
HAL Id: hal-01737064
https://hal.science/hal-01737064v1

Submitted on 13 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice Attacks on Pairing-Based Signatures
Thierry Mefenza, Damien Vergnaud

To cite this version:
Thierry Mefenza, Damien Vergnaud. Lattice Attacks on Pairing-Based Signatures. IMACC 2017 -
16th IMA International Conference on Cryptography and Coding, Dec 2017, Oxford, United Kingdom.
pp.352-370, �10.1007/978-3-319-71045-7_18�. �hal-01737064�

https://hal.science/hal-01737064v1
https://hal.archives-ouvertes.fr

Lattice Attacks on Pairing-Based Signatures

Thierry Mefenza1,2 and Damien Vergnaud3,4

1 Département d’informatique de l’ENS
École normale supérieure, CNRS, PSL Research University

75005 Paris, France
2 INRIA

3 Sorbonne Universités, UPMC, CNRS
LIP6, Équipe Almasty, Paris, France

4 Institut Universitaire de France, Paris, France

Abstract. Practical implementations of cryptosystems often suffer from
critical information leakage through side-channels (such as their power
consumption or their electromagnetic emanations). For public-key cryp-
tography on embedded systems, the core operation is usually group ex-
ponentiation – or scalar multiplication on elliptic curves – which is a
sequence of group operations derived from the private-key that may re-
veal secret bits to an attacker (on an unprotected implementation).
We present lattice-based polynomial-time (heuristic) algorithms that re-
cover the signer’s secret in popular pairing-based signatures when used
to sign several messages under the assumption that blocks of consecu-
tive bits of the corresponding exponents are known by the attacker. Our
techniques relies upon Coppersmith method and apply to all signatures
in the so-called exponent-inversion framework in the standard security
model (i.e. Boneh-Boyen and Gentry signatures) as well as in the random
oracle model (i.e. Sakai-Kasahara signatures).

Keywords. Cryptanalysis; Side-channel attacks; Lattice attacks; Cop-
persmith’s methods; Pairing-based signatures; Boneh-Boyen signatures;
Gentry signatures; Modular Inversion Hidden Number Problem.

1 Introduction

Pairing-based signatures. An identity-based encryption (IBE) scheme is a public
key encryption scheme in which a user public key is its identity which may be an
arbitrary string such as an email address, a phone number or any other identifier
and the user private key is generated by a trusted authority called the private-
key generator. In their seminal paper proposing the first IBE scheme, Boneh
and Franklin [5] mentioned an interesting transform from an IBE scheme to a
signature scheme (whose observation was attributed to Naor). The transforma-
tion is as follows: the private-key generator public key and secret key correspond
to the public key and secret key of the signature scheme and the user private
key generation correspond to signatures generation. The well-known short sig-
nature scheme proposed by Boneh, Lynn and Shacham [7, 8] can be seen as an
application of Naor transformation to Boneh and Franklin IBE [5].

Pairings (or bilinear maps) are powerful mathematical constructs which have
been used since 2000 to design numerous complex cryptographic protocols. There
are three known pairing-based approaches to design IBE schemes [9]: full-domain-
hash [5], commutative-blinding [3] and exponent-inversion [3, 2, 4]. We focus on
the latter framework which gives rise to several short signature schemes thanks
to Naor transformation.

Embedded devices and side-channel attacks. The pairing-based signature schemes
are very well-suited for resource-limited devices since they produce short signa-
tures and their generation involves only one scalar multiplication on an elliptic
curve. In the recent years, theoretical attacks against elliptic curves have shown
little improvements whereas side-channel attacks became a major threat against
elliptic curves implementations [19, 20]. These attacks are based on information
gained from the physical leakage of a cryptosystem implementation (such as
timing information, power consumption or electromagnetic leaks).

For elliptic-curve cryptography, the core operation is scalar multiplication
which is usually computed with the binary method: the binary representation
of the (secret) exponent is scanned; for the bit-value zero, a point-doubling is
computed, whereas a point-doubling and a point-addition are calculated when
the bit-value is one. Distinguishing point-doubling from point-addition in power
traces can thus reveal the secret exponent. Classical countermeasures to this sim-
ple power analysis consist of using regular algorithms for scalar multiplication.
In the more involved differential power analysis, the idea is to guess the secret
bit-by-bit, and try to confirm or infirm the guess for each bit thanks to statistical
analysis of several power traces. This approach requires that the same secret is
used to perform several cryptographic operations but since pairing-based signa-
tures in the exponent-inversion framework use a different exponent for each new
signature, they seem immune to differential power analysis.

In [10], Chari, Rao and Rohatgi introduced the so-called template attacks
which aim at exploiting side-channel information when only a limited number
of leakage traces is available. These attacks require that the attacker is able to
perform a profiling of the side-channel leakage. Countermeasures against simple
power analysis attacks might not prevent such template-based attacks since they
exploit data dependent leakages and not only operation dependent leakages.
For pairing-based signatures in the exponent-inversion framework, the signature
generation consists of a single scalar multiplication of a fixed base point where
the exponent depends algebraically on the secret key, the message and some
public randomness. Since the base point is fixed, the first bits of these variable
exponents that are processed during the signature computation can only lead
to a small set of points and we only need to build templates for the points
in this (small) set. In this paper, we show that only a small number of bits of
several such exponents is sufficient to determine the secret key via lattice attacks.
This approach is similar to lattice attacks [17, 24, 25] combined with template
attacks [23] that were proposed against the standardized signature scheme DSA
and ECDSA.

Contributions of the paper

We consider several pairing-based signature schemes in the exponent-inversion
framework. In [26], Sakai and Kasahara presented the first such scheme (whose
security was analyzed in the random oracle model by Zhang, Safavi-Naini and
Susilo in [27]). Boneh and Boyen [2] then presented the first pairing-based sig-
nature whose security can be proven in the standard security model. In 2006,
Gentry [14] proposed yet another scheme using the exponent-inversion paradigm,
with a tighter security proof than the earlier proposals.

These schemes can be described in a general simplified form as follows. Let G
and GT be two cyclic groups of the same prime order p and let g be a generator of
G. We suppose that (G,GT) are equipped with an efficiently computable bilinear
map e : G×G→ GT . Let H : {0, 1}∗ → Zq be a collision-resistant hash function.
Let f, g ∈ Zp[X,Y,M,R] be two polynomials of degree at most one in X and
Y . The key generation picks uniformly at random two integers (x, y) ∈ Zp as
the signing secret key and outputs (gx, gy) ∈ G2 as the public-key. To sign a
message m ∈ {0, 1}∗, the signer picks uniformly at random r ∈ Zp, computes

σ = gf(x,y,H(m),r)/g(x,y,H(m),r)

and outputs the pair (σ, r) as the signature. The validity of a signature is checked
by verifying whether the following equality holds:

e(σ, gg(x,y,H(m),r)) = e(gf(x,y,H(m),r), g)

where the elements gf(x,y,H(m),r) and gg(x,y,H(m),r) can be computed publicly
from gx, gy, m and r. The three schemes use the following specific polynomials:

– Sakai-Kasahara [26]: f(X,Y,M,R) = 1, g(X,Y,M,R) = X +M
– Boneh-Boyen [2]: f(X,Y,M,R) = 1, g(X,Y,M,R) = X +M + Y R
– Gentry [14]: f(X,Y,M,R) = Y +R, g(X,Y,M,R) = X +M

We present lattice-based polynomial-time algorithms that recover the signer’s
secret (x, y) ∈ Z2

p in these pairing-based signatures when used to sign a constant
number of messages under the assumption that blocks of consecutive bits of the
corresponding exponents f(x, y,H(m), r)/g(x, y,H(m), r) modulo p are known
by the attacker. We consider known-message attacks and chosen-message attacks
(i.e. where the attacker is allowed to choose the message m). The method of this
paper is heuristic and uses Coppersmith’s lattice technique. Let ` denote the
bit-length of p and N denote the number of unknown blocks of each signing
exponent. In a nutshell, we show that one can recover the secret key if the
number of consecutive bits of each unknown block is smaller than the following
theoretical values:

– Sakai-Kasahara: `/2N2

– Boneh-Boyen: `/2N2

– Gentry: `/N

provided that the number of signatures is sufficiently large (see the corresponding
sections in the paper for more precise bounds). It is interesting to note, that
Gentry scheme which provides the best classical security (tight security reduction
in the standard security model), is the weakest against our class of attacks.

More generally, our lattice-based algorithms can be seen as methods to solve
variants of the modular inversion hidden number problem which was introduced
by Boneh, Halevi and Howgrave-Graham in 2001 [6]. This problem is to find
a hidden number given several integers and partial bits of the corresponding
modular inverse integers of the sums of the known integers and that unknown
integer. It was used in [6] to built a pseudo-random number generator and a
message authentication code scheme. In [22], the authors mentioned that it is
interesting to study a general problem of recovering of an unknown rational
function. One can see our results as a first step towards solving this problem.

The efficiency of our (heuristic) attacks has been validated experimentally.

2 Coppersmith Method

We provide a short description of the Coppersmith method [12, 11] for finding
small roots of a multivariate modular polynomial system of equations modulo
an integer p. We refer the reader to [18] for details and proofs.

Problem definition. Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible mul-
tivariate polynomials defined over Z, having a root (x1, . . . , xn) modulo a known
integer p namely for i ∈ {1, . . . , s}, we have fi(x1, . . . , xn) ≡ 0 mod p. Our goal
is to recover the desired root (x1, . . . , xn). This problem is generally intractable
but becomes solvable (under some conditions) in polynomial time log(p)O(1)

(for constant n and constant total degree of the input polynomials) if the root
(x1, . . . , xn) is upper-bounded by some values (X1, . . . , Xn) that depends on p
and the degree of the polynomials f1, . . . , fs.

Polynomials collection. In a first step, one generates a larger collection P
of polynomials {f̃1, . . . , f̃r} linearly independent having (x1, . . . , xn) as a root
modulo pm, for some positive integer m. Usually, the technique consists in taking
product of powers of the modulus p, the polynomials fi for i ∈ {1, . . . , s} and
some well-chosen monomials, such as

f̃` = pm−
∑s

j=1 kj,`y
α1,`

1 · · · yαn,`
n f

k1,`
1 · · · fks,`s

for some positive integers α1,`, . . . , αn,`, k1,`, ks,`. These polynomials

satisfy f̃`(x1, . . . , xn) ≡ 0 mod pm.

Lattice construction. In a second step, one denotes as M the set of mono-
mials appearing in collection of polynomials P, and one writes the polynomials
f̃i(y1X1, . . . , ynXn) for i ∈ {1, . . . , r} as a vector bi ∈ (Z)ω, where ω =]M. One

then constructs a lattice L generated by the vectors b1, . . . , br and computes its
reduced basis using the LLL algorithm [21].

Lemma 1. Let L be a lattice of dimension ω. In polynomial time, the LLL
algorithm given as input of basis of L outputs a reduced basis of L formed by
vectors vi, 1 6 i 6 ω that satisfy:

‖v1‖ 6 ‖v2‖ 6 . . . 6 ‖v2‖ 6 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i .

Generating new polynomials. In a third step of the method, one combines
Lemma 2 below (from [16]) and Lemma 1 to obtain n multivariate polynomials
g1(y1, . . . , yn), . . . , gn(y1, . . . , yn) having (x1, . . . , xn) as a root over the integers.

Lemma 2. (Howgrave-Graham) Let h(y1, . . . , yn) be a polynomial over Z
having at most ω monomials. Suppose that:

1. h(x1, . . . , xn) = 0 mod W for some |x1| < X1, . . . , |xn| < Xn and,
2. ‖h(X1y1, . . . , Xnyn)‖ 6 W√

ω
. Then h(x1, . . . , xn) = 0 holds over the integers.

The LLL algorithm run on the lattice L to obtain n reduced vectors vi, i ∈
{1, . . . , n} that we see as some polynomials h̃i(y1X1, . . . , ynXn), i ∈ {1, . . . , n}.
One can see that for i ∈ {1, . . . , n}, h̃i(x1, . . . , xn) = 0 mod pm, since h̃i is a
linear combination of f̃1, . . . , f̃r. Then if the following condition holds:

2
r(r−1)

4(r+1−n) det(L)
1

r+1−n <
pm√
ω
,

by Lemmas 1 and 2, h̃i(x1, . . . , xn) = 0, i ∈ {1, . . . , n} holds over the integers
and we then obtain n polynomials having (x1, . . . , xn) as a root over the integers.

Condition. In our attacks, the number of polynomials in the first step is equal
to the number of monomials that appears in the collection, so r = ω =]M.
In the analysis, we let (as usual in this setting) terms that do not depend on p
contribute to an error term ε, and the simplified condition becomes:

det(L) < pm(ω+1−n).

Under the (heuristic) assumption that all created polynomials in the third
step define an algebraic variety of dimension 0, the previous system can be solved
(e.g., using elimination techniques such as resultant computation or Gröbner
basis) and the desired root recovered in polynomial time5 log(p)O(1) (for constant
n and constant total degree of the input polynomials). In this paper, we assume
that these polynomials define an algebraic variety of dimension 0 and we justify
the validity of our attacks by computer experiments.

5 It is well known that the computational complexity of Gröbner basis algorithm may
be exponential or even doubly exponential. In our setting, the number of variables
and the total total degree of the input polynomials are fixed and the theoretical
complexity is polynomial in the field size (and thus in the security parameter).

3 Lattice Attack on Gentry Signatures

3.1 Gentry Signatures

As mentioned in the introduction, Gentry introduced in [14] an IBE scheme
without random oracles with short public parameters and tight security reduc-
tion in the standard security model. In this paragraph, we describe the signature
scheme obtained by applying Naor transformation to Gentry’s IBE. The result-
ing scheme achieves existential unforgeability under chosen-message attacks in
the standard security model.

Let G and GT be two cyclic groups of the same prime order p (where p > 22λ

for a security parameter λ) and let g be a generator of G. We suppose that
(G,GT) are equipped with an efficient computable bilinear map e : G×G→ GT .
Let H : {0, 1}∗ → Zq be a collision-resistant hash function. Gentry signature
scheme is defined by the three following algorithms:

– Key generation. The user picks uniformly at random (x, y) ∈ Z2
p, computes

h1 = gx and h2 = gy and sets sk = (x, y) and pk = (h1, h2) ∈ G2.
– Signature generation. Given a message m ∈ {0, 1}∗, the user computes

its hash value H(m), and picks uniformly at random r ∈ Zp. It computes
the signing exponent σ = (y + r)/(x+H(m)) mod p and the group element
s = gσ. The signature is the pair (r, s) ∈ Zp ×G.

– Signature verification. Given (r, s) ∈ Zp × G, a verifier accepts it as a
signature on m ∈ {0, 1}∗ if and only if the following equality holds:

e(s, h2g
r)

?
= e

(
g, h1g

H(m)
)

3.2 Description of the Attack

In this section, we use Coppersmith’s methods to attack Gentry’s signatures
when the attacker learns some blocks of consecutive bits of the signing exponents.

Let n > 1 be some integer. We suppose that the attacker is given (n +
2) message/signature pairs (mi, (ri, si))i∈{0,...,n+1} as described above (where n
does not depend on the security parameter λ). To simplify the notation in the
following, instead of the hash values H(mi), we assume that the mi belongs to
Zp (for i ∈ {0, . . . , n+ 1}).

We assume that the attacker knows some blocks of consecutive bits of the
corresponding signing exponents σi for i ∈ {0, . . . , n+1} and its goal is to recover
the secret keys x and y. From the knowledge of two different signing exponents
σi and σj for integers i, j ∈ {0, . . . , n+ 1} with i 6= j, the attacker can actually
recover the secrets x and y. Its goal is therefore to recover the hidden bits of two
σi’s in order to obtain x and y.

We have σi = (y + ri)/(x+mi) mod p for i ∈ {0, . . . , n + 1} which can be
rewritten as:

σi(x+mi)− y − ri = 0 mod p, i ∈ {0, . . . , n+ 1}.

We consider a chosen-message attack where the attacker uses an arbitrary unique
message m for all signatures (i.e. mi = m for all i ∈ {0, . . . , n+ 1}). Eliminating
x and y, in the previous equation, we obtain for a, b, i ∈ {0, . . . , n + 1} with
0 6 a < b < i 6 n+ 1:

(ra − rb)σi + (ri − ra)σb + (rb − ri)σa = 0 mod p

Putting σi =
∑N
j=1 xi,j2

ki,j + γi, i ∈ {0, . . . , n + 1}, where γi is known to the
attacker and xi,j , j ∈ {1, . . . , N} are unknown and |xi,j | < 2µi,j for some integer
µi,j and with the choice a = 0, b = 1, we obtain a polynomial

fi(z0,1, . . . , z0,N , . . . , zn+1,1, . . . , zn+1,N)

having as root X0 = (x0,1, . . . , x0,N , . . . , xn+1,1, . . . , xn+1,N) modulo p with:

fi = zi,N +

N−1∑
j=1

ai,jzi,j +

N∑
j=1

bi,jz1,j +

N∑
j=1

ci,jz0,j + γi(r0 − r1) + di mod p

for i ∈ {2, . . . , n+ 1}, where
ai,j = 2ki,j/2ki,N mod p
bi,j = 2k1,j (ri − r0)/((r0 − r1)2ki,N) mod p
ci,j = 2k0,j (r1 − ri)/((r0 − r1)2ki,N) mod p
di = (γi(r0 − r1) + γ1(ri − r0) + γ0(r1 − ri))/((r0 − r1)2ki,N) mod p

for i ∈ {2, . . . , n+ 1} and j ∈ {1, . . . , N}.

We consider the following collection of polynomials (parameterized by some
integer m ∈ N that does not depend on the security parameter λ):

Pm =
{
fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N

}
,

for all vectors of integers (i0,1, . . . , in+1,1, i0,2, . . . , in+1,2, . . . , i0,N , . . . , in+1,N)
verifying

0 6 i0,1 + · · ·+ in+1,1 + · · ·+ i0,N , . . . , in+1,N 6 m

and where the polynomial fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N
is defined by:

z
i0,1
0,1 . . . z

in+1,1

n+1,1 . . . z
i0,N−1

0,N−1 . . . z
in+1,N−1

n+1,N−1z
i0,N
0,N z

i1,N
1,N f

i2,N
2 . . . f

in+1,N

n+1 pm−(i2,N+···+in+1,N).

One can see that fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N
(X0) = 0 mod pm for all

such vector of integers.
If we use for instance the lexicographical monomial order (with zi,j < zi′,j′

if (j < j′ or (j = j′ and i < i′)) on the set of monomials, we can define an order
over the set of polynomials as:

fi0,1,...,in+1,1,i0,2,...,in+1,2,...,i0,N ,...,in+1,N
< fi′0,1,...,i′n+1,1,i

′
0,2,...,i

′
n+1,2,...,i

′
0,N ,...,i

′
n+1,N

if z
i0,1
0,1 . . . z

in+1,1

n+1,1 . . . z
i0,N
0,N . . . z

in+1,N

n+1,N < z
i′0,1
0,1 . . . z

i′n+1,1

n+1,1 . . . z
i′0,N
0,N . . . z

i′n+1,N

n+1,N .

Using this order, we can write Pm = {f̃i, i ∈ {1, . . . , ω}}, with f̃1 < f̃2 <
· · · < f̃ω where ω is the number of polynomials. Putting U = 2maxi,j µi,j , we de-
fine the lattice L generated by b1, . . . , bω, where for i ∈ {1, . . . , ω}, bi is the coef-
ficient vector of the polynomial f̃i(Uz0,1, . . . , Uzn+1,1, . . . , Uz0,N , . . . , Uzn+1,N).

One can easily verify that the basis matrix is lower triangular and the
diagonal elements are Uapm−(i2,N+···+in+1,N), where the integer a is equal to
i0,1 + · · · + in+1,1 + i0,N + · · · + in+1,N . The number of variables is N(n + 2)
and the success condition of Coppersmith’s method is det(L) < pm(ω−N(n+2)),
where ω =

∑
i∈I 1 is the dimension of the lattice with

I = {i = (i0,1, . . . , i0,N , . . . , in+1,N)|0 6 i0,1 + · · ·+ in+1,N 6 m}.

We have det(L) = Uηpmωp−µ with

µ =
∑
i∈I

i2,N + · · ·+ in+1,N and η =
∑
i∈I

i0,1 + · · ·+ in+1,N .

If m is large, we can neglect the N(n+2) term in Coppersmith success condition
and the asymptotic condition becomes:

Uη < pµ.

Using analytic combinatorics methods (see for instance [1] and the references
therein), one can verify that when m tends to∞, we have η = N(n+2)β(m,N, n)
and µ = nβ(m,N, n), with

β(m,N, n) =
mN(n+2)+1

(N(n+ 2) + 1)!
+ o(mN(n+2)+1).

Therefore, the attacker can recover x and y as long as the sizes of each
unknown block in the signatures σi for i ∈ {0, . . . , n+ 1} satisfies:

U < p
n

(n+2)N →
n→∞

p
1
N .

We can thus heuristically recover (using large6 constant parameters n and m)
the secret key (x, y) if the number of consecutive bits of each unknown block is
smaller than dlog2(p)e/N .

3.3 Experimental Results

We have implemented the attack in Sage 7.6 on a MacBook Air laptop computer
(2,2 GHz Intel Core i7, 4 Gb RAM 1600 MHz DDR3, Mac OSX 10.10.5). Table
1 lists the theoretical bound δtheo = n

(n+2)N and an experimental bound δexp
for a 512-bit prime p (corresponding to a 256-bit security level) with (n + 2)
signatures (for n ∈ {1, 3, 5}) and a few number of unknown blocks (N 6 2).
We consider the family of polynomials Pm with m = 4 and m = 2. We ran 27

N n δtheo δexp dimension m LLL time(s) Gröbner basis time(s)

1 1 0.333 0.32 35 4 3.804 4.603

1 3 0.6 0.49 21 2 0.250 0.699

1 5 0.714 0.49 36 2 0.871 38.374

2 1 0.166 0.16 28 2 1.438 0.650

2 5 0.33 0.29 91 2 191.906 556.715

Table 1. Lattice Attack on Gentry signatures. Average running time (in seconds) of
the LLL algorithm and the Gröbner basis computation.

experiments for all parameters and Table 1 gives the average running time (in
seconds) of the LLL algorithm and the Gröbner basis computation.

We denote α the maximum number of least significant bits that the attacker
knows in each signature σj , for all j 6= 0 (for instance α = 0 means that it does
not know any least significant bits of the signatures σj , for all j ∈ {1, . . . , n+1}).
If we know at least δexpdlog2(p)e+α least significant bits of the signature σ0 then
the Gröbner basis always gives us a system of dimension 0 and we are able to find
the N unknown block of sizes pδexp in each signature σi for i ∈ {0, . . . , n + 1}.
Otherwise, Gröbner basis computations gives us a system of dimension 1 and
we are a priori unable to find the unknown blocks (though it is possible in
some cases to obtain additional information). This system of dimension 1 occurs
because the constructed system admits a large number of “small” solutions. We
give an example of this in Appendix A. However, If the condition mentioned
above is satisfied, we obtain for N = 1 and n+ 2 = 3, the success rates given in
Table 2 (over 250 attacks performed for each parameter pair (m, δexp)).

m = 2 m = 3 m = 4

δexp = 0.3225 100 100 100

δexp = 0.3250 98.4 98.4 99.2

δexp = 0.3275 90.4 92.8 94.4

δexp = 0.3300 66.0 65.2 72.8

δexp = 0.3325 10.0 15.2 17.2

δexp = 0.3350 0 0 0

Table 2. Lattice Attack on Gentry signatures. Success rates (over 250 attacks per-
formed for each parameter pair (m, δexp)).

6 In order to reach this asymptotic bound, the constructed matrix is of huge dimension
and the resulting polynomial system has a very large number of variables and the
computation which is theoretically polynomial-time becomes in practice prohibitive.

4 Lattice Attack on Boneh-Boyen Signatures

4.1 Boneh-Boyen Signatures

Two years before the proposal of Gentry’s IBE, Boneh and Boyen proposed two
IBE schemes in [2] and described one signature scheme obtained using the Naor
transformation in [3]. Their scheme has comparable efficiency properties and also
achieves existential unforgeability under chosen-message attacks in the standard
security model.

With the same notation as above, Boneh-Boyen signature scheme is defined
by the three following algorithms:

– Key generation. The user picks uniformly at random (x, y) ∈ Z2
p, computes

h1 = gx and h2 = gy and sets sk = (x, y) and pk = (h1, h2) ∈ G2.
– Signature generation. Given a message m ∈ {0, 1}∗, the user computes

its hash value H(m), and picks uniformly at random r ∈ Zp. It computes
the signing exponent s = 1/(x +H(m) + yr) mod p and the group element
σ = gs. The signature is the pair (r, σ) ∈ Zp ×G.

– Signature verification. Given (r, σ) ∈ Zp × G, a verifier accepts it as a
signature on m ∈ {0, 1}∗ if and only if the following equality holds:

e(σ, h1 · gH(m) · hr2)
?
= e (g, g)

4.2 Description of the Attack

In this section, we use the Coppersmith’s methods to attack Boneh-Boyen’s
signature. Let n > 1 be some integer. We suppose that the attacker is given (n+
2) message/signature pairs (mi, (ri, si))i∈{0,...,n+1} as described above (where
n does not depend on the security parameter λ). As above, to simplify the
notation, we replace H(mi) by mi ∈ Zp (for i ∈ {0, . . . , n+ 1}). We assume that
the attacker knows some blocks of consecutive bits of the corresponding signing
exponents σi = 1/(x + m + yri) mod p, for i ∈ {0, . . . , n}, where p, ri and mi

are known to the attacker and x and y are kept secret.
As for Gentry signatures, from the knowledge of two different signing exponents,
the attacker can actually recover the secrets x and y and its goal is to recover
the hidden bits of two σi’s in order to recover x and y.

We have σi = 1/(x+mi + yri) mod p for i ∈ {0, . . . , n+ 1} and we have:

x+mi + yri −
1

σi
= 0 mod p, i ∈ {0, . . . , n+ 1}.

Eliminating x and y and assuming again that the attacker chooses a unique
message m (namely mi = m, for all i ∈ {0, . . . , n + 1}), we obtain, for a, b, i ∈
{0, . . . , n+ 1} with 0 6 a < b < i 6 n+ 1:

(rb − ri)σiσb + (ri − ra)σiσa + (ra − rb)σaσb = 0 mod p.

Putting σi =
∑N
j=1 xi,j2

ki,j + γi, i ∈ {0, . . . , n + 1}, where γi is known to the
attacker and xi,j , j ∈ {1, . . . , N} are unknown with |xi,j | < 2µi,j for some integer
µi,j and a = 0, we obtain a polynomial f0,b,i(z0,1, . . . , z0,N , . . . , zn+1,1, . . . , zn+1,N)
having as “small” root X0 = (x0,1, . . . , x0,N , . . . , xn+1,1, . . . , xn+1,N) modulo p,
where :

f0,b,i =

N∑
j=1

N∑
k=1

αb,i,j,kzi,jzb,k +

N∑
j=1

N∑
k=1

α0,i,j,kzi,jz0,k +

N∑
j=1

N∑
k=1

α0,b,j,kzb,jz0,k

+

N∑
j=1

α0,b,i,jzi,j +

N∑
j=1

β0,b,i,jzb,j +

N∑
j=1

γ0,b,i,jz0,j + δ0,b,i mod p

for b, i ∈ {1, . . . , n+ 1}, b < i and with known coefficients , where αb,i,N,N = 1.
The set of monomials appearing in the polynomials f0,b,i is:

M =

{
1, za,jzb,k, zi,j : i ∈ {0, . . . , n+ 1}

∣∣∣∣a, b ∈ {0, . . . , n+ 1}; a < b
j, k ∈ {0, . . . , N}

}
.

We consider the following set of polynomials:

P = {pm̃, m̃ ∈M1} ∪ {f0,b,i : b, i ∈ {1, . . . , n+ 1}; b < i} ,

where M1 = M\M2 with M2 = {zb,Nzi,N : b, i ∈ {1, . . . , n+1}; b < i}. One can

see that for any polynomial f̃ ∈ P, f̃(X0) = 0 mod p. We can define an order
on the set of monomials such that all the monomials in M1 are smaller than
any monomial in M2 and for zb,Nzi,N , zb′,Nzi′,N ∈ M2, zb,Nzi,N < zb′,Nzi′,N if
(b < b′ or (b = b′ and i < i′)).

Using that order, we can order the set of polynomials from the smallest
element to the greatest as follows:

P = {pm̃1, . . . , pm̃ω1
, f0,1,2, . . . , f0,1,n+1, f0,2,3, . . . , f0,2,n+1, . . . , f0,n,n+1}

= {f̃1, . . . , f̃ω}

where m̃1 < · · · < m̃ω1
, ω1 is the cardinality of M1 and ω is the cardinality of

M.
Putting U = 2maxi,j µi,j , we define the lattice L generated by b1, . . . , bω, where

for each i ∈ {1, . . . , ω}, bi is the coefficient vector of the polynomial

f̃i(Uz0,1, . . . , Uz0,N , . . . , Uzn+1,1, . . . , Uzn+1,N).

One can verify that the basis matrix is lower triangular. The number of variables
is N(n+ 2) and the success condition for the Coppersmith’s method is:

det(L) < pω−N(n+2)+1, with ω =]M = N2 (n+ 1)(n+ 2)

2
+ (n+ 2)N + 1.

We have det(L) = U2N2 (n+1)(n+2)
2 +(n+2)Npω−

n(n+1)
2 and the success condition

becomes:

U < p

n(n+1)
2

−N(n+2)+1

2N2 (n+1)(n+2)
2

+(n+2)N .

If n is large and since N is small, we can neglect −N(n+2)+1 which contribute
to a small error term. So the attacker can recover x and y as long as the sizes of
each unknown block in the signatures σi, i ∈ {0, . . . , n+ 1} satisfies:

U < p
n(n+1)

2N2(n+1)(n+2)+2(n+2)N →
n→∞

p
1

2N2 .

We can thus heuristically recover the secret key if the number of consecutive
bits of each unknown block is smaller than dlog2(p)e/(2N2).

4.3 Experimental results

Table 3 lists the theoretical bound δtheo = n(n+1)
2N2(n+1)(n+2)+2(n+2)N and an exper-

imental bound δexp for a 512-bit prime p with (n+ 2) signatures for a few values
of n ∈ {4, 6, 10} and one or two unknown blocks per signatures.

N n δtheo δexp dimension LLL time(s) Gröbner basis time(s)

1 4 0.277 0.293 22 0.205 0.048

1 6 0.306 0.31 29 1.961 1.008

1 10 0.382 0.38 79 75.086 39.669

2 4 0.076 0.08 73 9.185 3.078

2 6 0.087 0.09 129 232.698 397.900

Table 3. Lattice Attack on Boneh-Boyen signatures. Average running time (in seconds)
of the LLL algorithm and the Gröbner basis computation.

We ran 27 experiments for all parameters and in all cases (for the bound
δexp), the assumption that the created polynomials define an algebraic variety
of dimension 0 was verified. The constructed system was solved using Gröbner
basis and the desired root recovered. Table 3 gives the average running time (in
seconds) of the LLL algorithm and the Gröbner basis computation (using the
same configuration as above).

5 Lattice Attack on Sakai-Kasahara Signatures

5.1 Sakai-Kasahara Signatures

In [26], Sakai and Kasahara presented the first pairing-based signature scheme
in the exponent-inversion framework. Their scheme is very close to Boneh-Boyen
signature schemes but produces shorter signatures (at the cost of relying on the
random oracle heuristic [27]).

With the same notation as above, Sakai-Kasahara signature scheme is defined
by the three following algorithms:

– Key generation. The user picks uniformly at random x ∈ Zp, computes
h = gx and sets sk = x and pk = h ∈ G.

– Signature generation. Given a message m ∈ {0, 1}∗, the user computes its
hash value H(m). It computes the signing exponent s = 1/(x+H(m)) mod p
and the group element σ = gs. The signature is the group element σ ∈ G.

– Signature verification. Given σ ∈ G, a verifier accepts it as a signature
on m ∈ {0, 1}∗ if and only if the following equality holds:

e(σ, h · gH(m))
?
= e (g, g)

We present in the following an attack on this scheme when the attacker learns
some blocks of consecutive bits of the signing exponents. This computational
problem is related to the Modular Inversion Hidden Number Problem which
was introduced in 2001 by Boneh, Halevi and Howgrave-Graham [6]. In this
problem, the attacker does not know exactly one block of least significant bits
of the signing exponents σi while our attack considers the setting where the
attacker does not know N > 1 different blocks in each σi (for any N).

5.2 Description of the Attack

In this section, we use the Coppersmith’s methods to attack Sakai-Kasahara
signatures. Let n > 1 be some integer. We suppose that the attacker is given
(n+ 1) message/signature pairs (mi, si)i∈{0,...,n+1} as described above (where n
does not depend on the security parameter λ). Again, to simplify the notation, we
replace H(mi) by mi ∈ Zp (for i ∈ {0, . . . , n+ 1}). We assume that the attacker
knows some blocks of consecutive bits of the corresponding signing exponents
σi = 1/(x+mi) mod p for i ∈ {0, . . . , n} and its goal is to recover x. One can
see that from the knowledge of a value σi, the attacker can actually recover the
hidden number x and it is thus sufficient to recover the hidden bits of a single
σi’s in order to recover x.

We have σi = 1/(x+mi) mod p for i ∈ {0, . . . , n} which can be rewritten as:

x+mi −
1

σi
= 0 mod p, i ∈ {0, . . . , n}.

Eliminating x, we obtain:

(mi −ma)σiσa + σi − σa = 0 mod p a, i ∈ {0, . . . , n}, 0 6 a < i 6 n.

Putting, for i ∈ {0, . . . , n + 1}, σi =
∑N
j=1 xi,j2

ki,j + γi, where γi is known to
the attacker and xi,j for j ∈ {1, . . . , N} are unknown with |xi,j | < 2µi,j for some
integer µi,j , we obtain a polynomial fa,i(z0,1, . . . , z0,N , . . . , zn,1, . . . , zn,N) having
as root X0 = (x0,1, . . . , x0,N , . . . , xn,1, . . . , xn,N) modulo p with:

fa,i =

N∑
j=1

N∑
k=1

αa,i,j,kzi,jza,k +

N∑
j=1

βa,i,jzi,j +

N∑
j=1

γa,i,jxa,j + δa,i mod p

for a, i ∈ {0, . . . , n}, a < i and with known coefficients, where αa,i,N,N = 1. The
set of monomials appearing in the polynomials fa,i is:

M = {1, za,jzb,k, zi,j : i ∈ {0, . . . , n}; a, b ∈ {0, . . . , n}; a < b; j, k ∈ {1, . . . , N}} .

We consider the following set of polynomials:

P = {pm̃, m̃ ∈M1} ∪ {fa,i : a, i ∈ {0, . . . , n}; a < i} ,

where M1 = M \M2 with M2 = {za,Nzi,N : a, i ∈ {0, . . . , n}; a < i}. One can

see that for any polynomial f̃ ∈ P, f̃(X0) = 0 mod p. We can define an order
on the set of monomials such that all the monomials in M1 are smaller than
any monomial in M2 and for za,Nzi,N , za′,Nzi′,N ∈M2, za,Nzi,N < za′,Nzi′,N if
(a < a′ or (a = a′ and i < i′)).

Using that order, we can order the set of polynomials from the smallest
element to the greatest as follows:

P = {pm̃1, . . . , pm̃ω1 , f0,1, . . . , f0,n, f1,2, . . . , f1,n, . . . , fn−1,n} = {f̃1, . . . , f̃ω}

where m̃1 < · · · < m̃ω1
, ω1 is the cardinality of M1 and ω is the cardinality of M.

Putting U = 2maxi,j µi,j , we define the lattice L generated by b1, . . . , bω, where
bi is the coefficient vector of f̃i(Uz0,1, . . . , Uz0,N , . . . , Uzn,1, . . . , Uzn,N) for i ∈
{1, . . . , ω},. One can easily verify that the basis matrix is lower triangular. The
number of variables is N(n+ 1) and the success condition for the Coppersmith’s
method is:

det(L) < pω−N(n+1)+1,

with ω =]M = N2 n(n+1)
2 +(n+1)N+1 and det(L) = U2N2 n(n+1)

2 +(n+1)Npω−
n(n+1)

2 .
The success condition then becomes:

U < p

n(n+1)
2

−N(n+1)+1

2N2 n(n+1)
2

+(n+1)N .

If n is large and since N is small, we can neglect −N(n+1)+1 which contributes
to a small error. The attacker can recover x and y as long as the sizes of each
unknown block in the signatures σi, i ∈ {0, . . . , n} satisfies:

U < p
n(n+1)

2N2n(n+1))+2(n+1)N →
n→∞

p
1

2N2 .

We can heuristically recover the secret key of Sakai-Kasahara signatures if the
number of consecutive bits of each unknown block is smaller than dlog2(p)e/(2N2).

5.3 Experimental results

Table 4 gives the theoretical bound δtheo = n(n+1)
2N2n(n+1))+2(n+1)N and an experi-

mental bound δexp for a 512-bit prime p with (n+ 1) signatures for a few values
of n ∈ {4, 6, 10} and one or two unknown blocks per signatures.

N n δtheo δexp dimension LLL time(s) Gröbner basis time(s)

1 4 0.4 0.39 16 0.015 0.009

1 6 0.4285 0.425 29 0.934 0.267

1 10 0.4545 0.45 67 5.082 4.247

2 4 0.1111 0.1111 51 0.728 0.292

2 6 0.1153 0.1153 99 15.308 14.482

Table 4. Lattice Attack on Sakai-Kasahara signatures. Average running time (in sec-
onds) of the LLL algorithm and the Gröbner basis computation.

We ran 27 experiments for all parameters . As in the attack on Boneh-Boyen
signatures, the assumption that the created polynomials define an algebraic va-
riety of dimension 0 was verified (in all cases for the bound δexp) and the con-
structed system was solved using Gröbner basis and the desired root recovered.
Table 4 gives the average running time (in seconds) of the LLL algorithm and
the Gröbner basis computation (using the same configuration as above).

6 Conclusion and Open Questions

We presented lattice-based polynomial-time algorithms that recover the signer’s
secret in popular pairing-based signatures when used to sign several messages
under the assumption that blocks of consecutive bits of the corresponding ex-
ponents are known by the attacker. This partial information can be obtained
in practice easily through side-channels (such as the power consumption or the
electromagnetic emanations of the device generating the signature).

In order to prevent the leakage of partial information on the exponent, it is
customary to use a probabilistic algorithm to encode the sensitive values such
that the cryptographic operations only occur on randomized data. In [13], Coron
proposed notably to randomize the exponent and the projective coordinates of
the base point. It is an interesting question to extend our attacks in such setting
(as it was done recently for ECDSA in [15]). It is also interesting to study
the security against side-channel attacks of the pairing-based signatures whose
design does not rely on the exponent inversion framework (i.e. based on the full
domain hash framework and the commutative blinding framework).

Our attacks are heuristic and it would be very interesting to provide proven
versions of them (as it was done in [24, 25] for ECDSA signatures). It is also
interesting to study further the attack against Gentry signatures when the un-
known blocks of consecutive bits overlap. Finally, it would be nice to improve
our attacks on Boneh-Boyen and Sakai-Kasahara signatures.

A Concrete Attack Examples against Gentry signatures

In this section, we present two attack examples on Gentry signatures for a 256-bit
prime p with 3 signatures (r0, σ0), (r1, σ1) and (r2, σ2) and one T -bit unknown
block in each signature, with T = b0.3 log2(p)c.

We recall that for i ∈ {0, 1, 2}, σi = gsi where si = (y + ri)/(x+m) mod p,
x and y are the secret keys and p, m and ri, i ∈ {0, 1, 2} are public information.
In this example, we took the following random values:

– p = 9b814891e89496e776bfeeebcac5c74130862914fe2b928d40c3a88323dcbaaf

– m = 440f4a9df2936c4aad3856ed0ea5cf3d131ef658fc36c2fa56763373288d5519

– x = 57a7b0913f5202e31555ec9538ff90f38a5e6c53b359edfe1106c8ee9518029a

– y = 259b67be7de53e0546860379bc31ab9bb30caf68c314a956a1719e18d4a24ae2

– r0 = 75c471becf6a9d86aa5480985a95702617892ba84b7662d6bdf3a3c1931abf3b

– r1 = 675e28ffbf96b29365ebda463c3a0a4290a284f9fed9ddd0ccdada587c1f0152

– r2 = 7961b0df3f0a286547f25da59a7c2a7c28764f4335a0aa2cd5a72ba2393a6cd3

– s0 = 45f185a8ce35c2b95b3e1aef9fc516ec9e840c9a5b6b36c70532b10145790401

– s1 = 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab4aafecae41fca50c713

– s2 = 57de02b444bb7716c021d21162c3727ba904ae6e4d44aca2ad9f4406669e8744

and T = b0.3 log2(p)c = 76.
In the first case, we suppose that we do not know any least significant bits

of each signature and show that we are unable to find the unknown blocks since
the Gröbner basis gives us a system of dimension 1.

In the second case, we suppose that we know T + 2 least significant bits of
σ0 but do not know any least significant bits of s1, and s2. We also suppose that
we do not know T intermediate bits of s0 and we show that in this case we are
able to find the unknown blocks since the Gröbner basis gives us a system of
dimension 0.

First case

– We can write the signatures as:

s0 = 2T · 45f185a8ce35c2b95b3e1aef9fc516ec9e840c9a5b6b3 + z0,

s1 = 2T · 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab + z1,

s2 = 2T · 57de02b444bb7716c021d21162c3727ba904ae6e4d44a + z2,

where the T -bit numbers z0, z1 and z2 are the unknown blocks.
– We get the polynomial f(y0, y1, y2) defined by:

y2 + 86acc2de9d15dab4df6a8114243623f246376c1103c29ee97a0dd7490f87eb33 y1

+ 14d485b34b7ebc3297556dd7a68fa34eea4ebd03fa68f3a3c6b5d13a1454cf7b y0

+ 11f10fbe97565b062acfb71c6d98f596de6c1e236edaa9168d891d78d66e8c4a

having as root (z0, z1, z2) modulo p.

– Constructing the lattice with m = 4, after the LLL reduction and the
Gröbner basis computation, we obtain the system of polynomials{

f1(y0, y1, y2) = y2 − y0 − 5dba86c930521258343

f2(y0, y1, y2) = y1 − y0 + 21c0667cce17b283cee

having indeed (z0, z1, z2) as root over the integers. However, the dimension
of the system is 1 and then we are a priori unable to find the unknown
blocks.

Second case

– We can write the signatures as:

s0 = 36c70532b10145790401 + 279 · z0 + 279+T · 8be30b519c6b8572b67c35df3
s1 = 2T · 8f63fe87fd0d67f6594ff44ba86a2755b2b6ad6a0b7ab + z1

s2 = 2T · 57de02b444bb7716c021d21162c3727ba904ae6e4d44a + z2

where the T -bit numbers z0, z1 and z2 are the unknown blocks.
– If one proceeds like in the attack, we obtain the polynomial f(y0, y1, y2)

defined by

y2 + 86acc2de9d15dab4df6a8114243623f246376c1103c29ee97a0dd7490f87eb33 y1

+ 78836c7dbcc6bee53ea07b359a07fa111e09607336b452976acd0f0ec2a0c985 y0

+ 77b82eec348f27f19cb7a6c1cc895cf7261093b80d067ea4eb7b8da90e1ae306

having as root (z0, z1, z2) modulo p.
– Constructing the lattice with m = 4, after the LLL reduction and the

Gröbner basis computation, one obtains the system of polynomialsf1(y0, y1, y2) = y2 − ca2ad9f4406669e8744

f2(y0, y1, y2) = y1 − 4aafecae41fca50c713

f3(y0, y1, y2) = y0 − f8a2dd93d081934b6d6

having (z0, z1, z2) as root over the integers. The dimension of the system is
0 and one finds readily the unknown blocks.

References

1. Benhamouda, F., Chevalier, C., Thillard, A., Vergnaud, D.: Easing Coppersmith
methods using analytic combinatorics: Applications to public-key cryptography
with weak pseudorandomness. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang,
B.Y. (eds.) PKC 2016: 19th International Conference on Theory and Practice of
Public Key Cryptography, Part II. Lecture Notes in Computer Science, vol. 9615,
pp. 36–66. Springer, Heidelberg, Germany, Taipei, Taiwan (Mar 6–9, 2016)

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology –
EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 223–238.
Springer, Heidelberg, Germany, Interlaken, Switzerland (May 2–6, 2004)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) Advances in Cryptology – EUROCRYPT 2004. Lecture Notes
in Computer Science, vol. 3027, pp. 56–73. Springer, Heidelberg, Germany, Inter-
laken, Switzerland (May 2–6, 2004)

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (Apr 2008)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) Advances in Cryptology – CRYPTO 2001. Lecture Notes in Com-
puter Science, vol. 2139, pp. 213–229. Springer, Heidelberg, Germany, Santa Bar-
bara, CA, USA (Aug 19–23, 2001)

6. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT 2001.
Lecture Notes in Computer Science, vol. 2248, pp. 36–51. Springer, Heidelberg,
Germany, Gold Coast, Australia (Dec 9–13, 2001)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT 2001. Lecture Notes in
Computer Science, vol. 2248, pp. 514–532. Springer, Heidelberg, Germany, Gold
Coast, Australia (Dec 9–13, 2001)

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal
of Cryptology 17(4), 297–319 (Sep 2004)

9. Boyen, X.: A tapestry of identity-based encryption: practical frameworks com-
pared. IJACT 1(1), 3–21 (2008)

10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Çetin Kaya., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems –
CHES 2002. Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer,
Heidelberg, Germany, Redwood Shores, CA, USA (Aug 13–15, 2003)

11. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) Advances in Cryptology – EURO-
CRYPT’96. Lecture Notes in Computer Science, vol. 1070, pp. 178–189. Springer,
Heidelberg, Germany, Saragossa, Spain (May 12–16, 1996)

12. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) Advances in Cryptology – EUROCRYPT’96. Lecture Notes in Com-
puter Science, vol. 1070, pp. 155–165. Springer, Heidelberg, Germany, Saragossa,
Spain (May 12–16, 1996)

13. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Çetin Kaya., Paar, C. (eds.) Cryptographic Hardware and
Embedded Systems – CHES’99. Lecture Notes in Computer Science, vol. 1717, pp.
292–302. Springer, Heidelberg, Germany, Worcester, Massachusetts, USA (Aug 12–
13, 1999)

14. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006. Lecture Notes in
Computer Science, vol. 4004, pp. 445–464. Springer, Heidelberg, Germany, St. Pe-
tersburg, Russia (May 28 – Jun 1, 2006)

15. Goudarzi, D., Rivain, M., Vergnaud, D.: Lattice attacks against elliptic-curve sig-
natures with blinded scalar multiplication. In: Avanzi, R., Heys, H. (eds.) Selected
Areas in Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL,
Canada, August 9-12, 2016, Revised Selected Papers. Lecture Notes in Computer
Science, vol. to appear. Springer (2017)

16. Howgrave-Graham, N.: Finding small roots of univariate modular equations re-
visited. In: Darnell, M. (ed.) 6th IMA International Conference on Cryptography

and Coding. Lecture Notes in Computer Science, vol. 1355, pp. 131–142. Springer,
Heidelberg, Germany, Cirencester, UK (Dec 17–19, 1997)

17. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Cryptography 23(3), 283–290 (2001)

18. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials with
new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.) Advances
in Cryptology – ASIACRYPT 2006. Lecture Notes in Computer Science, vol. 4284,
pp. 267–282. Springer, Heidelberg, Germany, Shanghai, China (Dec 3–7, 2006)

19. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO’96.
Lecture Notes in Computer Science, vol. 1109, pp. 104–113. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 18–22, 1996)

20. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology – CRYPTO’99. Lecture Notes in Computer Sci-
ence, vol. 1666, pp. 388–397. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 15–19, 1999)

21. Lenstra, A.K., Lenstra, H.W.J., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

22. Ling, S., Shparlinski, I.E., Steinfeld, R., Wang, H.: On the modular inversion hidden
number problem. J. Symb. Comput. 47(4), 358–367 (2012)

23. Mulder, E.D., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher’s so-
lution to the hidden number problem to attack nonce leaks in 384-bit ECDSA. In:
Bertoni, G., Coron, J.S. (eds.) Cryptographic Hardware and Embedded Systems –
CHES 2013. Lecture Notes in Computer Science, vol. 8086, pp. 435–452. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–23, 2013)

24. Nguyen, P.Q., Shparlinski, I.: The insecurity of the digital signature algorithm with
partially known nonces. Journal of Cryptology 15(3), 151–176 (2002)

25. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Cryptography 30(2), 201–217
(2003)

26. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on
elliptic curve. Cryptology ePrint Archive, Report 2003/054 (2003),
http://eprint.iacr.org/2003/054

27. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear
pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004:
7th International Workshop on Theory and Practice in Public Key Cryptography.
Lecture Notes in Computer Science, vol. 2947, pp. 277–290. Springer, Heidelberg,
Germany, Singapore (Mar 1–4, 2004)

