Synthesis and characterization of a series of ruthenium tris(β -diketonato) complexes with UHV-STM investigation and numerical calculations

Sabrina Munery, ^[a] Nicolas Ratel-Ramond, ^[a] Youness Benjalal, ^[a] Loranne Vernisse, ^[a] Olivier Guillermet, ^[a] Xavier Bouju, ^[a] Roland Coratger^[a] and Jacques Bonvoisin^[a]*

CNRS, CEMES and MANA Satellite, GNS, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4, Fax: +33 5 62 25 79 99, E-mail: jbonvoisin@cemes.fr

Supplementary materials

Figure S1. Cyclic Voltammetry of 1, 2, 5 and 6 (CH_2Cl_2 , 0.1 M TBAH, 0.1 V.s⁻¹)

Figure S2. ORTEP drawing of [Ru(dbm)₂(acac)] (2) (30% of probability thermal ellipsoids)

Figure S3. ORTEP drawing of [Ru(dbm)(acac)₂] (3) (30% of probability thermal ellipsoids)

Figure S4. ORTEP drawing of the [Ru(dbm)₂(CH₃CN)₂]CF₃SO₃ (4) (the counter anion has been omitted for the sake of clarity, 30% of probability thermal ellipsoids).

Table S1. Crystallographic data for 1-4, 6

Table S2. Selected bond lengths (Å) with estimated standard deviations in parentheses

Table S3. Selected bond angles (°) with estimated deviations in parentheses

Figure S5. UV-Vis spectra of complexes 1-3 in CH₂Cl₂.

Figure S6. UV-Vis spectra of complexes **1,2,5,6** in CH₂Cl₂.

Figure S7. ¹H NMR spectrum of complex **1** in CD₂Cl₂

Figure S8. ¹H NMR spectrum of complex **2** in CD_2Cl_2

Figure S9. ¹H NMR spectrum of complex **3** in CD₂Cl₂

Figure S10. ¹H NMR spectrum of complex **5** in CD₂Cl₂

Figure S11. ¹H NMR spectrum of complex **6** in CD₂Cl₂

Figure S12. ¹³C NMR spectrum of complex **1** in CD₂Cl₂ Figure S13. ¹³C NMR spectrum of complex **2** in CD₂Cl₂ Figure S14. ¹³C NMR spectrum of complex **3** in CD₂Cl₂ Figure S15. ¹³C NMR spectrum of complex **5** in CD₂Cl₂

Figure S16. ¹³C NMR spectrum of complex 6 in CD₂Cl₂

Figure S1. Cyclic Voltammetry of **1**, **2**, **5** and **6** (CH₂Cl₂, 0.1 M TBAH, 0.1 V.s⁻¹)

Figure S2. ORTEP drawing of [Ru(dbm)₂(acac)] (2) (30% of probability thermal ellipsoids)

Figure S3. ORTEP drawing of [Ru(dbm)(acac)₂] (3) (30% of probability thermal ellipsoids)

Figure S4. ORTEP drawing of the $[Ru(dbm)_2(CH_3CN)_2]CF_3SO_3$ (4) (the counter anion has been omitted for the sake of clarity, 30% of probability thermal ellipsoids).

Table S1

Crystallographic data for 1-4, 6

	1	2	3	4	6	
Empirical Formula	C45H33O6Ru	C35H29O6Ru	C ₂₅ H ₂₅ O ₆ Ru	$C_{35}H_{28}F_3N_2RuS$	C ₃₅ H ₂₈ O ₆ BrRu	
Formula Weight	770.78	646.65	522.52	778.72	725.55	
Wavelength (Å)		0.71073				
Crystal System	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	
Space Group	$P\overline{1}$	$P\overline{1}$	P21/c	P21/c	P21/n	
a (Å)	10.40340(10)	10.2725(2)	14.438(0)	17.3990(0)	9.9050(0)	
<i>b</i> (Å)	11.6813(11)	11.0561(10)	8.379(0)	13.1420(0)	18.0420(0)	
<i>c</i> (Å)	16.3554(13)	14.3319(12)	20.3080(0)	16.2060(0)	17.2670(0)	
α (°)	108.794(7)	94.261(7)	90.000(0)	90.000(0)	90.000(0)	
β (°)	96.491(3)	91.932(4)	108.095(0)	110.154(0)	95.577(0)	
γ (°)	101.502(4)	112.794(4)	90.000(0)	90.000(0)	90.000(0)	
Volume (Å ³)	1809.8(2)	1493.00(30)	2335.28(0)	3478.7(0)	3071.11(0)	
Z	2	2	4	4	4	
D_{calc} (Mg/m ³)	1.414	1.438	1.486	1.487	1.569	
$\mu(MoK\alpha) (mm^{-1})$	0.483	0.570	0.709	0.576	1.857	
F(000)	790	661.9	1067.9	1579.8	1459.8	
Crystal size (mm)	0.778	0.364	0.541	0.384×0.235	0.159	
	$\times 0.224$	× 0.228	$\times 0.187$	× 0.305	× 0.283	
	× 0.094	× 0.186	× 0.210		× 0.134	
θ Range for data	5.57-31.98	5.52-32	5.54-30	5.52-28.46	5.57-27.49	
collection (°)						
Limiting indices	$-13 \le h$	$-15 \le h$	$-20 \le h$	$-19 \le h \le 20$	$-11 \leq h$	
	≤ 13	≤ 15	≤ 19		≤ 12	
	$-17 \leq k$	$-16 \le k$	$-11 \leq k$	$-16 \le k \le 13$	$-22 \le k$	
	≤ 15	≤ 16	≤ 11		≤ 22	
	$-23 \le l \le 24$	$-21 \le l$	$-28 \le l$	$-18 \le l \le 17$	$-22 \le l \le 20$	
		≤ 21	≤ 28			
Reflections	59103/13868	53319/11750	52853/9262	59094/17478	69553/10537	
(observed/unique)				2		
Refinement method		Full-matrix least-squares on F ²				
Data/parameters	8170/469	9713/405	6398/314	4155/480	6288/444	
Goodness of fit on F^2	1.228	1.183	1.197	1.159	1.196	
Final R indices	R ₁ =0.0522,	$R_1 = 0.0409$	$R_1 = 0.0379$	$R_1 = 0.0467$	$R_1 = 0.0680$	
	wR ₂ =0.0872	wR ₂ =0.0886	wR ₂ =0.0874	wR ₂ =0.109	wR ₂ =0.1152	
	$[l > 2\sigma(l)]$	$[l > 2\sigma(l)]$	$[l > 2\sigma(l)]$	$[l > 2\sigma(l)]$	$[I > 2\sigma(I)]$	
Largest difference	0.883 and -	0.80 and -0.59	0.649 and -	0.672 and -	1.03 and -0.7	
in peak and hole	0.513		1.059	0.407		
(e Å ⁻³)						

Table S2. Selected bond lengths	(Å)	with estimated	l standard	l deviations in	n parentheses
---------------------------------	-----	----------------	------------	-----------------	---------------

1

Ru(1) - O(1)	1.995(3)
Ru(1) - O(2)	2.005(2)
Ru(1) - O(3)	2.019(3)
Ru(1) - O(4)	2.029(3)
Ru(1) - O(5)	2.010(2)
Ru(1) - O(6)	2.008(3)
2	
Ru(1)- O(1)	2.027(2)
Ru(1) - O(2)	2.032(2)
Ru(1)- O(3)	2.005(2)
Ru(1)- O(4)	2.001(2)
Ru(1) - O(5)	2.000(2)
Ru(1) - O(6)	2.011(2)
3	
Ru(1) - O(1)	2.007(3)
Ru(1) - O(2)	2.019(2)
Ru(1) - O(3)	2.019(2)
Ru(1) - O(4)	2.013(2)
Ru(1) - O(5)	2.017(2)
Ru(1) - O(6)	2.009(2)
4	
Ru(1) - O(1)	1.992(4)
Ru(1) - O(2)	1.980(4)
Ru(1) - O(3)	1.982(4)
Ru(1) - O(4)	1.994(5)
Ru(1) - N(1)	2.050(6)
Ru(1) - N(2)	2.031(6)
6	

2.010(4)
2.017(4)
2.008(4)
1.986(4)
1.984(4)
2.006(4)

Table S3. Selected bond angles (°) with estimated deviations in parentheses

1			
O(1)-Ru(1)-O(3)	89.0(1)	O(1)-Ru(1)-O(4)	177.7(1)
O(1)-Ru(1)-O(5)	86.6(1)	O(1)-Ru(1)-O(6)	88.9(1)
O(2)-Ru(1)-O(3)	91.1(1)	O(2)-Ru(1)-O(4)	89.3(1)
O(2)-Ru(1)-O(5)	177.8(1)	O(2)-Ru(1)-O(6)	90.1(1)
O(3)-Ru(1)-O(4)	91.5(1)	O(3)-Ru(1)-O(5)	86.7(1)
O(3)-Ru(1)-O(6)	177.5(1)	O(4)-Ru(1)-O(5)	91.2(1)
O(4)-Ru(1)-O(6)	90.6(1)	O(5)-Ru(1)-O(6)	92.0(1)
O(1)-Ru(1)-O(2)	92.9(1)		
2			
O(1)-Ru(1)-O(3)	90.8(1)	O(1)-Ru(1)-O(4)	89.2(1)
O(1)-Ru(1)-O(5)	177.3(1)	O(1)-Ru(1)-O(6)	89.8(1)
O(2)-Ru(1)-O(3)	89.8(1)	O(2)-Ru(1)-O(4)	177.6(1)
O(2)-Ru(1)-O(5)	89.8(1)	O(2)-Ru(1)-O(6)	91.5(1)
O(3)-Ru(1)-O(4)	92.3(1)	O(3)-Ru(1)-O(5)	87.3(1)
O(3)-Ru(1)-O(6)	178.6(1)	O(4)-Ru(1)-O(5)	89.0(1)
O(4)-Ru(1)-O(6)	86.4(1)	O(5)-Ru(1)-O(6)	92.1(1)
O(1)-Ru(1)-O(2)	92.0(1)		
3			
O(1)-Ru(1)-O(3)	88.7(1)	O(1)-Ru(1)-O(4)	178.2(1)
O(1)-Ru(1)-O(5)	90.1(1)	O(1)-Ru(1)-O(6)	89.6(1)
O(2)-Ru(1)-O(3)	92.2(1)	O(2)-Ru(1)-O(4)	88.5(1)

O(2)-Ru(1)-O(5)	176.8(1)	O(2)-Ru(1)-O(6)	85.0(1)
O(3)-Ru(1)-O(4)	92.4(1)	O(3)-Ru(1)-O(5)	89.1(1)
O(3)-Ru(1)-O(6)	176.7(1)	O(4)-Ru(1)-O(5)	88.5(1)
O(4)-Ru(1)-O(6)	89.4(1)	O(5)-Ru(1)-O(6)	93.8(1)
O(1)-Ru(1)-O(2)	92.9(1)		
4			
O(1)-Ru(1)-O(3)	89.8(2)	O(1)-Ru(1)-O(4)	179.4(2)
O(1)-Ru(1)-N(1)	86.3(2)	O(1)-Ru(1)-N(2)	90.0(2)
O(2)-Ru(1)-O(3)	88.5(2)	O(2)-Ru(1)-O(4)	88.2(2)
O(2)-Ru(1)-N(1)	177.5(2)	O(2)-Ru(1)-N(2)	89.7(2)
O(3)-Ru(1)-O(4)	90.8(2)	O(3)-Ru(1)-N(1)	92.9(2)
O(3)-Ru(1)-N(2)	178.2(2)	O(4)-Ru(1)-N(1)	93.8(2)
O(4)-Ru(1)-N(2)	89.4(2)	N(1)-Ru(1)-N(2)	88.8(3)
O(1)-Ru(1)-O(2)	91.7(2)		
6			
O(1)-Ru(1)-O(3)	87.9(2)	O(1)-Ru(1)-O(4)	178.6(2)
O(1)-Ru(1)-O(5)	91.1(2)	O(1)-Ru(1)-O(6)	90.5(2)
O(2)-Ru(1)-O(3)	92.5(2)	O(2)-Ru(1)-O(4)	91.0(2)
O(2)-Ru(1)-O(5)	178.4(2)	O(2)-Ru(1)-O(6)	87.2(2)
O(3)-Ru(1)-O(4)	92.4(2)	O(3)-Ru(1)-O(5)	88.0(2)
O(3)-Ru(1)-O(6)	178.3(2)	O(4)-Ru(1)-O(5)	87.5(2)
O(4)-Ru(1)-O(6)	89.3(2)	O(5)-Ru(1)-O(6)	92.3(2)
O(1)-Ru(1)-O(2)	90.4(2)		

Figure S5. UV-Vis spectra of complexes 1-3 in CH₂Cl₂.

Figure S6. UV-Vis spectra of complexes **1,2,5,6** in CH₂Cl₂.

Figure S7. ¹H NMR spectrum of complex **1** in CD₂Cl₂

Figure S8. ¹H NMR spectrum of complex 2 in CD_2Cl_2

Figure S9. ¹H NMR spectrum of complex **3** in CD₂Cl₂

Figure S10. ¹H NMR spectrum of complex **5** in CD₂Cl₂

Figure S11. ¹H NMR spectrum of complex **6** in CD₂Cl₂

Figure S13. ¹³C NMR spectrum of complex **2** in CD_2Cl_2

Figure S15. ¹³C NMR spectrum of complex **5** in CD₂Cl₂

