude regime [30]. The model described in this paper is valid

for this regime. If this relative fluctuation in acoustic velocity is  (
10−3

)
, it is in the so-called low-amplitude regime [30], in

which case the proposed model is not valid. These experiments are marked with an asterisk e.g. 5*. One will indeed observe that

the theory fails for these experiments.

The influence of the cavity volume Vc used in experiments is shown in Table 3. All experiments in Table 3 have a fixed pipe

length Lp = 0.393 m, distance between the orifice and the nozzle inlet Lo = 7.1 × 10−2 m, orifice radius ro = 2.9 × 10−2 m and

vena contracta factor Υ = 0.68.



Table 3

Influence of cavity volume Vc for fixed pipe length Lp = 0.393 m, orifice length Lo = 7.1 × 10−2 m, orifice

radius ro = 2.9 × 10−2 m and vena contracta factor Υ = 0.68. In this table repeating values in columns are

replaced by a dashed line.

Num. Nozzle Vc(m3) × 10−5 n Mexp × 10−2 𝛼
(

prms

p

)
exp

× 10−3 Mth

Mexp

(prms )th
(prms )exp

1 7 18.4 2 8.0 2.0 0.94 1.0

13 1 20.3 ∣ 7.9 2.2 0.95 0.91

14 2 10.0 ∣ 7.8 2.4 1.0 0.93

15 9 21.8 ∣ 8.6 1.9 0.87 1.0

17* 5 6.71 2 7.9 2.2 1.0 1.0

2 7 18.4 3 14 9.3 0.83 1.1

16 9 21.8 3 14 17 0.81 0.69

It is expected that the relative pressure pulsations are proportional to the cavity volume Vc used in the experiment [17].

Thus the experimental data are scaled by the cavity volume used for the experiment. The pulsation amplitude (prms∕p)exp is

multiplied by the factor:

𝛼 ≡ Vnozzle 7

Vc

. (37)

In column 3 of Table 1 the scaling factor 𝛼 is shown for all nozzles considered in this text. The resulting scaled relative pressure

pulsations are shown in column 6 of Table 3.

In the last two columns of Table 3 the experiments are compared to model, using the fit parameter K = 1∕3. To determine

the pulsation maximum predicted using the energy balance model the following steps are taken. An initial estimate of the Mach

number is taken at an arbitrary number near the Mach number that produced a pressure oscillation maximum (prms∕p)exp in the

experiments. The relative pulsation amplitude (prms∕p)th is calculated using the energy balance. The Mach number is increased

by an increment, then the relative pulsation amplitude is again calculated using the energy balance. This is repeated until a

maximum in relative pulsation amplitude is reached. If none is reached by systematic increase the same process is done with a

decreasing increment in Mach number starting from the initial estimated Mach number.

In Table 3 one observes that, experiments taken from Ref. [17] are reproduced with the model for n = 2 within 10%, for both

Mach numbers and relative pressure pulsation amplitudes. For n = 3 the deviation of 30% between the model and experiments

is comparable to the deviation between experiments using different nozzles.

Fig. 5 shows the measurements from Anthoine [17] as a function of the Mach number for the second acoustic mode n = 2.

The upright triangles indicate data obtained with nozzle 1, the circles nozzle 2, squares correspond to data for nozzle 7 and

sideways triangles nozzle 9. These data are scaled using the multiplication factor 𝛼 = Vnozzle 7∕Vc since a proportionality of the

pressure pulsations to Vc is expected [17]. This scaling allows to collapse the data to some extent. One observes a deviation of

approximately 20% between the maxima of the pulsation amplitude.

To investigate the influence of the cavity volume Vc used by the model two lines are shown in Fig. 5. The solid line corresponds

to the model with nozzle 7 for which the scaling factor is 𝛼 = 1. The dashed line corresponds to the model with nozzle 2,

𝛼 = Vnozzle7∕Vnozzle2. Both model predictions are made with K = 1∕3. Both predict the pressure pulsation quite well. The Mach

Fig. 5. Influence of cavity volume Vc on the rms pressure as a function of the Mach number for n = 2.



number of the maximum is reproduced within 10% and the maximum pressure pulsation amplitude is reproduced within 10%.

In Fig. 5, one observes a shift in Mach number where the maximum relative pressure pulsation (where f = fn) occurs for the

model. This is due to the fact that at the pulsation maximum the hydrodynamic mode number mh is fixed. As Vnozzle7 > Vnozzle2

the effective length Leff for nozzle 7 is larger than for nozzle 2. Thus the resonance frequency fn, which is inversely proportional

to Leff, for nozzle 7 is lower than for nozzle 2. Hence, the Mach number predicted for the maximum pressure pulsation is lower

for nozzle 7 than for nozzle 2, which keeps mh = fnLo∕(0.4cM) constant. Note that the predicted shift is not observed in the

experiments.

Fig. 6 shows scaled data obtained by Anthoine [17] for the third estimated acoustic mode n = 3. In this figure squares indicate

data obtained with nozzle 7 and sideways triangles those found for nozzle 9. The solid line in Fig. 6 are predictions obtained

using the model, with Vc = Vnozzle 7 and K = 1∕3. Both for the empirical data and the model prediction, the dimensions are

Lp = 0.393 m, Lo = 0.071 m, ro = 0.029 m and Υ = 0.68.

Looking at Fig. 6, one observes that the empirical data for n = 3 do not collapse, there is at least a 50% deviation between the

points obtained with nozzle 7 and nozzle 9 respectively. The model predicts an intermediate amplitude and a rather low Mach

number Mth ≃ 0.116 compared to the Mach of the measurements Mexp for the largest amplitudes.

The influence of the pipe length Lp used in the experiments is investigated in Table 4. The results in Table 4 were obtained

using nozzle 7 for a fixed distance between the orifice and the nozzle inlet Lo = 7.1 × 10−2 m and orifice radius ro = 2.9 × 10−2 m

for which Υ = 0.68. The Mach numbers observed in the experiments are predicted by the model developed in this work within

20%. For moderate amplitudes the relative pressure pulsations prms∕p are reproduced within a factor 2 when the factor K = 1∕3

is chosen to match the first experiment. When K is varied around this fit value one observes the predicted amplitude to be

linearly proportional to K. Note furthermore that for values of K close or equal to K = 1 the model can display unphysical

behaviour, the vortex is not ingested by the nozzle when the circulation becomes too large. This effet is not only observed

for a point vortex. It was also observed for a more realistic vorticity distribution by Hulshoff et al. [42]. Experimental results

indicated with an asterisk fall in the so-called low amplitude regime [30]. The proposed model is not valid in this regime

and the model drastically overestimates the pulsation levels. As indicated earlier similar behaviour is reported by Gallier et

al. [21] in detailed numerical flow simulations of hot gas experiments. The slope ((M∕f )df∕dM)exp determined from the exper-

iments is reproduced within 40% by the model. The fair prediction of the slope indicates that the losses are well modelled by

Eq. (36).

In Table 5, results are shown for cases where the distance between the orifice and the nozzle inlet Lo is varied and for

experiments carried out using nozzles 1, 7 and 9. The pipe length, the orifice radius were both respectively fixed at Lp = 0.393 m

and ro = 2.9 × 10−2 m for which Υ = 0.68. All Mach numbers are reproduced within 25% using the model described in this study.

Fig. 6. Influence of nozzle on the rms pressure as a function of the Mach number for n = 3.

Table 4

Influence of pipe length Lp .

Num. n Lp (m) Mexp × 10−2
(

prms

p

)
exp

× 10−3 Mth

Mexp

(prms )th
(prms )exp

(
M

f

df

dM

)
exp

(
M

f

df

dM

)
th

1 2 0.393 8.0 2.0 0.94 1.0 0.20 0.16

2 3 0.393 14 9.3 0.83 1.1 0.12 0.07

3 2 0.305 11 3.7 0.88 1.1 0.17 0.14

4 1 0.188 7.8 1.3 0.97 1.3 0.31 0.28

5* 2 0.188 12 4.4 1.0 4.0 0.25 0.16

6 1 0.163 9.8 1.6 0.88 1.8 0.39 0.30



Table 5

Influence of the distance between the orifice and nozzle inlet Lo. In this table repeating values in columns are replaced by a dashed line.

Num. nozzle Vc(m3) × 10−5 n Lo(m) × 10−2 Mexp × 10−2 𝛼
(

prms

p

)
exp

× 10−3 Mth

Mexp

(prms )th
(prms )exp

18 1 20.3 3 4.6 7.3 2.0 0.93 0.81

19 1 20.3 2 4.6 9.0 2.8 1.1 1.1

7* 7 18.4 1 12.6 7.3 0.50 0.95 3.4

1 ∣ ∣ 2 7.1 8.0 2.0 0.94 1.0

2 ∣ ∣ 3 7.1 14 9.3 0.83 1.1

8 ∣ ∣ 2 4.6 13 14 0.74 0.68

9 7 18.4 3 4.6 8.0 1.8 0.77 1.60

15 9 21.8 2 7.1 8.5 1.9 0.87 1.0

16 9 21.8 3 7.1 14 17 0.81 0.69

In column 1 the number of the experiment is shown. For points in the moderate amplitude regime [30] the relative pressure

pulsations prms∕p are reproduced within 60%. The low amplitude experiment 7* is over estimated by a factor 3, when using the

moderate amplitude model.

The influence of the orifice radius ro has been investigated. Although the orifice radius ro has some influence on the pre-

dictions, all predictions agree with Anthoine [17] and Yildiz [29] experiments within a similar measure of accuracy as the data

described above.

4.2. Predictions of the model

Now that it has been shown that the model predicts moderate amplitude pulsations in axial injection experiments fairly

well, it is used to investigate the influence of modifications in nozzle geometry. Results are presented in Fig. 7. The dotted line

is for a contraction with a sharp square edge (d = 0) with the source concentrated in a single point at z = 0. The solid line is

for a smooth contraction (d∕S1 = 0.5) with the source concentrated in a single point at z = 0. The dashed line is for a smooth

contraction for which the source is spread out viz. half the cavity volume is placed at z = 0 and the other half on a point of

the contraction for which Im {z} = 0.25S1. Spreading out the cavity volume between these two points simulates the finite size

of the opening of the nozzle cavity. The sharpness of the contraction displaces the Mach number of the predicted maximum

pressure pulsation to the left. It deviates approximately 5% from the maximum Mach number for the smoothed cases. There is

however no appreciable impact on the predicted pressure pulsation amplitude for all the geometric variations. This leads one to

conclude that the exact geometry of the nozzle does not have a major influence on the generation of relative pressure pulsation

in SRMs.

Another interesting result of the model is that it allows for comparison between the sound produced without cavity Vc = 0

and sound produced with a nozzle cavity present. This is illustrated in Fig. 8. One observes that the interaction with the cavity is

two orders of magnitude more than the ingestion by the nozzle. Indeed, experiments carried out by Anthoine [17] with Vc = 0

did not show significant pulsation amplitudes.

Fig. 7. Influence of geometric parameters of the nozzle on model predictions.



Fig. 8. Influence of the cavity volume Vc .

5. Conclusion

An analytical model based on an energy balance has been proposed to predict amplitudes of pulsations in a cold gas model

of a SRM with vortex shedding at a thermal inhibitor and axial flow injection. The acoustic energy losses are described by

linear quasi-steady models for acoustic radiation at the nozzle, vortex shedding at the inhibitor and viscous dissipation in the

porous wall used for injection. This model predicts losses increasing quadratically with the pulsation amplitude. These losses

are balanced by the sound production due to the interaction of vortices shed at the inhibitor with the critical nozzle at the

downstream end of the SRM.

The magnitude of the circulation Γ of the vortices is estimated as a fraction K of the vorticity shed within one period of

oscillation concentrated in a line vortex. The acoustic mode number n is a user provided input to the model. The oscillation

frequency f is assumed to be equal to the corresponding eigenfrequency fn.

The factor K = 1∕3 is fitted to one of the experimental results and it is supposed to account for the effect of turbulence in

the flow and other differences between the model and the actual flow. Previous numerical simulations indicate that including

turbulence reduces the predicted pulsations by about a factor 2, compared to a laminar flow simulation.

The dynamics of the vortex is described by a planar incompressible potential flow model. It is assumed that the acoustic field

only determines the moment (phase) of vortex shedding at the inhibitor. The vortex circulation and path are independent of

the amplitude of pulsation. The acoustic power generated by the vortex is calculated using Howe’s energy corollary. This power

scales linearly with the pulsation amplitude. This allows for a prediction of the pulsation amplitude for moderate amplitudes

10−2 ≤ |u′|∕U ≤ 10−1.

At lower amplitudes |u′|∕U < 10−2 the model severely overestimates the pulsation level. Predicting low amplitude pulsa-

tions appears to be difficult even when using sophisticated numerical models [21]. At low amplitude the vortex circulation

becomes amplitude dependent and if the linear regime is approached the power predicted by Howe’s corollary scales quadrati-

cally with the amplitude. Hence, the balance between acoustic losses and vortex sound generation does not allow to predict an

amplitude. A minor increase in losses can reduce pulsation levels by orders of magnitude.

In the moderate amplitude regime the model predicts data of Anthoine et al. [17,29] quite well. The pulsation amplitudes are

predicted within a factor two and the Mach number for the maximum pulsation level within 20% for orifice position Lo∕rp = 1.9.

For Lo∕rp = 1.2 the model predicts the pulsation levels within a factor 3 and the Mach number within a factor 2.

Applying the theory of Culick [8] to the Vortex Sound Analogy of Howe [36,43] one can obtain the Mach number dependence

of the oscillation frequency around a pulsation maximum. The slope (M∕f )df∕dM is determined by the losses. Comparison

between theory and experiments indicates that larger deviations are due to inaccuracies in the source model, in particular the

description of the vortex flow, rather than inaccuracies in the losses.

An important result [17] is that the pulsation amplitude is proportional to the volume Vc of the cavity around the inlet of the

integrated nozzle. The model confirms this and predicts that pulsation amplitudes generated by the ingestion of the vortex are

two order of magnitude lower than those generated by the interaction of the nozzle with the cavity.

The model, also, indicates that there are only minor differences as a result of the use of a nozzle with a square sharp edge

nozzle inlet compared to a rounded nozzle inlet. A variation in position of the nozzle cavity inlet has only a small effect on the

pulsation amplitude. This illustrates that a model such as this one provides insight in the influence of geometric parameters on

the pulsation levels.

A correction to the model taking into account the axis-symmetrical geometry of the vortices and the effect of turbulence

should be considered as a next step. This would involve sophisticated numerical simulations. Although the present model is

crude it is almost completely analytical and well suited for parametric analysis.
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Appendix A. Loss models

This appendix contains a summary of the loss models used for the model. More detail on these models can be found in Ref.

[26].

Appendix A.1. Nozzle radiation

The losses due to the radiation of the plane waves at the nozzle is estimated by using the quasi-steady isentropic theory of

Marbel and Candel [24]. The key idea is that in this approximation the Mach number at the nozzle inlet is fixed by the geometry

as long as the nozzle remains chocked. This implies for the fluctuations c′ in speed of sound c at the nozzle inlet:

c′

c
= u′

U
. (A.1)

Using the isentropic gas relations for a perfect gas, combined with p′ = c2𝜌′ = (p+ + p−) and u′ = (p+ − p−)∕(𝜌0c), one finds the

pressure reflection coefficient:

Rnozzle = p−

p+
=

1 − 𝛾−1

2
M

1 + 𝛾−1

2
M

. (A.2)

This is the result of Marble and Candel [24]. Thus the stagnation enthalpy reflection coefficient is

B−

B+
= Rnozzle

1 − M

1 + M
(A.3)

and the time averaged power losses ⟨nozzle⟩ due to this radiation are given by

⟨nozzle⟩ = 𝜌0|bn|2
8c

[
1 − R2

nozzle

(
1 − M

1 + M

)2
]
𝜋r2

p
, (A.4)

where it is assumed that |B+| = |B−| = |bn|∕2 in accordance with the assumption that the acoustic field is dominated by a

standing wave, described by Eq. (7). Alternatively, based on Eq. (13), the nozzle radiation can be written in terms of 𝛾nozzle as

⟨nozzle⟩ = 𝛾nozzle

2
𝜔2|bn|2, (A.5)

from which the nozzle damping coefficient is deduced

𝛾nozzle =
𝜌0𝜋r2

p

4𝜔2c

[
1 − R2

nozzle

(
1 − M

1 + M

)2
]

. (A.6)

Appendix A.2. Vortex shedding at the orifice

Due to flow separation at the sharp edges of the orifice a free jet will be formed downstream of the orifice with a smaller

radius rjet than the orifice radius ro. The ratio (rjet∕ro)2 ≡ Υ is called the vena contracta factor. It is a function of ro∕rp. Empirical

data by Gilbarg [27] is used to determine this vena contracta factor in Section 2. Neglecting the pressure recovery downstream

of the orifice one has a pressure in the free jet equal to the downstream acoustic pressure. This implies a loss of total acoustical

enthalpy B′ across the orifice given, for a quasi-steady flow, by

ΔB′
orifice

= u′
jet

Ujet − u′U = u′U

[(
rp

rjet

)4

− 1

]
(A.7)

where u′U is evaluated just upstream of the orifice. Terms of order M2 are neglected and it is assumed that the surface averaged

velocities u′ and U are equal upstream and downstream of the orifice.

The corresponding acoustic power losses are given by⟨orifice⟩ = ⟨
m′ΔB′

orifice

⟩
𝜋r2

p
. (A.8)

From which, in a similar way as for the nozzle radiation, one finds:

𝛾orifice =
𝜌0𝜋r2

p

𝜔2c

(
𝜔n

𝜔

)
M

[(
rp

rjet

)4

− 1

]
sin2(knxo), (A.9)



where the orifice position is xo = Lo + Vc∕𝜋r2
p

.

Appendix A.3. Viscous damping at the porous wall

A quasi-steady isothermal flow through the porous wall is assumed. By continuity the mass flux m = 𝜌0u remains indepen-

dent of the position x in the porous wall. As for M2 << 1 the temperature remains uniform in the wall and the viscosity 𝜇 of

the air is a function of the temperature only (ideal gas), one finds that the Reynolds number Red = 𝜌0ud∕𝜇 based on the charac-

teristic pore width d is constant in the porous wall. The pressure gradient in the wall is determined by a friction coefficient CD,

which is assumed to be a function of Red only [23]:

dp

dx
= −(𝜌0u)2

𝜌0d
CD(Red) (A.10)

As 𝜌0 = p∕(RT) with T the temperature and R the specific gas constant one finds by integration p2
r
− p2 = C(𝜌0u)2, with C a

constant. Neglecting the acoustic perturbations in the high pressure reservoir and using 𝜌′∕𝜌0 = p′∕p for isothermal flow, one

finds:

p′

p
=

[
1 −

(
pr

p

)2
](

p′

p
+ u′

U

)
(A.11)

Using p′ = p+ + p−, 𝜌′ = p′∕c2, u′ = (p+ − p−)∕(𝜌0c), after some algebra, one finds

𝛾porous =
𝜌0𝜋r2

p

4𝜔2c

[
1 − R2

porous

(1 + M)2

(1 − M)2

]
, (A.12)

with

Rporous =
p+

p−
= (pr∕p)2(1 − 𝛾M) − 1

(pr∕p)2(1 + 𝛾M) − 1
. (A.13)

Appendix B. Vortex path

The conformal mapping of Henrici [39] used to calculate the vortex path is

z = S1

𝜋

{
𝛼

[
ln

(
1 + 𝜃
1 − 𝜃

)
− ln

(
b + 𝜃
b + 𝜃

)]
+ 𝛽 ln

(
𝜁

b2

)}
(B.1)

with

𝜃2 = 𝜁 − b2

𝜁 − 1
(B.2)

and

𝛼 = S1 − S2

𝜋

b

(b − 1)
(B.3)

𝛽 = bS2 − S1

𝜋(b − 1)
. (B.4)

The parameter b (b2 ≡ a) is determined by solving the implicit equation:

2
(bS2 − S1)
𝜋(b − 1)

ln b = d (B.5)

where d is the length of the contraction (in the z plane). These developments are used to provide some insight into the effect of

the nozzle geometry on the sound production.

The main flow is described by a volume (line) sink placed at the origin 𝜁 = 0 with strength Q1 = −S1U1 where U1 = Mc with

c the speed of sound in the pipe. The potential Φ0 describing this main flow is Φ0 = (Q1∕𝜋) ln(𝜁 ). The vortex path 𝜁Γ in the 𝜁

plane is obtained by integration in time of the equation,

d𝜁Γ
dt

= 1|df∕d𝜁 |2
[
−U1S1

𝜋𝜁Γ
+ i

Γ
2𝜋(𝜁Γ − 𝜁∗Γ )

+ i
Γ

4𝜋

(d2f∕d𝜁2)𝜁Γ
(df∕d𝜁 )𝜁Γ

]∗

(B.6)

where * indicates the complex conjugated value. The first term is the convection of the vortex by the main flow. The second

term is the velocity induced by the image of the vortex. The mirror is the real axis of the 𝜁 plane. The third term is the so-called



Routh’s correction for the self-induced velocity of the vortex [41,44]. The time integration is performed by means of the fourth

order Runge-Kutta integration as proposed by Howe [43].

The initial position of the vortex is z0 = x0 + ih0 where x0 = Lo is the position of the orifice and the height h0 is chosen such

that the area 4S1(S1 − h0) of the “ring” in the 2-D representation is equal to the actual vortex ring surface𝜋r2
jet

. The corresponding

value 𝜁L(0) is calculated by solving Eq. (B.1).

Once 𝜁L(t) has been determined by numerical integration the corresponding vortex path in the physical plane zΓ is calculated

using the explicit transformation Eq. (B.1).
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