
HAL Id: hal-01736988
https://hal.science/hal-01736988v1

Submitted on 19 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strider: An Adaptive, Inference-enabled Distributed
RDF Stream Processing Engine

Xiangnan Ren, Olivier Curé, Li Ke, Jérémy Lhez, Badre Belabbess, Tendry
Randriamalala, Yufan Zheng, Gabriel Képéklian

To cite this version:
Xiangnan Ren, Olivier Curé, Li Ke, Jérémy Lhez, Badre Belabbess, et al.. Strider: An Adaptive,
Inference-enabled Distributed RDF Stream Processing Engine. Proceedings of the VLDB Endowment
(PVLDB), 2017, 10 (12), pp.1905 - 1908. �10.14778/3137765.3137805�. �hal-01736988�

https://hal.science/hal-01736988v1
https://hal.archives-ouvertes.fr

Strider: An Adaptive, Inference-enabled Distributed RDF
Stream Processing Engine

Xiangnan Ren1,2 Olivier Curé2 Li Ke1 Jeremy Lhez2

Badre Belabbess1,2 Tendry Randriamalala1 Yufan Zheng1 Gabriel Kepeklian1

1ATOS, 80 quai Voltaire, 95870 Bezons, France.
{xiang-nan.ren, firstname.lastname}@atos.net

2UPEM LIGM - UMR CNRS 8049, 77454 Marne-la-Vallée, France
{firstname.lastname}@u-pem.fr

ABSTRACT
Real-time processing of data streams emanating from sen-
sors is becoming a common task in industrial scenarios. An
increasing number of processing jobs executed over such
platforms are requiring reasoning mechanisms. The key
implementation goal is thus to efficiently handle massive
incoming data streams and support reasoning, data ana-
lytic services. Moreover, in an on-going industrial project
on anomaly detection in large potable water networks, we
are facing the effect of dynamically changing data and work
characteristics in stream processing. The Strider system
addresses these research and implementation challenges by
considering scalability, fault-tolerance, high throughput and
acceptable latency properties. We will demonstrate the ben-
efits of Strider on an Internet of Things-based real world and
industrial setting.

1. INTRODUCTION
The vast amount of data produced by the Internet of

Things (IoT) generally needs to be processed in almost real
time. This is the case for an increasing number of industrial
scenarios requiring to detect anomalies, identify commercial
trends, diagnose machines’ conditions, etc.. In the context
of the Waves FUI (Fonds Unique Interministeriel) project1,
we are processing data streams emanating from sensors dis-
tributed over the potable water distribution network of a
resource management international company. For France
alone, this company distributes water to over 12 million
clients through a network of more than 100.000 kilometers
equipped with thousands (and growing) of sensors. Our sys-
tem’s main objective is to automatically detect anomalies,
e.g., water leaks, from analyzed data streams. Obviously,
the promptness and accuracy of our anomaly discoveries po-
tentially impacts ecological (loss of cleaned up water) as well
as economical (price of clients’ consumed water) aspects.

1http://www.waves-rsp.org/

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

These anomaly detections frequently depend on reason-
ing services. That is meta-data emitted by IoT sensors are
first mapped to predefined vocabularies which are support-
ing logic-based inferences. For data integration, inference
and stack homogeneity reasons, we have opted for the Se-
mantic Web technology stack, i.e., RDF(S), SPARQL and
OWL. Hence, one of our goals is to design a system that
efficiently integrates reasoning services within a real-time
processing platform. This is performed by finding a trade-
off between the two common reasoning mechanisms adopted
in knowledge-based management systems, namely inference
materialization and query rewriting. Our solution consists in
creating semantic-aware dictionaries for the concepts, pred-
icates and instances of managed vocabularies and to use the
properties of attributed identifiers to optimize query rewrit-
ing. We thus minimize the size of stored knowledge bases
(KBs) and of data streams, as well as reduce the size and
the time needed to reformulate continuous queries.

In real world scenarios, we are frequently facing dynami-
cally changing data and workload characteristics, e.g., a sen-
sor could emit different types of messages based on the user
requests. These changes impact the execution performance
of continuous queries executed over data streams. To ensure
the efficient query execution, the execution plan may have to
change during its usually long-term lifetime. Our problem is
exacerbated by the hardness of generating optimized query
plans for SPARQL queries due to their potentially high num-
ber of joins compared to SQL queries. To support this be-
havior, we have implemented an adaptive query processing
(henceforth AQP) [3] for continuous SPARQL queries and
RDF data.

Moreover, processing large scale data streams is usually
performed over a distributed setting which guarantees scal-
ability, automatic work distribution and fault tolerance but
also has to satisfy high throughput and acceptable latency
constraints. Such systems are better designed and operated
upon when implemented on top of robust, proven engines
such as Apache Kafka (a distributed commit log which effi-
ciently stores and delivers data streams) and Apache Spark
(a general purpose and unified cluster computing frame-
work). Hence, our inference-enabled SPARQL AQP needs
to fit efficiently into this distributed setting. We consider
that such an AQP does not exist due to a high expertise
entry point (distributed systems, database management sys-
tems and Semantic Web) when starting this kind of project.
Thus, it is not a surprise that, to the best of our knowledge,
no industry targeted production-ready systems are currently

available. In fact, the RDF Stream Processing (RSP) ecosys-
tem regroups engines that are either (i) distributed but lack-
ing important features, e.g., Katts[4], or are not open-source,
e.g., CQELS Cloud[5], or (ii) centralized and hence can not
support high throughput (C-SPARQL[1]). A common char-
acteristics of these engines is to consider that the structure of
the data stream does not change. While facing Waves’ real-
world use cases, we found out that one can not assume the
regularity of incoming streaming data. Finally, we consider
that the best of breed in SPARQL AQP necessarily needs to
mix static (heuristic-based) and dynamic (cost-based) query
optimization approaches.

2. THE STRIDER SYSTEM
In this section, we first present an overview of the Strider

system, detail the reasoning as well as query optimization
components. Finally implementation aspects are considered.

2.1 Architecture overview
Figure 1 gives a high-level overview of the system’s archi-

tecture. The left hand-side gives details on the application’s
data flow. Its design is relatively standard and follows the
approach generally adopted in stream processing systems. In
a nutshell, data sources (IoT sensors) are sending messages
to a publish-subscribe layer. That layer emits messages for
the streaming layer which executes registered queries. The
main originality of our approach consists in transforming the
data source messages, e.g., csv files, into an RDF serializa-
tion for data integration and reasoning purposes.

On the right hand-side of Figure 1, we concentrate on
components related to the system’s implementation. The
Encoding layer runs off-line and pre-processes the encod-
ing of all KB elements, i.e., concepts, predicates and in-
stances, into integer values using a semantic-aware approach.
This component interacts with the RDF event converter and
the Inference layer. The Request layer registers continuous
queries which are later sent to the Parsing layer to compute
a first version of a query plan. Plans involving any form of
reasoning are extended by the Inference layer. These new
plans are pushed to the Optimization layer which consists
of three collaborating sub-components: static and adaptive
optimizations as well as a trigger mechanism. Finally, the
Query Processing layer sets off the query execution right
after the optimized logical plan takes place.

2.2 Encoding and Inference layers
Upfront to any data stream processing, the Encoding Layer

encodes concepts, predicates and instances of registered KBs.
In the remaining of this paper, we consider that a KB con-
sists of a schema, aka ontology or terminological box (Tbox)
and a fact base, aka assertional box (Abox). With this En-
coding layer, we aim to provide efficient encoding scheme
and data structures to support the reasoning services asso-
ciated to the input ontology of an application. The input
ontology is considered to be union of (potentially aligned)
ontologies necessary to operate over one’s application do-
main. In the current version of our work, we address the
ρdf subset of RDFS, meaning that we are only interested
in the rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and
rdfs:range constructors. To address inferences drawn from
these first two RDFS predicates, we attribute numerical
identifiers to ontology terms, i.e., , concepts and predicates.
The compression principle of this term encoding lies in the

Figure 1: Strider Architecture

fact that subsumption relationships are represented within
the encoding of each term. This is performed by prefixing
the encoding of a term with the encoding of its direct parent
(a workaround is proposed to support multiple inheritance).
This approach only works if an encoding is computed using a
binary representation. More details on the encoding scheme
can be obtained in [2].

Once this ontology pre-processing has been computed, we
can use the generated dictionaries to encode all incoming
data streams. In fact, the schema of all our domain’s sensor
messages are known in advanced and have been mapped to
ontology elements. Thus these messages can be represented
as subject, predicate and object triples. Using our dictionar-
ies, we can represent these triples with element identifiers.
Not all triple entries are transformed using our dictionaries.
For instance, numerical values (highly frequent in IoT) and
blank nodes are not transformed. All predicates, concepts
and domain constants are transformed. Following an anal-
ysis of the queries associated to Kafka topics, some RDF
triples can be introduced in the data streams, and hence
potentially make the query satisfiable.

The semantic-aware encoding of concepts and predicates
supports the reasoning services required at query processing
time. For instance, consider a query asking for the pressure
value of sensors of type S1. This would be expressed as

the following two triple patterns: ?x pressureValue ?v. ?x

type S1. In the case sensor concept S1 has n sub-concepts,
then a naive query reformulation requires to run the union
of n+1 queries. With our semantic-aware encoding, we are
able, using two bit-shift operations, to compute the identifier
interval, i.e., [lowerBound, upperBound[, of all direct and
indirect sub-concepts of S1. And thus we can compute this
query with a simple reformulation: (i) replacing the concept
S1 with a new variable : ?x type ?newVar and (ii) introducing
a filter clause constraining values of this new variable: FILTER

(?newVar>=lowerBound && ?newVar<upperBound).
The main benefits of our tight inference and stream pro-

cessing integration supports the retrieval of all correct an-
swers of continuous queries based on a trade-off between
inference materialization and query reformulation.

2.3 Optimization layer
Conventional SPARQL query optimization techniques with

data pre-processing, e.g., data indexing, statistic informa-
tion maintaining, are not appropriate within the require-
ment of real-time or near real-time aspect data processing.
Besides, due to the schema-free, graph nature of RDF data,
a navigation-based query language such as SPARQL poten-
tially involves a large amount of joins and self-joins. In a
distributed streaming context, this behavior becomes a per-
formance bottleneck since a join task might lead to data
shuffling which causes heavy network communications. To
cope with the previously mentioned performance issue, and
inspired by the state of the art efforts [3, 6, 7], we build our
query optimizer with hybrid static and adaptive optimiza-
tion strategies.

In the Request layer, Strider allows to register multiple
queries at once. The input SPARQL queries are submitted
through different threads, and executed concurrently with
respect to the execution plans which are generated by the
optimizer. Currently, we consider that the input queries
are independent, thus a multi-query optimization approach
(e.g., sub-query sharing) is not in the scope of the current
state of Strider.

As described in Section 2.1, the Optimization layer pos-
sesses three sub-layers: static and adaptive optimizations,
trigger. Fundamentally, both static and adaptive optimiza-
tions are processed using a graph G, denoted as Undirected
Connected Graph (UCG) [6], which is formed of vertexes
(triple patterns) and edges (joins between triple patterns).
The weight of UCG’s vertexes and edges correspond to the
selectivity of triple patterns and join patterns, respectively.
Once a UCG is initialized, the query planner automatically
generates an optimal logical plan and triggers a query exe-
cution.

Static Optimization creates a UCG graph using a set of
heuristic rules. The predefined heuristic rules set empirically
assigns the weights for UCG vertexes and edges. Next, the
query planner determines the shortest traversal path in the
current UCG and generates the logical plan for query execu-
tion. The obtained logical plan presents the query execution
pipeline which is kept by the system permanently.

Our static optimization strategy depends solely on the
query shape and is independent from the data set. Practi-
cally, this approach could be an acceptable approximation,
since it applies a basic optimization and simplifies the imple-
mentation. However, the static optimization can not guar-
antee to return the optimal query plan for all input streams,

and it does not cover the situation when the structure of
data stream may change. In order to remedy this defect, we
add an adaptive query optimization component.

Trigger layer is the transition between the stages of
static optimization and adaptive optimization. In a nutshell,
the trigger layer is dedicated to notify the system whether
it is necessary to proceed the adaptive optimization. Our
adaptive strategy requires collecting statistic information at
run-time which in a distributed environment involves a com-
putation cost that is not negligible. The Strider prototype
provides a set of straightforward trigger rules,i.e., the adap-
tive algebra optimization is triggered by a configurable work-
load threshold. The threshold refers to two factors: 1) the
input number of RDF events/triples; 2) the fraction of the
estimated input data size and the allocated executors’ heap
memory.

When Adaptive Optimization is activated, the statis-
tic information gathering and query evaluation occur syn-
chronously, and the UCG elements will be assigned a so-
call statistic weight. Next, at the same, the optimizer re-
computes and evaluates the optimal algebra tree in a bottom-
up fashion. Therefore, adaptive logical plan scheduling en-
sures that the system always executes a query in an optimal
way. Here is an example of a Strider query:

STREAMING { WINDOW [20 SECONDS]

SLIDE [20 SECONDS] BATCH [5 SECONDS] }

REGISTER { QUERYID [Q5]

SPARQL [

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn/>

prefix cuahsi: <http://www.cuahsi.org/waterML/>

select ?s ?o1

where { ?s ssn:hasValue ?o1 ; ssn:hasValue ?o2 ;

ssn:hasValue ?o3 .

?o1 rdf:type cuahsi:flow .

?o2 rdf:type cuahsi:temperature .

?o3 rdf:type cuahsi:chlorine . }]}

Figure 2 illustrates Strider’s adaptive optimization for Q5.
The query UCG (Figure 2(a),(b)) and logical plan (Figure
2(c),(d)) change as the structure of data stream changes
dynamically.

2.4 Implementation
Strider is written in Scala and contains two principle mod-

ules: i) data flow management. In order to ensure high
throughput, fault-tolerant, and easy-to-use features, Strider
uses Apache Kafka to manage input data flow. The in-
coming RDF streams are categorized into different message
topics, which practically presents different types of RDF
events. ii) computing core. Strider core is based on the
Spark programming framework. Spark Streaming receives,
maintains messages emitted from Kafka in parallel, and gen-
erates data processing pipeline. Comparing to other dis-
tributed stream processing frameworks, Spark represents a
certain maturity and a rich ecosystem. This allows to achieve
a horizontal expansion of the platform functionality. Be-
sides, due to the coarse-grained feature of the micro-batch
model, Spark Streaming provides high throughput and ac-
ceptable latency for tasks involving complex analytics.

The Encoding layer uses Apache Jena to parse the RDFS
or OWL ontologies and an external reasoner, namely Her-
miT, to classify concept hierarchies. This part of Strider is

Figure 2: The query UCG and logical plan (TP de-
notes a triple pattern and t1,t2 computation times)

the only component that does not run in parallel. This is due
to the absence of an efficient, expressive, i.e., higher than
RDFS and OWLRL, reasoner that runs in parallel. This
can not be considered as a limitation of the system since the
processing is only performed when the set of ontologies are
updated and Tboxes are known to be rather small compared
to Aboxes. For instance, the encoding of Wikipedia, which
contains over 213,000 triples and 350 predicates, takes less
than 2 minutes. The Abox is encoded in parallel using the
dictionaries stored as Spark’s DataFrames.

To enable SPARQL query processing on Spark, Strider
parses a query with Jena ARQ and obtains a query algebra
tree in the Parsing layer. The system reconstructs the alge-
bra tree into a new Abstract Syntax Tree (AST) based on
Visitor model. Basically, the AST represents the logical plan
of a query execution. Once the AST is created, it is pushed
into the algebra Optimization layer. As stated in section 2.3,
the system applies a hybrid static and adaptive optimization
strategy on original query algebra. By traversing the AST,
we bind the SPARQL operators to the corresponding Spark
SQL relational operators for query evaluation.

3. DEMONSTRATION SCENARIOS
The demonstration2 concentrates on real-world IoT use

cases from the Waves project. We highlight two aspects of
the system. In the first one, we show some user-oriented fea-
tures, e.g., Strider’s user-friendly graphical interface. This
allows fast, easy and intuitive Spark cluster configuration
and deployment. In the second one, we demonstrate Strider’s
reasoning capability and hybrid optimization strategies for
continuous SPARQL query execution via the the following
scenarios:

Scenario 1 concentrates on the inference component. We
begin with by emphasizing the efficiency of our KB encod-
ing: Tbox encoding and Abox encoding. Then, we focus
on the stream materialization and query reformulation as-
pects. This is demonstrated on data streams requiring some
data materialization and on query reformulation of regis-

2details of the demo at https://github.com/renxiangnan/
reference-vldb-demo-2017/wiki

tered queries. Both processing durations and internal rep-
resentations of the streams and queries will accessible.

Scenario 2 mainly focuses on continuous SPARQL query
processing with stable stream structure. In the ideal case,
incoming RDF streams are supposed to be structurally sta-
ble. The proportions of variant types of RDF triples does not
change over time. By deploying our system on a small clus-
ter of Amazon EMR (one driver node, 3 to 4 worker nodes),
we show that Strider can achieve a throughput between
400,000 and 600,000 triples per second with real queries.

Scenario 3 highlights the efficiency of our engine’s adap-
tive query optimization. A group of Kafka message produc-
ers are configured. By randomly modifying the proportion
of the different types of messages, we feed the structurally
unstable RDF stream to the engine. To give an intuitive
view on the system’s adaptivity, we demonstrate the chang-
ing of the query execution plan in real-time. We also provide
a comparison between conventional static optimization and
adaptive query optimization. For instance, in Figure 3, an
adaptive query execution shows a steady performance during
a relative long (one hour) running time. On the contrary,
the engine performance fluctuates substantially over time,
and we have observed a large Garbage Collection pressure
through log monitoring.

Figure 3: Throughput Comparison between Static
and Adaptive Optimization (query Q5)

4. REFERENCES
[1] D. F. Barbieri and al. C-SPARQL: SPARQL for

continuous querying. In 18th WWW, 2009.

[2] O. Curé and al. Litemat: A scalable, cost-efficient
inference encoding scheme for large RDF graphs. In
IEEE Big Data, 2015.

[3] A. Deshpande and al. Adaptive query processing.
Foundations and Trends in Databases, 2007.

[4] L. Fischer and al. Scalable linked data stream
processing via network-aware workload scheduling. In
SSWS, 2013.

[5] D. L. Phuoc and al. Elastic and scalable processing of
linked stream data in the cloud. In ISWC 2013.

[6] M. Stocker and al. SPARQL basic graph pattern
optimization using selectivity estimation. In 17th
WWW, 2008.

[7] P. Tsialiamanis and al. Heuristics-based query
optimisation for SPARQL. In 15th EDBT, 2012.

