
HAL Id: hal-01737033
https://hal.science/hal-01737033

Submitted on 19 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling self-configuration of QoC-centric fog
computing entities

Pierrick Marie, Thierry Desprats, Sophie Chabridon, Michelle Sibilla

To cite this version:
Pierrick Marie, Thierry Desprats, Sophie Chabridon, Michelle Sibilla. Enabling self-configuration of
QoC-centric fog computing entities. 13th IEEE International Conference on Advanced and Trusted
Computing (ATC 2016), Jul 2016, Toulouse, France. pp. 526-533, �10.1109/UIC-ATC-ScalCom-
CBDCom-IoP-SmartWorld.2016.0092�. �hal-01737033�

https://hal.science/hal-01737033
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18897

The contribution was presented at ATC 2016 :
https://atc2016.sciencesconf.org/

To link to this article URL :
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0092

To cite this version : Marie, Pierrick and Desprats, Thierry and Chabridon,
Sophie and Sibilla, Michelle Enabling Self-Configuration of QoC-Centric
Fog Computing Entities. (2016) In: 13th IEEE International Conference on
Advanced and Trusted Computing (ATC 2016), 18 July 2016 - 21 July 2016
(Toulouse, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Enabling self-configuration of

QoC-centric fog computing entities

Pierrick MARIE∗, Thierry DESPRATS∗, Sophie CHABRIDON†, and Michelle SIBILLA∗

∗IRIT UMR 5505, Université Fédérale de Toulouse, 31062 Toulouse, France

Email: <Firstname>.<NAME>@irit.fr
†SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier, 91011 Évry Cedex, France

Email: <Firstname>.<NAME>@telecom-sudparis.eu

Abstract—The advent of the Internet of Things (IoT) enables
the development of new applications and context-aware services.
However, for applications requiring a real-time consciousness
of their environmental conditions, some additional mechanism
is necessary. The paradigm of fog (or edge) computing is a
promising candidate to meet this requirement by supporting the
deployment at the network edge of entities for pre-processing
the data produced by the IoT. Thus, the acquisition, filtering
and processing (aggregation, fusion. . .) of contextual data can
be performed locally in real-time within software entities
deployed on equipments of a fog. As context is central in the
targeted applications, qualifying context information becomes
essential. Meta-data may therefore be added including some
quality criteria such as precision, freshness, completeness, for
measuring the Quality of Context (QoC) information. QoC
management must take place throughout the whole processing
chain of context information, impacting the operations performed
within the entities of the fog. Facing the potential physical
limitations of the equipments at the network edge, this paper
promotes declarative programming of processing entities able
to qualify context information and self-reconfiguration. Thus,
the parameters controlling the transformation and qualification
operations may be adjusted based on the observation of resource
usage. A prototype shows that the reconfiguration time does not
exceed one second and remains within acceptable limits for the
targeted applications. This solution offers an alternative to the
principle of offloading code advocated by some works on Fog
Computing.

I. INTRODUCTION

The Internet of Things (IoT) brings the opportunity to

spatially and temporally extend the informational scope

of what constitutes the context of an entity. [1] defined

context information as “any information that can be used to

characterize the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction

between a user and an application, including the user and

application themselves.” One solution to handle the context

information is to use Context Managers (CM). A Context

Manager is a kind of middleware that provides services to

manage context information throughout its life cycle. As

described in [2], the IoT will allow any connected object or

sensor to regularly produce and share information about itself

and its own immediate environment. Consequently, each piece

of IoT-based information is a candidate for being processed by

Context Managers with the objective to obtain an extended

and enhanced contextual information. One major challenge

in context computing is to deal with the distribution of

Context Managers. The work presented in this article joins this

approach to obtain IoT-based Distributed Context Managers

(DCMs) such as the ones targeted by the INCOME project

[3].

Thanks to wireless networking and mobility-supported

devices, a new category of applications now becomes possible.

Such applications ubiquitously provide users with services that

are highly sensitive to any real-time variation of the context of

the user. This context can cover the proximate environment of

a user but can also include entities that are currently located in

remote spaces. In both cases, data produced by local or distant

IoT-connected sensors and smart objects constitute the raw

material from which a context information can be computed.

Starting from the acquisition of raw data, following by one or

more transformation operations and ending by the distribution

of the high-level context to the sensitive application, the whole

context computing activity has to be achieved in an acceptable

time limit.

The main objective of this work is to provide the developers

of new real-time IoT-based context-sensitive applications

with middleware programming facilities. An introduction

of the Fog Computing and the QoC management is

presented in Section II. Section III surveys recent solutions

for context management and identifies relevant processing

functions to easily manipulate QoC meta-data together with

context information. Before presenting our implementation of

programmable and self-reconfigurable Fog Computing entities

in Section V, Section IV specifies functions for processing

QoC and context information. Finally, Section VI concludes

this work.

II. QOC-CENTRIC FOG COMPUTING ENTITIES

Facing both the requirements of the real-time and

IoT-based sensitive applications, and also the amount of

data continuously produced by the IoT, many authors as [4]

or [5] demonstrate the limitation of Cloud Computing in

terms of latency, lack of mobility support, geo-distribution

and location-awareness [4]. The paradigm of Fog Computing

is proposed as complementary to Cloud Computing to

address the requirements of applications that do not fit with

Cloud Computing. According to Cisco [6], Fog Computing

extends the Cloud Computing paradigm to the edge of

the network. From a context management point of view,

software components that are responsible for transforming, in

a time-constrained fashion, raw IoT-based data into context

could find in the Fog layer a very suitable operational

environment.

As described by [6], Fog Computing may be used to

improve a traffic light system by deploying a Fog Computing

node at each intersection. With the goals of preventing

accidents and maintaining a steady flow traffic, the nodes

measure the distance and speed of vehicles and detect the

presence of pedestrians or cyclists. In real time the system

analyses, reacts and changes the traffic lights following the

incoming vehicles or sends an urgent alarm when a collision is

anticipated within a few milliseconds. Another Fog Computing

use case is described by [4] and concerns the augmented

reality and real-time video analytics. The authors present

Fog Computing as a solution to collect video stream or

process object recognition for augmented reality applications

deployed over resource limited devices like connected watches

or glasses.

Context data may change very frequently and are inherently

flawed since they come from devices, such as sensors,

having inherent physical limitations or inaccuracy linked

to their external environment. As context is central in the

targeted applications, it is of paramount importance to limit

the impact of its imperfections. One solution consists in

adding quality meta-data to context information and then in

considering the quality of context information (QoC) together

with the context itself. In this article we define QoC “as

the set of parameters useful to express properties and quality

requirements on context data” [7]. Therefore, QoC must be

considered in an end-to-end manner all along the lifecycle of

context information during the acquisition, transformation and

distribution steps of context management.

When considering real-time QoC-centric applications, a

static QoC management is not suitable as it will not allow

to adapt to the changing environment and to the available

computing resources. Therefore, this paper investigates how

to (re)configure context and QoC processing software

components to be deployed at the network edge close to

the context producer and consumer entities. Especially, this

work is focused on the self-adaptation of the transformation

processes executed by these components. In this article,

we use the term ”capsule” to designate the context and

QoC processing software components deployed over Fog

Computing nodes. A capsule is a functional element of the

context and QoC management service that is packaged as a

unit of deployment. Capsules are deployed as close as possible

to context information sources with the purpose of clean,

analyse and transform the information coming the IoT and

and supply at runtime and on demand end-users applications.

The next two Sections present our work on specifying both

context and QoC processing functions including the settings

that can govern their behaviour. Based on this specification,

Section V details a declarative programming approach for

helping developers to implement self-reconfigurable capsules.

III. ELICITATION OF CONTEXT PROCESSING FUNCTIONS

This Section analyses four context managers [8]–[11]

and two states of the art, one concerning context

data distribution [12] and one concerning context-aware

computing [13]. The name of the functions used by the authors

is presented in this Section. The purpose is to identify the

most used context processing functions to characterise their

operational behaviour.

A. Nurmi et Floréen (2004) [8]

Independently of any context manager implementation, the

authors propose four approaches for context-reasoning tasks.

In this paper, we consider the first approach named “low-level

approach”. It contains three functions named pre-processing,

fusion and context-inference. Pre-processing aims to clean

data, handle missing information and identify relevant

information. Fusion combines and integrates information

coming from different sources. The function must not produce

outliers that are rejected in further analysis. Finally, context

inference consists in identifying new context information and

mapping low level contexts to higher level contexts.

B. Sehic et al. (2012) [9]

The authors propose a context manager named “Origins

Toolkit”. It carries out four functions: filtering, aggregation,

composition and inference. Like [8], the authors use a

function named inference. The filtering function, suggested

by [9], performs some of the operations supported by the

pre-processing function of [8]. The authors summarize the

behaviour of their function in Figure 1. For each function,

the Figure details the type of information consumed by the

function and the type of information that it produces. In the

Figure, every geometric shape represents a type of information.

“Or” designates a source of context information and “CA” a

context application.

Fig. 1. Sehic et al. (2012): “Processing Operations” [9]

C. Filho et Agoulmine (2011) [10]

Different modules compose the architecture of the context

manager proposed by the authors. Three of them handle

context processing functions. The context collector module

aggregates and stores information coming from context

sources. Inference, fusion and derivation are placed into

the context reasoner module. Finally, the context obfuscator

module deals with the obfuscation and anonymisation

functions. Compared to [8] and [9], the authors propose

new functions like storage, derivation, obfuscation and

anonymisation. The behaviour of the storage function is

easily interpretable, it allows the context manager and context

application to get historical information. But no more detail is

provided to clearly distinguish the aggregation and derivation

functions. In the same way, obfuscation and anonymisation,

related to privacy management, can be implemented with many

algorithms resulting in a different behaviour. But this issue is

not covered by [14].

D. Manzoor et al. (2014) [11]

Another context manager based on components is proposed

by [11]. It performs many tasks such as fusion, extraction,

filtering, aggregation, composition and storage. Extraction is

a new function name that appears in this list. But there

is no detail in [11] to distinguish the behaviour of these

functions. Moreover, the difference between the derivation

function proposed by [10] and the extraction function proposed

by [11] is not clearly established.

E. Bellavista et al. (2012) [12]

[12] provides a state of the art concerning the context

data distribution for mobile ubiquitous systems. A part of

the taxonomy used by the authors to classify the studied

solution concerns the context processing methods. The authors

identify and describe four categories of functions: context data

history, context data aggregation, context data filtering and

context data security. All of the functions listed in the previous

Sections could be classified into one of these categories.

Context data history provides solutions to store relevant past

events and retrieve the history of a particular value. Context

data aggregation consists in merging and combining context

data. Context data filtering increases the scalability of the

system by controlling and reducing the amount of transmitted

data. Finally, context data security includes the mechanisms

to grant the privacy, integrity and availability of the data.

F. Perera et al. (2014) [13]

Almost fifteen context managers are compared in [13].

The authors use different categories to classify the context

managers as their context acquisition method, the models or

the ontology used to represent context information, or the

reasoning functions used to produce new context informations.

Concerning the reasoning functions, the authors use three

types of function: pre-processing, fusion and inference. The

same names are also used by [8] to identify their functions.

Pre-processing functions are used to clean data by removing

outliers, filling missing information or validating context.

Fusion combines different pieces of information to generate

a new one that is more accurate and complete and could not

be achieved with a single context source. Finally, inference

functions produce high level context information from low

level information.

G. Summary

Figure 1 proposed by [9] provides the most complete

description of processing functions. It includes the number

of input and output pieces of information, one or many, and

the type of information accepted and then produced by the

function. In the other works, only a textual description is

sometimes proposed.

Function [8] [9] [10] [11] [12] [13] Occurrences

Aggregation X X X X 4

Fusion X X X X 4

Inference X X X X 4

Storage X X X 3

Filtering X X X 3

Anonymisation X X 2

Composition X X 2

Obfuscation X X 2

Pre-processing X X 2

Derivation X 1

Extraction X 1

TABLE I
OCCURRENCE OF THE NAME OF THE FUNCTIONS IN THE LITERATURE

Table I summarizes the functions identified in this Section.

The Table classifies the functions according to their number

of occurrences in the literature. The five most used functions

are aggregation, fusion, inference, storage and filtering.

The purpose of Section IV is then to specify the behaviour

of the context management functions identified in Table I and

defining the links between context and QoC management.

IV. DEFINITION OF THE QOC-AWARE CONTEXT

PROCESSING FUNCTIONS

With the objective to define context processing functions

and their links with the QoC management, the first part of

this Section is dedicated to formalize six functions used to

manipulate QoC meta-data. These functions provide a solution

to easily manipulate QoC meta-data associated to context

information. Then, the second part of this Section defines the

behaviour and the parameters of context processing functions.

Because QoC management has to be handled as well as context

processing, Section IV-B also highlights the dependencies

between the context processing functions and the functions

used to manipulate QoC meta-data.

A. QoC management functions

The model of QoC meta-data manipulated by the functions

is the QoCIM meta-model [15]. Every QoC meta-data handled

by the functions is an instance of a QoC indicator modelled

with QoCIM. To clarify the definitions of the functions,

Listings 1, 2 and 3 respectively formalize three types of data:

QoCMetaData based on QoCIM, ContextInformation

with basic information concerning the context and Message

that represents a ContextInformation associated to a

list, possibly empty, of QoCMetaData.

data QoCMetaData = { QoCIndicator . i d : : I n t ,

QoCMetricValue . i d : : I n t , QoCMetricValue . value : : I n t ,

QoCMetricValue . c reat ionDate : : Date ,

QoCCri ter ion . i d : : S t r ing ,

QoCMetricValue . mod i f i ca t ionDate : : Date ,

QoCMet r i cDef in i t i on . i d : : S t r i n g }

Listing 1. QoCIM based meta-data specification

data Contex t In fo rmat ion = { u r i : : S t r ing , value : : S t r ing ,

u n i t : : S t r ing , c reat ionDate : : Date }

Listing 2. Context information specification

data Message = { contex t : : Contex t In format ion ,

qoc : : [QoCMetaData] }

Listing 3. Message specification

Following this formalism, Equation 1 presents the signature

of our QoC management functions. The functions have two

parameters, one message (m) and different parameters (δ) that

are specified in Table II. The functions return one message

(m′). The message m′ differs from the message m in terms

of QoC. The QoC meta-data values of m′ are not equal to the

QoC meta-data values of m. The QoC management functions

do not modify the context information contained in m.

f(m::Message, δ) :7→ m′::Message (1)

Equation 1: Signature of a QoC management function

Table II presents the name, the behaviour and the

parameters of our QoC management functions. The parameters

of the functions addQoCIndicator, removeQoCIndicator

and UpdateQoCIndicator are specified in Listing 1. The

functions removeQoCMetaData and updateQoCMetaData do

not require any parameter.

The function filterQoCMetaData is a sophisticated function

to remove QoC meta-data following a filter composed of

regular expressions. A QoC meta-data value that does not

respect the regular expressions specified in the filter is

removed. Listing 4 presents the definition of a QoC filter

expression. A filter is composed of two elements:

• a list of expressions (QoCFilterExpression) to

specify constraints on the value of QoC meta-data,

• an operator (operator) where the value could be

“UNARY_OPERATOR” when the filter contains only one

expression or a logical operator such as AND or AND to

combine the expressions of the filter.

data QoCFi l ter = QoCFi l ter {
opera tor : : S t r ing , f i l t e r : : [QoCFi l terExpress ion] }

data QoCFi l terExpress ion = QoCFi l terExpress ion {
q o c I d e n t i f i e r : : S t r ing , value : : S t r ing ,

comparator : : S t r i n g }

Listing 4. QoC filter definition

A QoCFilterExpression has three fields:

• qocIdentifier: refers to the variables specified in

Listing 1,

• value: indicates the expected value of the

qocIdentifier,

• comparator: compares the expected value and the

value of the qocIdentifier. The accepted values for

this field are “==”, “! =”, “>=”, “>”, “<” ou “<=”.

Listing 5 illustrates a basic QoC filter expression handled

by the function. It specifies that the value of the field

QoCMetricValue.value has to be equal to 60.

l e t f i l t e r = QoCFi l ter{
opera tor = ”UNARY OPERATOR” ,

f i l t e r = [QoCFi l terExpress ion { value = ” 60 ” ,

q o c I n d e n t i f i c a t o r = ” QoCMetricValue . value ” ,

comparator = ” == ” }] }

Listing 5. Basic example of QoC meta-data filter

Function Description Parameters

addQoCIndicator
Add and compute a QoC
indicator in a message

- QoCIndicator.id

- QoCCriterion.id

- QoCMetricDefinition.id

removeQoCIndicator
Remove a QoC indicator
from a message

- QoCIndicator.id

- QoCMetricValue.id

removeQoCMetaData
Remove all QoC
meta-data

No parameter

updateQoCIndicator
Update the value of a
QoC indicator

- QoCIndicator.id

- QoCMetricValue.id

updateQoCMetaData
Update the value of all
QoC meta-data

No parameter

filterQoCMetaData
Filter the QoC meta-data
of a message

- QoC filter, see
Listing 4

TABLE II
INVENTORY OF THE QOC MANAGEMENT FUNCTIONS

B. Context and QoC management functions

When processing context information, QoC meta-data must

be processed at the same time. The resulting QoC meta-data

actually depend on each specific context management function.

This Section presents four functions (aggregation, filtering,

inference and fusion) to manipulate context information

together with QoC meta-data. They have been selected from

the five most cited functions identified in Table I. Storage

function does not transform context information and is usually

deployed on devices close to the Cloud Computing, as a

consequence, this function is not presented in this Section.

Equation 2 formalizes the signature of the functions. Every

function has two arguments, a list of messages ϕ and a set of

parameters ∆ specific to each function. The functions produce

a list ϕ′, possibly empty, of messages. The resulting messages

contain new context information and QoC meta-data.

F (ϕ::[Message],∆) :−→ ϕ′::[Message] (2)

Equation 2: Signature of a context and QoC management

function

Independently of any function, Equation 2 highlights an

important configuration point: the size of ϕ. This parameter

determines the number of messages that a function have to

handle for each its execution. Because the capacities of context

sources and the needs of applications constantly change, the

number of messages handled by a function could be never

reached or achieved too frequently. In the first case, the

function is never executed, in the other case the function may

consume too much hardware resources (CPU, RAM. . .).

To levelling this problem, we integrate in the configuration

of a function two parameters:

• the number of messages handled by the function;

• the maximum elapsed time between two executions of a

function.

The second parameter offers a guarantee that a function

is ever executed after a predetermined time. Our solution

supports the expression of whether only one of the parameters

or both.

1) The aggregation function: Inspired from the

mathematical operator of aggregation [16], we consider

the aggregation function with a similar behaviour: it produces

a new message from a set of messages. The resulting

information has the same abstraction level as the processed

information. For example, a function is deployed to aggregate

pollution measurements. The resulting information is another

pollution measurement.

Some QoC indicators are used to qualify the information

processed by the function and the resulting information.

So, if the precision and freshness indicators are associated

to the pollution measurements aggregated by the function,

the same indicators are associated to the resulting pollution

measurement.

In this work, we establish a distinction between temporal

and spatial aggregation. Temporal aggregation handles

information coming from a single context source and produced

during some amount of time. Spatial aggregation handles

information coming from many context sources that produce

the same type of context information periodically.

2) The filtering function: The filtering function has the

same objective as the function filterQoCMetaData presented

in Section IV-A: reducing the amount of information handled

by the distributed context manager. With that purpose, the

function decides for each processed messages whether they

are eliminated or not.

The arguments of the function is then a set of conditions,

formulated with regular expressions, relative to the value

of context information and QoC meta-data of the message.

For example, if the pollution measurement contained in the

message is less than 600 parts per million (ppm) and the value

of the freshness QoC indicator is more than 45 seconds, drop

the message.

3) The inference function: This function produces from a

set of data of the same type a new piece of context information

of a different type, for example deducing whether it is cold

or hot following temperature measurements. The information

produced is of a higher level than the information used. It

may use different methods that can be based on probability,

statistics or inference logical rules. The choice depends mainly

on two factors: (1) the computing power of the capsule which

performs the function. Some methods require more power than

others ; and (2) the type of the information. Indeed, it is

common to use statistical operators on digital information and

Function Characterisation

(F) Configuration parameters QoC dependencies (f)

Spatial
and

temporal
aggregation

Applies an aggregation operator onto a list of messages. The
result is only one message with the same abstraction level.

- Context aggregation operator

- QoC management strategy

- Optional: QoC aggregation operator

- addQoCIndicator

Filtering

Analyses the message and decides to remove it or not. The
content of the message is never modified.

- Condition about the content of the
filtered message

- Condition related to the content of the
previous filtered messages

- filterQoCMetaData

Inference

Applies an inference operator onto a list of messages. The
result is only one message with a higher abstraction level.

- Inference operator

- QoC indicator to add into the QoC
meta-data

- addQoCIndicator

Fusion

Executes a set of functions sequentially or in parallel. The
result is a list of messages with a higher abstraction level.

- Ordered list of functions with their
configuration

- All QoC functions
referenced in Table II

TABLE III
INVENTORY OF CONTEXT MANAGEMENT FUNCTIONS WITH THEIR

DEPENDENCIES TO QOC MANAGEMENT FUNCTIONS

raw measurements, whilst using methods based on inference

rules for proposals or statements.

The abstraction level of QoC meta-data have to follow the

abstraction level of context information. As a consequence,

high level QoC meta-data have to be produced from low level

QoC indicator associated to the processed context information.

To realized that, the QoCIM meta-model offers a solution

to specify a hierarchy of QoC indicator, from primitive to

composite indicators. For example, from a set of pollution

measurements and primitive QoC indicators, as the freshness

and precision, the function estimates the corresponding Air

Quality Index1 as context information and the confidence of

the index as QoC meta-data.

4) The fusion function: To determine the behaviour of the

fusion function, our work is based on the generic JDL software

framework proposed by [17]. The authors defined data fusion

with five major steps:

i) source pre-processing : sorting and grouping received

data;

ii) object refinement : construction of objects representing

the entities observed;

iii) situation refinement : detection of situations on detected

objects;

iv) threat refinement : inference about upcoming events;

v) process refinement : monitoring and adjustment process

of the previous steps.

The JDL framework is generic and adaptable to various

types of applications [18], [19]. In this paper we consider the

fusion function as a special function that applies sequentially

other functions, namely aggregation, filtering and inference.

As a consequence, the transformations applied on context

1https://airnow.gov/index.cfm?action=aqibasics.aqi

information and QoC meta-data by the fusion is the result

of transformations processed by the other functions.

This section presents a range of functions for processing

context information. Some produce new information from a

collection of data while others allow to store information for

later use. These functions can be configured to determine

what computing method to use and also to indicate the

number of messages to be actually taken as input. As

a result, Table III describes the functions and highlights

their dependencies with the QoC management functions. The

configurability of the functions opens the way to specify the

transformation functions executed by a capsule. Next Section

illustrates the declarative solution that we propose to declare

the transformation processes handled by a capsule.

V. SELF-CONFIGURABILITY OF CAPSULES

With the purpose to easily setting up and update the

configuration of the transformation functions executed by a

capsule, we propose a declarative solution. Such a solution

becomes possible with a formal definition of the functions

and their parameters. As a result we developed a tool

based on the functions identified in Section IV. The tool

manipulates the configuration of a capsule and stores it into

XML document. Based on these document we developed a

prototype of configurable capsule. Section V-A details this

prototype. Section V-B introduces a new type of capsule

that we designed to change at runtime the configuration of

transformation functions. Finally this prototype have been

improved to become self-reconfigurable. This capsule is

presented in Section V-C. It is able to automatically change

the configuration of the transformation functions it executes

following the current available hardware resources.

A. Configuration

Listing 6 is an example of XML configuration document

of a capsule. We developed a dedicated tool that handles

available functions with their parameters and QoCIM based

QoC criteria to produce this kind of XML document. In

the example two functions are specified. The first one is

an aggregation that computes the means, the second one is

a function to add a QoC indicator into the QoC meta-data

of the information produced by the first function. The

configuration also indicates the first function is executed

as soon as the capsule received 20 messages or every

two seconds. The indicator used by the second function

is identified with the attributes QoCIndicator.id

QoCMetricDefinition.id QoCCriterion.id

introduced in Listing 1.

Thanks to the XML configuration documents, we

implemented a capsule with an algorithm to automatically set

up and deploy the functions specified in the configuration

file when the capsule is started. This generic algorithm is

composed of the following steps:

1) Configuration file analysis;

2) Create an initialisation function to provide next

transformation functions on the messages received by the

capsule;

3) For each function declared in the configuration file :

3.1) Create a buffer to temporally store the messages that

will be handled by the function;

3.2) Create the function with its parameters;

3.3) Configure the previous function to supply the buffer

with its resulting messages;

4) Create a final function to publish the resulting messages

to the other capsules;

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8” standalone= ” no ”?>

<Conf igura t ion>

<f unc t ions>

<f u n c t i o n i d = ” 0 ”>

<type>ICDFMFunction</type>

<name>Aggregation</name>

<opera tor name= ”Mean” />

<nbMessages>20</nbMessages>

<t ime>2000</t imer>

</ f unc t i on>

<f u n c t i o n i d = ” 1 ”>

<type>IQoCManagementFunction</type>

<name>AddQoCIndicator</name>

<parameters>

<QoCIndicator . id>14</QoCIndicator . id>

<QoCMet r i cDef in i t i on . id>14.1</QoCMet r i cDef in i t i on . id>

<QoCCri ter ion . id >[14.1]</ QoCCri ter ion . id>

</parameters>

</ f unc t i on>

</ f unc t ions>

</Con f igura t ion>

Listing 6. Example of an XML Configuration document

Capsules deployed at the edge network have to deal

with fast and plentiful context sources and applications.

In addition, their needs and capabilities vary quickly and

frequently. Moreover, hardware resources available for the

capsules are limited, that reduce their efficiency and even

making them totally inoperable. To tackle this problem some

solution consider offload code as identified [4]. This solution

introduces open questions concerning the security and integrity

of the capsules, the confidence of the offloaded code and

the time required to offload code between entities. We

propose in following Sections another approach based on the

reconfiguration of the transformation functions executed by

the entities. The purpose of our solution does not consist

in substitute offloading code but proposing an alternative

before offloading code by adapting the configuration of the

transformation functions.

Next Sections present our solution to modify at runtime the

XML configuration file of a capsule for adapting the behaviour

of its functions to the available resources and response time

requirements as in Fog Computing. Section V-B details our

implementation of a reconfigurable capsule while Section V-C

introduces an self-reconfigurable capsule.

B. Reconfiguration

Our Java implementation uses the Apache Common

Configuration2 to detect modifications of the configuration file

and automatically restart the algorithm above. Then, measures

have been conducted to estimate the elapse time between a

modification of the configuration, for example a modification

of the value of the attribute nbMessages, and the real

2http://commons.apache.org/proper/commons-configuration

modification of the function parameters within the capsule.

Figure 2 illustrates our measurements made on a desktop

with a single core processor. The results are the mean of 20
reconfigurations of the capsule is about adding, removing or

modifying functions. The results indicate a capsule can be

totally reconfigured under one second and moreover most of

the time is used to wait the detection of a new configuration.

Legend :

t(0) : modification of the configuration file

t(1) : modification file is detected

t(2) : end of reconfiguration

Wainting until reading

the new configuration file

Loading the new

configuration

0 ms

t(0) t(1) t(2)

695 ms 810 ms

Fig. 2. Average reconfiguration time of a capsule

At this step it is possible to reconfigure at runtime the

configuration of a capsule and then change the functions it

executes. The results also indicate the reconfiguration process

takes less than one second that we assume is acceptable for

Fog Computing dynamicity. However, human administrators

are not able to take over tens or hundreds entities in the same

time. So, this task must be realized by programs that monitor

various indicators and decide whether to reconfigure a capsule

or not and chose the most appropriate configuration.

With that purpose, we developed a new prototype of

a capsule able to self-reconfigure its context processing

functions. Next Section illustrates this prototype. This new

version of the capsule is now able to decide by itself

whether its configuration have to change or not thanks to the

monitoring of its hardware resources consumption.

C. Self-Reconfiguration

Our prototype of self-reconfigurable capsule monitors

hardware resources usages coming from various logs produced

by the entities itself. The logs consist in timestamped data

produced regularly by the capsule concerning the tasks

performed and hardware resource consumption. To realize the

prototype, a Monitor Analyse Plan Execute (MAPE) loop as

defined by [20] for the autonomic computing domain, has

been integrated into a capsule. The MAPE loop monitors the

logs produced by the capsule and decide whether and how to

change its configuration or not.

The module “Monitor” collects the logs produced by

the capsule about its internal status. Different type of logs

are collected concerning, for example, the RAM or CPU

utilisation rate of the machine where the capsule is deployed,

notification about new incoming messages or the execution of

a transformation function.

All these logs are read and interpreted by the module

“Analyse”. This module is able to detect hardware

consumption peaks under-utilizing of available resources. This

kind of events is then forwarded to the Plan module.

The module “Plan” decides in reaction to the event it

receives whether the configuration of the capsule has to be

changed or not. The module can decide, for example, to change

the value of the attributes nbMessages or time, to activate

or deactivate a QoC management function. Another option is

to change the operator used by a context management function.

When many hardware resources are available, the module can

decide to use a more advanced operator on contrary, when

very resources are available, the module will decide to use

a simple operator. To select the most appropriate operator the

Plan module has to be provided with the knowledge that gives

for each operator the resource consumption profile.

Finally, the module “Execute” modifies the configuration

file of the capsule following the orders of the Plan module. If

the configuration file is modified, the reconfigurable capsule

presented in Section V-B detects the modification and changes

the transformation functions it executes.

We conducted experimentations of the MAPE loop on a

desktop (Intel Xeon Processor 5130, 2 Go RAM) and a

Raspberry pi 1 model B3 machine to observe its ability to

reconfigure the transformation functions. The study teaches

us two lessons. Firstly, both machines successfully support

our Java implementation of an self-reconfigurable capsule.

Secondly, a difficulty appears concerning the reconfiguration

decisions process and more precisely, about the selection of

the most appropriate configuration regarding the hardware

resource uses.

Fig. 3. Average CPU consumption of the aggregation function

We started an evaluation of the resource consumption of

the functions with the purpose of supplying knowledge to the

Plan module. Our objective is to provide a profile of each

function and then be able to anticipate the hardware resource

uses following an expected configuration of a capsule. Figure 3

illustrates our first measurements that we realized with the

JProfiler tool4 to get the CPU utilization rate of the aggregation

function with a mean operator. As indicated in the Figure,

measurements have been made with a desktop machine, with

a single core processor and a Raspberry pi machine. In the

Figure, two types of peaks are recognizable, some peaks occur

when the capsule receives a new message, other peaks occur

3www.raspberrypi.org/products/model-b/
4www.ej-technologies.com/products/jprofiler/overview.html

when the function is executed. The behaviour is observable

with both machines we used. This result constitutes a first

element to predict the hardware resource consumption of the

configuration of a capsule. We plan to complete the result with

an evaluation of the other functions. The result completes a

first study that we realized in [21] concerning the overhead of

QoC-based filters.

VI. CONCLUSION

Works concerning context management mainly integrate

their own processing functions with their own vocabulary and

definition. After a definition of a set of QoC management

functions, this article proposes a specification of the most

popular context transformation functions with an analysis

of their dependencies with QoC processing. Thanks to our

specification, we first developed a prototype of a configurable

capsule. Our solution provides developers of capsules with

a tool to declare the transformations on context information

and QoC meta-data their entities have to execute. We improve

the flexibility of capsules by enabling their reconfiguration

at runtime in order to change their internal settings. Our

evaluation indicates that it requires less than one second

to change the configuration of our implementation of a

capsule. Thanks to this result, we propose a new type of

self-reconfigurable capsule able to decide by itself when

and what to change concerning its context transformation

processes. Our solution constitutes an alternative to offloading

code that is currently proposed to tackle dynamicity, volatility

and real-time needs of applications based on the Internet of

Things.

Because the configuration of a capsule is open and

many elements may be changed, a new challenge arises for

developing smart “Control Plan” modules able to react as good

as possible to the evolution of the hardware resources usage.

We therefore plan to perform additional evaluations concerning

the hardware consumption of the functions.

The source code of our prototypes is available at:

https://fusionforge.int-evry.fr/www/qocim/.

ACKNOWLEDGMENT

This work is part of the French National Research Agency

(ANR) project INCOME (ANR-11-INFR-009, 2012-2015).

The authors thank Elliot Felgines for his contribution to this

work.

REFERENCES

[1] A. K. Dey, G. D. Abowd, and D. Salber, “A
conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications,” Hum.-Comput. Interact.,
vol. 16, no. 2, pp. 97–166, dec 2001. [Online]. Available:
http://dx.doi.org/10.1207/S15327051HCI16234 02

[2] EPoSS, Internet of Things in 2020, http://www.
smart-systems-integration.org/public/internet-of-things, 2008, last
access in June 2015.

[3] J.-P. Arcangeli, A. Bouzeghoub, V. Camps, M.-F. Canut, S. Chabridon,
D. Conan, T. Desprats, R. Laborde, E. Lavinal, S. Leriche, H. Maurel,
A. Péninou, C. Taconet, and P. Zaraté, “INCOME – Multi-scale Context
Management for the Internet of Things,” in Ambient Intelligence, ser.
LNCS. Springer, 2012, vol. 7683, pp. 338–347. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34898-3 25

[4] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts,
Applications and Issues,” in Workshop on Mobile Big Data (Mobidata).
New York, NY, USA: ACM, 2015, pp. 37–42. [Online]. Available:
http://doi.acm.org/10.1145/2757384.2757397

[5] Ahmed Banafa, “Iot: A fog cloud computing model,” https://www.
bbvaopenmind.com/en/iot-a-fog-cloud-computing-model/, 2015, last
access : April 2016.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition

of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[7] M. Fanelli, L. Foschini, A. Corradi, and A. Boukerche, “Qoc-based
context data caching for disaster area scenarios,” in Communications

(ICC), 2011 IEEE International Conference on, June 2011, pp. 1–5.
[8] P. Nurmi and P. Floréen, “Reasoning in Context-Aware Systems,

Mobilife FP6 project, Position paper,” http://www.cs.helsinki.fi/u/
ptnurmi/papers/positionpaper.pdf, 2004.

[9] S. Sehic, F. Li, S. Nastic, and S. Dustdar, “A programming model for
context-aware applications in large-scale pervasive systems,” in IEEE

8th Int. Conf. on Wireless and Mobile Computing, Networking and

Communications (WiMob), Oct 2012, pp. 142–149.
[10] J. Filho and N. Agoulmine, “A quality-aware approach for resolving

context conflicts in context-aware systems,” in IFIP 9th Int. Conf. on

Embedded and Ubiquitous Computing (EUC), Oct 2011, pp. 229–236.
[11] A. Manzoor, H.-L. Truong, and S. Dustdar, “Quality of context: models

and applications for context-aware systems in pervasive environments,”
The Knowledge Engineering Review, vol. 29, pp. 154–170, 3 2014.

[12] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A survey
of context data distribution for mobile ubiquitous systems,” ACM

Computing Surveys, vol. 44, no. 4, pp. 24:1–24:45, Sep 2012. [Online].
Available: http://doi.acm.org/10.1145/2333112.2333119

[13] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” Communications

Surveys Tutorials, IEEE, vol. 16, no. 1, pp. 414–454, 2014.
[14] J. B. Filho and H. Martin, “A generalized context-based access

control model for pervasive environments,” in 2nd ACM SIGSPATIAL

Int. Workshop on Security and Privacy in GIS and LBS. New
York, NY, USA: ACM, 2009, pp. 12–21. [Online]. Available:
http://doi.acm.org/10.1145/1667502.1667507

[15] P. Marie, T. Desprats, S. Chabridon, and M. Sibilla, “Modeling and
using context: 8th international and interdisciplinary conference, context
2013, annecy, france, october 28 -31, 2013, proceedings,” P. Brézillon,
P. Blackburn, and R. Dapoigny, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 302–315.

[16] M. Detyniecki, “Mathematical aggregation operators and their
application to video querying,” Ph.D. dissertation, University Pierre et
Marie Curie, 2000.

[17] D. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 6–23, January 1997.

[18] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi,
“Multisensor data fusion: A review of the state-of-the-art,” Information

Fusion, vol. 14, no. 1, pp. 28 – 44, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1566253511000558

[19] C. Kuka, A. Bolles, A. Funk, S. Eilers, S. Schweigert, S. Gerwinn, and
D. Nicklas, “Salsa streams: Dynamic context models for autonomous
transport vehicles based on multi-sensor fusion,” in IEEE 14th Int. Conf.

on Mobile Data Management (MDM), vol. 1, June 2013, pp. 263–266.
[20] J. Kephart and D. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.
[21] L. Lim, P. Marie, D. Conan, S. Chabridon, T. Desprats, and

A. Manzoor, “Enhancing context data distribution for the internet of
things using qoc-awareness and attribute-based access control,” Annals

of Telecommunications, vol. 71, no. 3, pp. 121–132, 2016. [Online].
Available: http://dx.doi.org/10.1007/s12243-015-0480-9

