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Abstract 17 

 18 

This study presents the complete mitochondrial (mt) genome sequence, annotation and 19 

analysis of the amphipod Gammarus roeselii, a crustacean species widespread in European 20 

continental freshwaters. The circular mt genome has a total length of 16,073 bp and possesses 21 

the 37 canonical mt genes of bilaterians. Particularly noticeable is an unusual case of 22 

duplication of the full control region (CR). This duplication was confirmed experimentally in 23 

G. roeselii individuals caught in the wild, as it was found in all tested individuals from two 24 

distinct populations. Furthermore, comparing multiple mt haplotypes from closely related 25 

individuals from the western-most part of the distribution range of G. roeselii allowed us to 26 

identify single nucleotide polymorphisms and indels that may constitute valuable markers for 27 

phylogeographic analyses of G. roeselii. Finally, we performed a phylogenetic analysis that 28 

helped understanding the evolutionary dynamics of the CR. 29 

 30 
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Introduction 35 

 36 

 The gammarid Gammarus roeselii (Amphipoda) is a freshwater peracarid crustacean 37 

(Väinölä et al., 2008). As the related morphospecies Gammarus pulex and Gammarus 38 

fossarum, G. roeselii is widespread in European continental freshwaters (Karaman & 39 

Pinkster, 1977), playing a key functional role in the ecosystem, through leaf litter recycling 40 

(Piscart et al., 2007). In addition, G. roeselii is often used in multi-topic research at the 41 

crossroads of ecophysiology, ecotoxicology, biological invasions, behavioral ecology and 42 

evolutionary parasitology (Haine et al., 2005; Moret et al., 2007; Tain et al., 2007; Sornom et 43 

al., 2010; Gerhardt et al., 2011; Böttger et al., 2012; Gismondi et al., 2012b, 2012c, 2012a, 44 

2013; Gergs et al., 2013; Andreï et al., 2016). 45 

 Although G. roeselii is often considered as a native species all over Europe, 46 

Jażdżewski and Roux (1988) proposed that the Balkans should be considered as the native 47 

area of this species, as expansion outside this area is only recent, being associated with post-48 

glacial expansion and/or even more recent human-mediated invasion. Recent invasion is 49 

likely as G. roeselii geographic distribution has been recorded to increase over the last 50 50 

years (Grabowski, 2007; Paganelli et al., 2015). Consistently, based on mitochondrial (mt) 51 

cytochrome c oxidase subunit I (COI) DNA barcodes, it has been recently established that the 52 

morphospecies G. roeselii in the Balkans is characterized by extensive cryptic diversity, with 53 

13 molecular operational taxonomic units (MOTUs) which diversification occurred from 54 

Miocene to Pleistocene epochs (Grabowski et al., 2017). By contrast, G. roeselii outside the 55 

Balkans is associated with a single COI-MOTU also present in the Northern Balkans (M. 56 

Grabowski and R. Wattier, unpublished results, see also Moret et al. 2007). However, deeper 57 
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exploration of G. roeselii expansion dynamics would benefit from the availability of 58 

additional mitochondrial markers.  59 

 Omics resources in amphipods are still relatively scarce or, at least, have been building 60 

up only recently (Kao et al., 2016), especially for the genus Gammarus (Krebes & Bastrop, 61 

2012; Gismondi & Thomé, 2016; Trapp et al., 2016; Macher et al., 2017a). Amphipod nuclear 62 

genomes tend to be quite large, which constitutes a limiting factor for assembly processes 63 

(Kao et al., 2016). By contrast, the small and circular mt genome is more easily accessible. As 64 

a consequence, more than 20 amphipod mt genomes have been sequenced, although many are 65 

incomplete (Bauzà-Ribot et al., 2009, 2012; Ito et al., 2010; Ki et al., 2010; Kilpert & 66 

Podsiadlowski, 2010; Krebes & Bastrop, 2012; Shin et al., 2012; Pons et al., 2014; Romanova 67 

et al., 2014, 2015, 2016; Stokkan et al., 2015; Aunins et al., 2016; Lan et al., 2016; Macher et 68 

al., 2017a). 69 

 The mt genome of amphipods is a canonical bilaterian mitogenome, defined as a 70 

single circular molecule ranging in size from 14 to 18 kb, with a mean size around 16 kb 71 

(Boore, 1999). The gene content generally is highly conserved, with 37 genes encoding for 13 72 

protein-coding genes, two rRNA genes, 22 tRNA genes and one control region (CR) 73 

containing regulatory elements for transcription and replication (Wolstenholme, 1992). In 74 

amphipods, mitogenomic features such as alterations in gene order, strand bias reversion, 75 

presence of additional tRNA genes and CR duplication have been reported and could be used 76 

to explore amphipod evolutionary history at various taxonomic levels (Bauzà-Ribot et al., 77 

2009; Ito et al., 2010; Ki et al., 2010; Kilpert & Podsiadlowski, 2010; Krebes & Bastrop, 78 

2012; Pons et al., 2014; Romanova et al., 2014; Aunins et al., 2016). 79 

 In this study, we present the complete mt genome sequence, annotation and analysis of 80 

the amphipod G. roeselii, obtained from individuals collected in France, i.e. in the west-most 81 

area of the species geographic range. A mitogenome of a G. roeselii individual collected in 82 
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Germany has recently been reported (Macher et al., 2017b) but it appears to be a partial 83 

sequence (see Results section below). Moreover, this mitogenome was produced as part of a 84 

methodological study and no annotation or analysis has been performed (Macher et al., 85 

2017b). Our aims were: (i) to gain insights into mt genome evolutionary dynamics in G. 86 

roeselii with a focus on CR organization, and (ii) to perform a phylogenetic reconstruction 87 

testing for the relevance of mt coding genes to investigate relationships in the genus 88 

Gammarus and the family Gammaridae, also helping understanding the evolutionary 89 

dynamics of the CR. 90 

  91 
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Materials and Methods 92 

 93 

Genome sequencing, assembly and annotation 94 

 The mt genome of G. roeselii was identified from data generated as part of an ongoing 95 

sequencing project in our laboratories. Briefly, total genomic DNA was extracted from two 96 

individuals (Ou3 and Ou53) sampled in Trouhans (Burgundy, France) in the Ouche river. For 97 

each individual, a paired-end library with ~500 bp inserts was prepared and sequenced on 98 

Illumina MiSeq (2x300 bp) and HiSeq2500 instruments (2x125 bp). Data quality was 99 

assessed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and raw 100 

reads were trimmed and filtered using Trimmomatic v0.33 (Bolger et al., 2014). De novo 101 

assembly of the pooled reads was performed using SOAPdenovo2 with a k-mer size of 67 102 

(Luo et al., 2012). Identification of mt sequences was performed by searching for sequence 103 

similarity between scaffolds and the available mt genome of Gammarus duebeni 104 

(NC_017760) (Krebes & Bastrop, 2012) using Blast (Altschul et al., 1990). This analysis 105 

recovered scaffolds which were subsequently used as seeds for independent assembly of Ou3 106 

and Ou53 mt genomes. 107 

 Ou3 and Ou53 mt genomes were assembled using NOVOPlasty v2.6.3, with a k-mer 108 

size of 55 and previously identified scaffolds (Dierckxsens et al., 2017). Structural annotation 109 

was performed using the MITOS2 WebServer (Bernt et al., 2013). Reads were mapped 110 

against their respective assemblies using Bowtie2 v2.2.9 (Langmead & Salzberg, 2012) to 111 

identify and correct potential errors and to estimate genome sequencing depth. The 112 

sequencing depth for Ou3 and Ou53 was ~11,000x and ~18,000x, respectively. Reverse 113 

mapping was also used to identify structural variation between the two mt genomes. Because 114 

the complete mt genomes from both individuals were highly similar (see Results section 115 
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below), a single sequence was submitted to public databases. Accordingly, the complete mt 116 

genome sequence of Ou3 is available at DDBJ/ENA/GenBank under accession number 117 

MG779536. 118 

To compare CR structure among Gammaridae, mt genomes listed in Table 1 were 119 

manually reannotated using the same criteria (i.e. CR starting with a poly-T stretch and 120 

ending with the start/end of the next annotated gene). Repeat proportion in CRs was 121 

calculated using RepeatMasker 4.0.0 (developed by A.F.A. Smit, R. Hubley, and P. Green; 122 

see http://www.repeatmasker.org/) in slow search mode. 123 

 124 

PCR validation and sequencing of duplicated control region 125 

 To experimentally test the presence of the CR duplication, PCR primers were designed 126 

as shown in Figure 1 (Gr_mt2R: 5'-GCTTAAGCCGAGAATCATATATGTCA-3' and 127 

Gr_mt3F: 5'-TAGGCTAGCGCTGTTTCAGG-3'). This diagnostic PCR assay is expected to 128 

yield a single product of 371 bp if there are two copies of the CR, or no product if there is a 129 

single copy of the CR (Figure 1). DNA was extracted from 23 G. roeselii individuals sampled 130 

in the Ouche river at Trouhans and 15 individuals sampled in the Morthe river at Citey 131 

(Burgondy, France), using a EZ-10 96 Well Plate Genomic DNA Isolation kit (Biobasic Inc., 132 

Markham, Canada) according to manufacturer’s instructions. PCR were performed in a total 133 

volume of 20 µL with 2 μL of genomic DNA, 200 nm of each primer, 200 μM of dNTPs, 1 U 134 

Taq DNA polymerase (HotMasterTM Taq DNA polymerase, 5PRIME, Gaithersburg, USA) in 135 

1× Taq buffer. Thermal cycling consisted of an initial denaturation at 95°C for 2 min, 136 

followed by 35 cycles (94°C for 20 s, 50°C for 20 s and 65°C for 90 s) and a final 5 min 137 

extension at 65°C. 138 
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PCR products were run on a 2 % agarose gel in 1X TAE buffer to be analyzed for size and 139 

subsequently sent for direct Sanger sequencing (Genewiz, UK), using forward and reverse 140 

primers. 141 

 142 

Phylogenetic analysis 143 

 Phylogenetic reconstruction was performed using 20 species selected because of the 144 

availability of sequence information for the 13 mt protein-coding genes (Table 1). 145 

Specifically, 18 species represent the ingroup, including 7 species from the Gammaridae 146 

family and 11 species belonging to five families proposed by Hou and Sket (2016), based on 147 

partial COI sequences and 3 nuclear genes, to represent a broader definition of Gammaridae 148 

i.e. Gammarridae sensu lato. Two additional species, Parhyale hawaiiensis and 149 

Pseudoniphargus sorbasiensis, were used as outgroup to root the resulting tree (Romanova et 150 

al., 2016; Macher et al., 2017a) (Table 1). Data were obtained from either annotated mt 151 

genomes (NCBI GenBank), unannotated genome assemblies (NCBI WGS), unannotated 152 

transcriptome assemblies (NCBI TSA) and from raw transcriptome data assembled anew 153 

(NCBI SRA) as presented by Macher et al (2017a) (Table 1).  154 

 For each protein-coding gene, nucleotide sequences were aligned using MAFFT 155 

v7.299b in automatic mode (Katoh & Standley, 2013). Single-gene alignments were then 156 

concatenated into a single alignment using FASconCAT 1.0 (Kück & Longo, 2014), resulting 157 

in a total of 10,629 aligned nucleotides. The best model of nucleotide substitution was chosen 158 

with jModelTest2 (Darriba et al., 2012). A Bayesian phylogenetic tree was constructed using 159 

MrBayes v.3.2.6 (Ronquist & Huelsenbeck, 2003) with 0.5M iterations (Effective Sample 160 

Size > 200). 161 

  162 
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Results 163 

 164 

General features of the G. roeselii mitochondrial genome 165 

 The complete mt genomes of Ou3 and Ou53 from G. roeselii are circular, with 166 

respective sizes of 16,073 and 16,072 bp. The two genomes only differ by a single nucleotide 167 

polymorphism (SNP) at position 1,736 (C/T) in the cox2 gene and a 1-bp indel at position 168 

14,844 (A/-) in a non-coding region. Because both mt genomes are nearly identical, all 169 

analyses and results presented hereafter in the manuscript are based on the Ou3 mt genome 170 

(unless specified otherwise). The G. roeselii mt genome is enriched in A and T nucleotides 171 

(66.8%). The mt gene set corresponds to the canonical bilaterian gene set: 13 protein-coding 172 

genes, 2 rRNA genes, and 22 tRNA genes (Table 2). Of these 37 genes, 23 are encoded on 173 

the forward strand and 14 on the reverse strand. Nineteen pairs of genes are overlapping by 1 174 

to 60 bp: trnL2-cox2, cox2-trnK, trnK-trnD, atp8-atp6, atp6-cox3, cox3-nad3, trnA-trnS1, 175 

trnN-trnE, trnE-trnR, trnR-trnF, trnF-nad5, trnH-nad4, trnT-trnP, nad6-cob, cob-trnS2, 176 

nad1-trnL1, trnV-rrnS, trnY-trnQ and nad2-trnW. Protein-coding genes show the same order 177 

and transcriptional polarity compared to the reference pancrustacean ground pattern (Boore et 178 

al., 1998). However, the arrangement is modified for 6 tRNA genes: trnS1, trnR, trnQ, trnQ, 179 

trnC and trnW (Figure 2). The mt genome also contains 15 intergenic regions with length 180 

ranging from 1 to 1,029 bp.  181 

 A comparative analysis of gene order among Gammarus species mitogenomes 182 

indicated that protein-coding genes of all species present the same order and transcriptional 183 

polarity compared to the Pancrustacean ground pattern. The tRNA genes are more labile and 184 

the Pancrustacean ground pattern is not conserved within the Gammarus genus (Figure 2). 185 

The translocation of trnG forming the tRNA gene string trnW-trnG, the translocation of trnS1 186 
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and trnR forming the tRNA gene string trnA-trnS1-trnN-trnE-trnR and the translocations of 187 

trnY, trnQ and trnC forming the tRNA gene string trnY-trnQ-trnC next to the CR. 188 

 189 

Unusual structure of the control region 190 

 The CR is the most important non-coding part of the mt genome and it is involved in 191 

replication and transcription (Saito et al., 2005). The CR usually consists of a single locus, 192 

which is typically associated with several specific features in invertebrates, including 193 

presence of a poly-T stretch, tandemly repeated sequences and AT-rich composition 194 

(Hassanin et al., 2005; Saito et al., 2005; Shao et al., 2005; Wei et al., 2010; Doublet et al., 195 

2013). The putative CR of G. roeselii Ou3 and Ou53 is unusual in that it is duplicated (see 196 

below), spanning the two longest intergenic regions hereafter named CR1 and CR2 (Figure 197 

1), located between rrnS and trnaI (Figure 2). CR1 and CR2 both start with a T-stretch of 13 198 

bp and they are enriched in A and T nucleotides (78.4%). CR1 and CR2 are separated by a 199 

short region (169 bp) containing three tRNA genes (trnY, trnQ and trnC) (Figure 1, Figure 200 

2). Interestingly, CR1 and CR2 are nearly identical, differing only by a SNP at position 201 

13,312 (G/A) and a 2-bp indel (AA/--) at positions 13,621 (relative to CR1), strongly 202 

suggesting that the observed CR structure of G. roeselii is due to a duplication of the ancestral 203 

CR (Figure 2). 204 

 CR duplication was independently confirmed using both bioinformatic analyses and 205 

molecular biology experiments. Specifically, Inspection of the CR1/CR2 region of the mt 206 

genome showed that Illumina sequencing depth in this region is higher than in the rest of the 207 

mitogenome (Figure 3). For both Ou3 and Ou53 Illumina datasets, sequencing depth in the 208 

CR appeared to be nearly twice as high as mitogenome mean sequencing depth, assuming a 209 

single copy of the CR is present. Indeed, Ou3 mitogenome mean sequencing depth was 210 
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~11,000x while CR mean sequencing depth in CR was ~18,000x (Figure 3A). Similarly, 211 

Ou53 mitogenome mean sequencing depth was ~18,000x while CR mean sequencing depth 212 

was ~32,000x (Figure 3B). These convergent observations in two different individuals 213 

suggested that the CR duplication is unlikely to be an artifact of the de novo genome assembly 214 

process.  215 

 To independently test the authenticity of the CR duplication, we designed a diagnostic 216 

PCR assay yielding a single band (371 bp) if the duplication is present and no PCR product if 217 

the duplication is absent. Testing of 23 G. roeselii samples caught in the Ouche river resulted 218 

in all individuals amplifying a single band of expected 371 bp size (Figure 4). Specific PCR 219 

amplification was confirmed by Sanger sequencing. This result independently validated the 220 

authenticity of the CR duplication and provided direct evidence that the CR is actually 221 

duplicated in all tested G. roeselii individuals. CR duplication was also observed in another 222 

population (Morthe river), in which all 15 individuals tested were found to amplify a single 223 

371 bp band.  224 

 To further investigate the unusual G. roeselii CR structure, we compared the Ou3 mt 225 

genome to that produced by Macher et al. (2017b). The two genomes were highly similar at 226 

the nucleotide level, only differing by 6 SNPs and a 1-bp indel (Table 3). The only major 227 

difference between the two genomes was a 1,181 bp deletion in the Macher et al (2017b) 228 

genome relative to the Ou3 genome. This deletion encompassed tRNA genes trnY, trnQ and 229 

trnC and one full copy of the CR. We were unable to ascertain if the missing CR corresponds 230 

to the full CR1 or CR2, or parts of both CR1 and CR2, because of the high nucleotide 231 

similarity of CR1 and CR2. This configuration suggested that the Macher et al (2017b) 232 

assembly has been collapsed due to the CR1/CR2 duplication, leading to the concomitant and 233 

artefactual deletion of three tRNA genes. This explanation is supported by the fact that 234 

lacking three tRNA genes would be deleterious for the mt genome; the deletion thus most 235 
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likely cannot have a biological origin. Overall, these observations indicate that the unusual 236 

CR structure of the G. roeselii mt genome is authentic and that the mt sequence of G. roeselii 237 

generated by Macher et al. (2017b) is a partial assembly. 238 

 Extensive variation in CR length has previously been reported in Gammaridae sensu 239 

lato (Figure 5). Indeed, while average CR size is 1,234 bp, CR varies in size among species 240 

from 181 bp in Eulimnogammarus cyaneus to 2709 bp in Brachyuropus grewingkii. This 241 

effectively means that there is a 15-fold variation of CR size among species. We found that 242 

repeat content varies between CR (from 0 to 15%) but no correlation was observed between 243 

CR size and repeat percentage (r = 0.35, p = 0.314) (Figure 5). The AT nucleotide content 244 

also varies substantially between species, from 67% in B. grewingkii to 81% in G. duebeni 245 

and Pallaseopsis kessleri. No correlation between CR size and AT nucleotide content was 246 

observed (r = -0.55, p = 0.078). 247 

 248 

Phylogenetic relationships of gammarids 249 

 The Bayesian phylogenetic reconstruction (Figure 5) showed that while G. roeselii, G. 250 

fossarum and G. pulex form a well-supported clade, the genus Gammarus is not 251 

monophyletic, as the three other Gammarus species (i.e. G. lacustris, G. cheuvreuxi and G. 252 

duebeni) are more closely related to species from families Eulimogammaridae, 253 

Acanthogammaridae, Micruropodidae, Pallaseidae and Crypturopodidae than to other 254 

Gammarus species (but see discussion). Second, the family Gammaridae is not monophyletic. 255 

Support for this conclusion comes from the aforementioned results on Gammarus species and 256 

the fact that Echinogammarus veneris is more related to Pandorites podoceroides (family 257 

Pontogammaridae) than to other Gammaridae species. 258 

  259 
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Discussion 260 

 261 

 The analysis of the mitogenome of G. roeselii reveals that the order and transcriptional 262 

polarity is conserved compared to the Pancrustacean ground pattern for protein-coding genes 263 

and modified for six tRNA genes. Despite a common structure, the mt genomes of G. roeselii, 264 

G. duebeni and G. fossarum show important size variation. This is mainly due to variation in 265 

the size of intergenic regions, and more specifically in the CR. The unusually large size of the 266 

G. roeselii mt genome is the result of an event of duplication of the CR. This is the first 267 

verified report of a duplicated CR in the superfamily Gammaridea and, overall, one of a 268 

relatively few examples described in animal mitogenomes.  269 

 Previously, one potential case of CR duplication was reported in the acanthogammarid 270 

Garjajewia cabanisii (Romanova et al., 2016). However, the CR was only partially sequenced 271 

in that study, which prevented any firm conclusion to be drawn (Romanova et al., 2016). In 272 

amphipods, CR duplication has been reported in two related species: Caprella mutica (Kilpert 273 

& Podsiadlowski, 2010) and Caprella scaura (Ito et al., 2010). As in G. roeselii, both 274 

Caprella species possess highly similar duplicated CR copies. Beyond amphipods, CR 275 

duplications have been observed in several animal species, including ticks (Black & 276 

Roehrdanz, 1998; Campbell & Barker, 1999), ostracods (Ogoh & Ohmiya, 2004), sea 277 

cucumbers (Arndt & Smith, 1998), katydids (Yang et al., 2016), birds (ABBOTT et al., 2005; 278 

Morris-Pocock et al., 2010; Schirtzinger et al., 2012), turtles (Parham et al., 2006a, 2006b; 279 

Peng et al., 2006), snakes (Kumazawa et al., 1996, 1998; Dubey et al., 2012) and fishes (Lee 280 

et al., 2001; Tatarenkov & Avise, 2007; Shi et al., 2014). Sometimes, CR duplications extend 281 

beyond the sole CR, as exemplified by terrestrial isopods in which the entire mt genome is 282 

duplicated (Marcadé et al., 2007; Chandler et al., 2015; Peccoud et al., 2017). Thus, although 283 
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reported in a diverse array of species, CR duplication appears to be a relatively rarely 284 

documented cause of mt structural variation, especially when considering the high number of 285 

animal mitogenomes that have been sequenced to date. 286 

 The mechanisms associated with the occurrence of CR duplications are not fully 287 

elucidated but several hypotheses have been proposed. Potential mechanisms that could 288 

duplicate CR include illegitimate recombination (Lunt & Hyman, 1997), dimeric mitogenome 289 

(Boore, 2000) and tandem duplication (Boore, 2000). Illegitimate recombination is 290 

characterized by recombination between non-homologous or short homologous sequences, 291 

but the exact associated biological mechanisms remain poorly understood (Rijk & 292 

Bloemendal, 2003). In the case of dimeric mitogenomes, dimeric molecules are formed by 293 

two monomers linked head-to-tail, which produces a fully duplicated mt genome. Another 294 

mechanism is tandem duplication, in which case an identical segment of a sequence is 295 

inserted next to the original sequence. Interestingly, the duplicated CR of G. roeselii show 296 

very high sequence similarity, a pattern that has also been noted in several other species with 297 

duplicated CR. It has been proposed that this may be the result of concerted evolution, which 298 

leads to sequence homogenization of duplicated CR (Liao, 2007; Li et al., 2015). 299 

 The potential advantages of the presence and conservation of duplicated CR remains 300 

largely unknown and unexplored. Based on studies in mammals and fruit flies, it has been 301 

proposed that mt genomes with duplicated CR may have a selective advantage over mt 302 

genomes with a single CR, by allowing a higher replication rate (Shao et al., 2005). 303 

Moreover, in some avian families, it was demonstrated that duplication of the CR forms a 304 

pseudo-CR which is associated with extended lifespan (Skujina et al., 2016). It is unclear 305 

whether any of these potential advantages may apply to G. roeselii and this issue represents 306 

an interesting avenue for future research in G. roeselii mitochondrial biology and, more 307 
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generally, to further investigate the evolutionary forces at work and implications of CR 308 

duplications in animal mt genomes.  309 

 Until recently (but see Ramonova et al 2016, Macher et al 2017a), the only mt markers 310 

used in Gammarid phylogeny and phylogeography were the COI barcode (~625 bp) and a 311 

small region rnnS (~300 bp) (e.g. Grabowsky et al 2017, Moret et al 2007). In G. roeselii, two 312 

complete mt genomes (Ou3 and Ou53 from France, this study) and one partial genome (from 313 

Germany, Macher et al 2017b) are now available. Despite the three genomes all sharing the 314 

same COI and rrnS haplotype, multiple SNPs were identified in four protein-coding genes 315 

and rrnL (Table 3). This is promising with respect to the relevance of next-generation 316 

sequencing in assessing polymorphism at very low taxonomic level and disentangling the 317 

evolutionary history of G. roeselii. The value of such a strategy for mitogenome sequencing 318 

as an approach to study intraspecific expansion/invasion is increasingly recognized (Rius et 319 

al., 2015) and it has been successfully applied to many organisms (e.g. Wu et al., 2017). The 320 

optimal strategy for G. roeselii remains to be found, being a compromise between sample size 321 

and genome coverage. The mitogenome enrichment strategy recently proposed by Macher et 322 

al. (2017b) may be highly relevant in this context. Alternatively, a more affordable strategy 323 

may consist in extending sampling in a pilot assay to identify mt genome regions with high 324 

information content, which may then be targeted by PCR using primers designed for indexed 325 

multiplex amplicon sequencing (Maddock et al., 2016; Meimberg et al., 2016). 326 

 In our phylogenetic analysis, G. roeselii, G. fossarum and G. pulex form a well-327 

supported clade, a feature also observed in other studies based on either a limited set of partial 328 

mt DNA and nuclear DNA sequences (e.g. Hou et al 2011) or a set of 13 mt protein-coding 329 

genes (Macher et al., 2017a). However, the genus Gammarus does not appear to be 330 

monophyletic in the present study as the three other Gammarus species G. lacustris, G. 331 

cheuvreuxi and G. duebeni are more closely related to Baikalian families. However, the 332 
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phylogenetic status of Gammarus fluctuated over the recent years, sometimes being 333 

considered monophyletic (Hou et al., 2011), monophyletic but with low support (Macher et 334 

al., 2017a) or paraphyletic (Hou & Sket, 2016). These discrepancies might be caused by 335 

incomplete taxon sampling and/or limited informative content of used markers. Testing these 336 

hypotheses is beyond the scope of the present study but it is noteworthy that both the present 337 

study and Macher et al 2017a, were unable to provide a fully resolved tree for this taxonomic 338 

issue, despite use of 13 protein-coding genes and ~11,000 nucleotide-long datasets. 339 

 At a higher taxonomical level, the families included in our study are targets of 340 

molecular phylogenetic reassessments (Hou & Sket, 2016; Romanova et al., 2016). Our 341 

results, along with Macher et al (2017a), clearly support the conclusion that Gammaridae is 342 

not a monophyletic family. Based on partial mt and nuclear sequences, Hou and Sket (2016) 343 

proposed that the monophyly of Gammaridae could be assured but to avoid the paraphyly of 344 

the family, they proposed the omission of Pontogammaridae, Typhlogammaridae and all 345 

Baikalian families. Our results suggest that Gammaridae is paraphyletic with 346 

Pontogammaridae and Baikalian families (Eulimogammaridae, Acanthogammaridae, 347 

Microropodidae, Pallaseidae, Crypturopodidae). Based on 13 mt protein-coding genes, 348 

Romanova et al (2016) proposed that Baikalian families should be considered as 349 

monophyletic, which is consistent with our results. However, as the sister family Gammaridae 350 

is paraphyletic, further investigations are warranted to confirm this conclusion. 351 

 In conclusion, our study presents the first case of verified duplication of the CR in the 352 

Gammarus genus. Comparisons with other G. roeselii MOTUs and gammarid species will 353 

provide information on whether this type of structural variation is unique to MOTU of G. 354 

roeselii present outside the Balkans or a more general feature of gammarids. The discovery of 355 

this CR duplication also offers the opportunity to explore the molecular dynamics of mt 356 

genomes, for example with respect to regulation of mt genome replication or the origin of mt 357 
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gene translocations. Finally, the characterization of multiple mt haplotypes from closely 358 

related G. roeselii individuals constitutes a promising avenue to constitute a valuable set of 359 

markers for phylogeographic analyses of G. roeselii. 360 

  361 
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Table 1 Summary of amphipod mitogenomes used in this study. (p) indicates partial genome. 616 

 617 

Species name Family Accession Number Size (bp) 
Acanthogammarus victorii Acanthogammaridae KX341962 17,424 (p) 
Brachyuropus grewingkii Acanthogammaridae KP161875 17,118 
Crypturopus tuberculatus Cryturopodidae KX341963 13,864 (p) 
Echinogammarus veneris Gammaridae TSA GARO01000000 n/a 
Eulimnogammarus cyaneus Eulimnogammaridae KX341964 14,370 
Eulimnogammarus verrucosus  Eulimnogammaridae KF690638 15,315 
Eulimnogammarus vittatus Eulimnogammaridae KM287572 15,534 
Gammarus chevreuxi Gammaridae TSA HADC01000000 n/a 
Gammarus duebeni  Gammaridae JN704067 15,651 
Gammarus fossarum Gammaridae KY197961 15,989 
Gammarus lacustris Gammaridae SRA SRR3467069 n/a 
Gammarus pulex  Gammaridae WGS FJVI01000000 n/a 
Gammarus roeselii Gammaridae MG779536  16,073 
Garjajewia cabanisii Acanthogammaridae KX341965 17,576 (p) 
Gmelinoides fasciatus Microropodidae KX341966 18,114 
Linevichella vortex Microropodidae KX341967 11,444 (p) 
Pallaseopsis kesslerii Pallaseidae KX341968 15,759 (p) 
Pandorites podoceroides Pontogammaridae SRA SRR3467097 n/a 
Parhyale hawaiiensis  Hyalidae AY639937 12,224 (p) 
Pseudoniphargus sorbasiensis  Speudoiphargidae LN871175  15,460 (p) 

 618 

  619 
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Table 2 Annotation of the complete mitochondrial genome of Gammarus roeselii. 620 

 621 

Gene Position Strand Size 
(bp) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

cox1 1-1,540 + 1,540 ATT T 0 
trnL2 1,544-1,603 + 60   3 
cox2 1,601-2,285 + 685 ATA T -3 
trnK 2,283-2,341 + 59   -3 
trnD 2,341-2,405 + 65   -1 
atp8 2,406-2,564 + 159 ATA TAA 0 
atp6 2,558-3,229 + 672 ATG TAA -7 
cox3 3,229-4,014 + 786 ATG TAG -1 
nad3 4,011-4,364 + 354 ATA TAG -4 
trnA 4,372-4,432 + 61   7 
trnS1 4,432-4,483 + 52   -1 
trnN 4,486-4,548 + 63   2 
trnE 4,546-4,608 + 63   -3 
trnR 4,603-4,662 + 60   -6 
trnF 4,661-4,720 - 60   -2 
nad5 4,691-6,404 - 1,714 ATT T -30 
trnH 6,423-6,482 - 60   18 
nad4 6,466-7,695 - 1,230 ATG TAA -17 
nad4l 7,788-8,078 - 291 ATG TAG 92 
trnT 8,082-8,141 + 60   3 
trnP 8,141-8,201 - 61   -1 
nad6 8,213-8,707 + 495 ATT TAA 11 
cob 8,707-9,843 + 1,137 ATG TAG -1 
trnS2 9,842-9,896 + 55   -2 
nad1 9,926-10,864 - 939 ATG TAG 29 
trnL1 10,859-

10,920 
- 62   -6 

rrnL 10,921-
11,897 

- 977   0 

trnV 11,901-
11,952 

- 52   12 

rrnS 11,952-
12,597 

- 646   -1 

CR1 12,594-
13,622 

 
1,029   -4 

trnY 13,623-
13,686 

- 64   0 

trnQ 13,683-
13,739 

- 57   -4 

trnC 13,740-
13,793 

- 54   0 

CR2 13,792-
14,818 

 1,027   0 
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trnI 14,851-
14,909 

+ 59   32 

trnM 14,911-
14,971 

+ 61   1 

nad2 15,014-
16,016 

+ 1,003 ATT T 42 

trnW 15,957-
16,019 

+ 63   -60 

trnG 16,020-
16,072 

+ 53   0 

 622 

  623 
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Table 3 Sequence variation between G. roeselii mitochondrial haplotypes. Ou3 is used as a 624 

reference sequence. 625 

 626 

Nucleotide 
coordinate 

Type Variation Genomic locus Haplotype with variation 

1,736 SNP C/T cox2 Ou53 
4,836 SNP C/A nad5 Macher et al 2017b 
5,877 SNP C/A nad5 Macher et al 2017b 
6,961 SNP C/T nad4 Macher et al 2017b 
9,442 SNP G/A 

(Gly/Ser) 
cob Macher et al 2017b 

11,143 SNP G/A rrnL Macher et al 2017b 
11,207 SNP C/T rrnL Macher et al 2017b 
14,843 Indel A/- Intergenic 

region 
Macher et al 2017b; 
Ou53 

 627 

  628 
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Figure legends 629 
 630 

 631 

Figure 1 Control region (CR) duplication in the mitogenome of Gammarus roeselii. 632 

Coordinates are relative to the Ou3 mitogenome. The CR duplication consists of two CR 633 

copies (CR1 and CR2) separated by three tRNA genes (trnY-Q-C).Arrows show the targets of 634 

primers Gr_mt3F and Gr_mt2R used for PCR analyses (see main text). 635 

  636 
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Figure 2 Organization of mitochondrial genomes in three species of the genus Gammarus. 637 

Gene features with altered location in comparison to the pancrustacean ground pattern are 638 

shown in grey color. (+) indicates forward DNA strand and (-) indicates reverse DNA strand. 639 

Transfer RNAs genes are labeled by their single-letter amino acid code. 640 
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Figure 3 Per nucleotide sequencing depth of G. roeselii mitochondrial genome assuming a 642 

single copy of the control region. A) Sequencing depth for Ou3 individual B) Sequencing 643 

depth for Ou53 individual. Structural annotation is represented on the x axis by boxes colored 644 

according to features (protein-coding genes: yellow; tRNA: pink; rRNA: red; control region: 645 

blue). Grey curves represent the sequencing depth. 646 
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Figure 4 PCR test assessing the presence or absence of the duplicated control region in G. 648 

roeselii individuals. Electrophoresis gel of PCR products obtained using Gr_mt3F and 649 

Gr_mt2R primers, from 23 individuals (1 to 23) from the Ouche river (France). All 650 

individuals amplify a 371 bp-long product indicating the presence of two CR copies. L1: 651 

ladder 1 (100 bp Euromedex), L2: ladder 2 (lambda DNA EcoRI/HindIII), NC: negative 652 

control (PCR mix without DNA template). Lane 3 corresponds to the Ou3 individual from 653 

which the mt genome was obtained. 654 
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Figure 5 Bayesian phylogenetic tree of 20 gammarid species inferred from 13 mt protein-656 

coding gene sequences. Parhyale hawaiiensis and Pseudoniphargus sorbasiensis were used as 657 

an outgroup to root the tree. Numbers above branches indicate Bayesian posterior 658 

probabilities. Scale bar below the tree indicates evolutionary distances. * Poly-T stretch refers 659 

to the size (bp) of the poly-T sequence at the start of the control region (CR). 660 
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