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Abstract: This paper proposes a method to build an identified model from an observed sequence
of input/output vectors and a model of knowledge on the system to identify. This method
comprises two steps. The first one starts by checking whether the knowledge model is compatible
with the observed sequence; when this is the case, the identified model is built automatically.
From this result, the observed and unobserved behaviors of the knowledge model are then
explicitly determined, in a second step.
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1. INTRODUCTION

The overall objective of identification methods is to build
a behavioral model of a system from results of experiments
on the real system. This work considers reactive systems
where a Programmable Logic Controller (PLC) controls
a plant; this class of system can be modeled as a closed-
loop Discrete Event System (DES) where the inputs and
outputs of the controller are logic variables.

The first results in the domain of identification of DES
(Gold (1967), Angluin (1987)) were mainly related to
language identication. More recently, construction by iden-
tification of models in the form of automata or Petri
nets (PN) has been addressed by several authors. Roth
et al. (2010) and Schneider et al. (2012), for instance,
propose methods to build automata that are used later
on for diagnosis purposes. Meda-Campaña and López-
Mellado (2005), Giua and Seatzu (2005), Dotoli et al.
(2011), Estrada-Vargas et al. (2015), Saives et al. (2015),
to name a few, focus on identification based on Petri nets.
The latter two references place their works in the context
of reverse engineering, i.e. construction of a model that is
understandable by experts to revamp an existing machine;
this is also the applicative context of this work. A good sur-
vey on DES identication can be found in Estrada-Vargas
et al. (2010). This survey underlines in particular that
an identification method may be absolute (or black-box),
when no a priori knowledge about the system behavior is
available before identification, or relative otherwise.

Absolute identification is surely more attractive because it
is only based on observations of the evolutions of the real
system. Nevertheless, it must be noted that the quality of
the identified model depends on the observation duration.
A good identified model may require a long observation
time; this may hinder the application of the method

and explains why some researchers have considered a
relative identification approach. When the identified model
is represented by a PN, Giua and Seatzu (2005), for
instance, proposes an algorithm for identication of free-
labeled PN that assumes that the number of places is
known and the observed language is complete. This latter
assumption is not made in Dotoli et al. (2011), where
unobservable transitions are added to a labeled PN whose
observable behavior is known. Nevertheless, the knowledge
models that are proposed in these valuable works are
not completely suitable for the class of reactive systems
that we focus on because the inputs and outputs of the
controller are not explicitly considered.

Hence, this paper proposes a relative identification method
(Fig. 1) which starts from both a knowledge model gener-
ated by an expert and observed input/output sequences.
The knowledge model is represented in the form of a Signal
Interpreted Petri Net (SIPN), an appropriate formalism
for the class of reactive systems that is considered in
this work, and the I/O sequences have been obtained
experimentally previously. From these data, the method
determines first whether the knowledge model is compati-
ble with the observations, i.e., for every observed sequence,
there exists in the model a firing sequence which can
generate the same output vectors from the input vectors.
When this is the case, the identified model is provided
in the form of an augmented reachability graph, a model
where input and output combinations are associated to the
transitions and markings firings. Moreover, it is possible
to derive from this graph the unobserved part of the
knowledge model; these information can be the starting
point for further active identification, an identification
approach where input values are to be forced during the
experiments.



Plant

PLC

Reactive system

 

Input Output

Finite-time I/O 
sequences observation

O
n
lin

e

Relative 
identification

Knowledge 
model (KM)

 Observed I/O
sequence

O
fflin

e

Compatibility 
of KM with I/O sequence 

Augmented reachability 
graph (ARG)

Observed 
behavior

Non observed 
behavior

Fig. 1. Objective of the work

The formalism that was selected in this work to describe
the knowledge model is presented in the next section.
The proposed relative identification method is detailed
and illustrated on the basis of small examples at Section
3. Section 4 is dedicated to an example and concluding
remarks as well as perspectives for further work are given
in section 5.

2. FORMALISM

SIPN have been introduced in Minas and Frey (2002).
This formalism is particularly appropriate to describe the
evolutions of an interpreted PN according to those of input
and output signals. The notations and assumptions that
are used in this work are presented below.

2.1 Basics of Petri Nets

An ordinary Petri net structure G is a bipartite digraph
represented by the 4-tuple G = (P, T, Pre, Post) where:
P = {p1, p2, ..., p|P |} 1 and T = {t1, t2, ..., t|T |} are finite
sets of vertices named places and transitions respectively;
Pre(Post) : P × T (T × P ) → {0, 1} is a function
representing the edges going from places to transitions
(from transitions to places).

A marking function Mg : P → N represents the number
of tokens residing inside each place where N is the set
of positive integers; it is usually expressed as a |P |-entry
vector. The net is said 1-bounded (or safe) when N is
replaced by {0, 1}, i.e there is at most one token residing
in every place.

The incidence matrix of G is W = Post − Pre, where
Pre = [preij ]; preij = Pre(pi, tj); and Post = [postij ];
postij = Post(pi, tj) are the pre-incidence and post-
incidence matrices respectively. A Petri net (PN) with
the given initial marking is denoted by is the pair N =
(G,M0), where G is a PN structure and M0 an initial
marking. More details on the basics of Petri nets can be
found in (Murata, 1989). In the case of this study where
a control model is considered, every PN will be safe.

2.2 SIPN

A Boolean algebra is defined on B = {0, 1} with (∧,∨,¬)
the operators of conjunction, disjunction and negation
respectively.

1 The cardinality of a set A is noted |A|

A Boolean function F is defined as:

F : Bn −→ B
X 7−→ F (X)

Bn is the set of the n Boolean variables; if X ∈ Bn,
X = (x1, ..., xk, ..., xn). Fn is the set of Boolean functions
that can be defined on Bn. The cardinality of this set is
equal to 22

n

.

Definition 1. A Signal Interpreted Petri Net system
(SIPN) is a 6-uplet KM= (G,M0,U,Y, λ, µ) with (G,M0)
a Petri net to which are added:

• U the set of Boolean input variables.
• Y the set of Boolean output variables.
• λ : T −→ F|U|

tj 7−→ Ftj

the function of firing conditions

where Ftj is a Boolean function depicting sufficient
conditions on the values of the inputs to fire tj .

• µ : P → P(Y) the function of outputs activation of
places where P(Y) is the power set of Y. A subset
of outputs to activate (set to 1) when the place is
marked is associated to every place.

Example 1. An example of SIPN with 3 inputs and 4
outputs such as U = {a, b, c} and Y = {A,B,C,D} is
shown in Fig. 2.
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Fig. 2. Example of SIPN

Two transitions of the net are in structural conflict when
they share the same upstream place. As we are considering
a control model, effective conflicts must not be possible
to avoid non-determinism, however. This implies that the
functions associated to transitions in structural conflict
must be exclusive. This can be formalized as follows.

Definition 2. A structural conflict for a given place pi
exists if |D(pi)| > 1



where D(pi) is the function which returns the set of
downstream transitions of a given place pi :

D(pi) = {tj |Pre(pi, tj) = 1} (1)

Definition 3. A SIPN is deterministic iff:

∀pi ∈ P such that |D(pi)| > 1,∀X ∈ B|U|,∀(tj , tj′) ∈
D2(pi)

Ftj (X) ∧ Ftj′ (X) = 0 (2)

The SIPN of the example of Fig. 2 is deterministic: t1 and
t2 are in structural conflict but their associated functions
are exclusive. Only deterministic SIPN will be considered
in what follows.

The evolution rules of a SIPN are the following ones:

• A transition tj is enabled at marking Mg if and
only if all its upstream places are marked, i.e ∀pi ∈
P,Mg(pi) ≥ Pre(pi, tj). The set of enabled transi-
tions for a given marking Mg is noted Te(Mg).

• A transition tj is fired immediately when its associ-
ated function is True: Ftj (X) = 1. The firing of tj

leads to a new marking Mg+1, written Mg
tj−→Mg+1.

The new marking is computed as Mg+1 = Mg+W.sg
where sg(j) = 1; sg(i) = 0 with i 6= j.

• All transitions that are simultaneously firable are

fired simultaneously: Mg
Tf−→ Mg+1, where Tf is the

set of the simultaneously firable transitions.

To illustrate the last point, in Fig. 2, if P5 and P6 are both
marked with b = 1, then a = 1 leads to the simultaneous
firing of the transitions t7 and t6.

Hence, a firing sequence σ = t1(t2, t3)t4...tj that leads from

M0 to Mg, i.e M0
σ−→Mg, may include firings of only one

transition (t1, t4 in σ) as well as simultaneous firings of
several transitions (t2 and t3 in σ).

Last, the value of an output yl for a marking Mg is :

yl[Mg] =

{
1 if ∃pi ∈ P |[Mg(pi) = 1] ∧ [yl ∈ µ(pi)]
0 else

For a given marking Mg, the set of the output values is
given by the function gamma:

γ : B|P | −→ B|Y|
Mg 7−→ γ(Mg)

where:

γ(Mg) = (y1[Mg], ..., yl[Mg], ...., y|Y|[Mg]) (3)

The following two properties can then be stated.

Property 1. There exists a unique set of output values
γ(Mg) associated to a given marking Mg.

All the output values of the SIPN of Fig. 2 are equal to 0
for the initial marking, for instance.

Property 2. Several markings can be associated to a given
set of output values.

Either P1 or P4 is the only marked place when all the
output values are equal to 0, for instance. The current
marking cannot be identified unambiguously from the
observation of the outputs.

3. PROPOSED METHOD

3.1 Principle
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Fig. 3. Overview of the proposed method

The relative identification method that is proposed (Fig.3)
starts from a knowledge model designed by an expert and
modelled by a SIPN, noted KM, and a sequence ω of
observed I/O vectors. When several sequences have been
observed on-line, the method must be applied to every
sequence. Every vector ωk of ω includes an input vector

ûk and an output vector ŷk such as: ωk = [ûk, ŷk]
T

. The
length of ω is noted |ω|.
The aim is to determine:

(1) whether KM is compatible with ω;
(2) the identified model, in the form of an augmented

reachability graph;
(3) the part of the knowledge model which has not been

observed, from the previous result.

The first two results are obtained at the end of the first
phase; the third one at the end of the second phase of the
method.

3.2 Construction of the identified model

The model proposed by the expert must be obviously
compatible with the observed I/O sequence, i.e. there must
exist in this model a firing sequence which can generate
the same output vectors sequence from the observed input
vectors sequence. Moreover, when this firing sequence
exists, the evolutions of the system can be represented by
a formal model which is derived from both KM and ω. The
final aim of the algorithm which is detailed at Appendix
A and sketched at Fig. 4 is to build this model. When
this aim cannot be reached, KM is declared inconsistent
with the observed I/O sequence. This algorithm comprises
three steps:

(1) Initial State Detection (ISD): the first output vector
ŷ0 of ω does not correspond necessarily to the output
values for the initial marking 2 . The aim of this step is
therefore to find an observed vector ŷIS that matches
with these values; KM and ω are not compatible when
ŷIS does not exist. However, according to property 2,
a given set of output values does not define necessarily
a unique marking. This explains why the following
two analyses are to be performed.

2 The reasoning assumes that the initial marking has been observed.
If this is not the case, the algorithm can be applied by starting from
a different marking.



(2) Forward Analysis (FA): its objective is to check that
every I/O change, from ωIS to ωn, can be explained
from the SIPN:
• When only the input vector changes, either no

transition which is enabled for the current mark-
ing must be firable for the observed values of
the inputs, or a transition (or a set of simultane-
ously firable transitions) which is firable for these
values is fired and the output values associated
to the source and destination markings are the
same.

• When both the input and output vectors change,
at least one transition must be fired for the
observed values of the inputs and the observed
values of the outputs must correspond to those
of the marking which is reached by firing this
(these) transition(s).

When the result of this analysis is negative a new ŷIS
is searched in ω.

(3) Backward Analysis (BA): this analysis is similar to
the FA but the exploration of ω is made from ωIS to
ω0.
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Fig. 4. Identified model construction

An Augmented Reachability Graph (ARG) is constructed
during the exploration of the I/O sequence. This kind
of graph is similar to the Stable Location Automaton
introduced in Provost et al. (2011) and used to represent
formally the behavior of a Grafcet model. An ARG is
a pair ARG = (RM,E) with RM the set of vertices
and E the set of edges. A vertex v is a 4-tuple v =
(Mg, γ(Mg), Te(Mg), Is) with Mg a marking of the SIPN,
γ(Mg) the output values for this marking, Te(Mg) the set
of transitions which are enabled for this marking and Is
the set of input vectors which have been observed and
did not provoke a marking change. An edge e ∈ E with

e = (Mg,Mg′ , Tf , If ) represents Mg
Tf−→ Mg′ where Tf

is the set of simultaneously fired transitions and If the
set of input vectors which provoke these firings. It must
be underlined that, even if some elements of an ARG

(Mg, γ(Mg), Te(Mg)) are obtained only from the SIPN, Tf ,
Is and If are yielded by the exploration of ω.
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Fig. 5. Illustration of the example 2: SIPN (a), observed
I/O sequence (b), ARG built (c)

Example 2. This algorithm is exemplified on the model of
Fig. 5a where the SIPN owns 2 inputs U = {a, b} and 2
outputs Y = {A,B}. The obtained ARG is depicted at
Fig. 5c. As the PN is safe and the outputs are Boolean
variables, Mg and γ(Mg) are represented in this figure
as sets of marked places and True variables, instead of
vectors, in the sake of brevity.

ISD starts from ω0 = [û0, ŷ0]T . The output vector ŷ0 =
[0, 0]T does not match with the output vector associated

to the initial marking γ(M0) = [1, 0]
T

. Hence, ω1 is then
analyzed. The output vector corresponds in this case to
that of the initial marking; the input vector û1 = [1, 1]T is
stored in the set Is for the initial marking and ISD stops.

FA starts with ω2 = [û2, ŷ2]T whose output vector is
identical to that of ω1. This means that the only enabled
transition from M0 (t1) cannot be fired for the observed in-
put combination û2, what is consistent with the knowledge
model. The input vector û2 = [0, 1]T is stored in the set
Is for the initial marking then ω3 = [û3, ŷ3]T is analyzed.

The observed output vector ŷ3 = [0, 0]
T

means that a new
marking M1 has been reached; û3 = [0, 0]T is stored in
the set If for the edge from M0 to M1, as well as in the
set Is for M1. ω4 = [û4, ŷ4]T is at last analyzed. This I/O
vector corresponds to a marking change from M1 to M2;
the appropriate sets If and Is are updated.

As the forward analysis is positive, backward analysis is
performed from ω1. The marking that corresponds to this
observation (M0) can be reached only by firing from M1

the transition t3 whose associated function is a ∧ b. The
observed output vector ŷ0 = [0, 0]T and input vector û1 =
[1, 1]T show that KM is compatible with the observations.
BA is positive.

3.3 Determination of the unobserved behavior

As it is based on observations, the ARG which has been
built by the previous algorithm does not include necessar-
ily every marking and marking change; the change from
M2 to M1 has not been observed, for instance in the
example 2. In a similar way, all the input vectors which
provoke/do not provoke a marking change have not been



necessarily observed. The aim of this section is to show how
these missing information can be explicitly expressed.
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Fig. 6. Finding the unobserved behavior

The behavior of the knowledge model that has not been
observed can be found by the algorithm that is detailed
at Appendix B and sketched at Fig. 6. This algorithm
relies on the development of Boolean functions in the
form of disjunction of minterms. It is first reminded that
a minterm is a logical expression of n Boolean variables
that uses only the negation and conjunction operators. If
b = (b1, ..., bn) is an element of Bn, a minterm defined from
b is min(b) = u′1 ∧ u′2 ∧ ... ∧ u′n, where u′i = ui if bi = 1,
u′i = ¬ui if bi = 0.

The graph of reachable markings, starting point of the
algorithm, must be constructed by considering that:

• Several enabled transitions of the SIPN may be si-
multaneously fired

• Functions on the inputs are associated to transitions.

If the set of enabled transitions for a marking Mg is noted
Te(Mg), the set of possible firings from this marking, noted
E, is indeed the power set of Te(Mg): E = P(Te(Mg)). The

number of firings in this set is |E| = 2|Te(Mg)|.

Example 3. If Te(Mg) = {t1, t2, t3} then E = {∅, {t1}, {t2},
{t3}, {t1, t2}, {t2, t3}, {t1, t3}, {t1, t2, t3}} and |E| = 8 be-
cause n = 3.

In the graph of reachable markings, the edges that start
from Mg correspond to the elements of E. A Boolean
function fe, firing condition of a set of transitions, is
associated to each edge e, with:

∀Tf ∈ E,

fe =
∧
tj∈Tf

Ftj
∧
tj /∈Tf

¬Ftj (4)

This Boolean function may be sometimes equal to zero.
If Te(Mg) = {t1, t2} with Ft1 = a and Ft2 = a ∧ b, the
boolean function fe associated to the firing of only t2 is :
fe = Ft2∧¬Ft1 = (a∧b)∧¬a = 0. In the reachability graph
of the SIPN as well as in the ARG, the corresponding edge
is not represented because this element of E is not feasible.

However, a self-loop on Mg must be introduced in the
ARG for the empty set of transitions ∅, to model that
the marking remains the same for this element of E. The
following boolean function fe′ is associated to this self-
loop:

fe′ =
∧
tj /∈Tf

¬Ftj

In the ARG that is provided by the algorithm, the ob-
served behavior corresponds to the minterms such as the
corresponding inputs combination has been observed, the
unobserved behavior to the other minterms.

An edge e is completely observed if all minterms in the ex-
pression of fe have been observed. A marking is completely
observed if all edges starting from this marking, including
the self-loop, have been completely observed.
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Fig. 7. KM SIPN (a), reachability graph of the SIPN (b),
ARG with the observed (minterms circled with dotted
line) and unobserved behaviors (minterms not circled)
(c)

Example 4. The graph of reachable markings of the SIPN
of Fig. 7a is given at Fig. 7b. Three transitions are enabled
for M0 but only four firings are possible because the
functions associated to {t2}, {t3}, {t2, t3} are equal to zero
(when Tf = {t2, t3}, fe = (a ∧ b) ∧ (a ∧ c) ∧ ¬a = 0 for
instance). The Boolean functions associated to the four
marking changes as well as the absence of marking change
(self-loop on M0) are shown on Fig. 7c; it may be noted
that the eight minterms which can be defined on the set
of the three inputs are present in the disjunction of the
four functions. If, for instance, the only observed vector

is ω0 = [0, 0, 0|0, 0, 0]
T

, the observed behavior corresponds
to the self-loop on M0 with the only minterm of f0 that
is circled with dotted line (¬a ∧ ¬b ∧ ¬c); the unobserved
behavior to the other minterms.



4. EXAMPLE

This example is based on the knowledge model that is
represented at Fig. 2 and the following observed I/O
sequence:

a
b
c
A
B
C
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−

ω =


0
0
0
0
0
0
0


ω0


0
0
1
1
0
1
0


ω1


0
0
0
1
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0
1
0
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1
1
0
0
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1
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0
0
0
0
0
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1
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1
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0
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1
1
0
1
0


ω12


1
0
1
0
0
1
0
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1
1
1
0
0
1
1


ω14

4.1 Construction of the identified model

ISD starts from ω0. The observed output vector ŷ0 =
[0, 0, 0, 0]T matches with γ(M0), the output set associated
to the initial marking of the SIPN. Therefore, ISD stops
and FA starts from ω1. However, the observed output
vector ŷ1 = [1, 0, 1, 0]T means that either both P2 and
P7 are marked or that P5 is marked. As it not possible to
fire transitions that lead from the initial marking to one
of these markings 3 , FA is stopped and ISD is relaunched.

ISD starts this time from ω1 but the observed output
vector does not match with γ(M0), from this observation
to ω4. The initial state is only detected for ω5. Hence, ISD
stops and FA starts from ω6. This analysis shows easily
that the observed vectors ω6 to ω14 correspond respectively
to an input change without marking change, the firing
of t2, three consecutive input changes without marking
change, the firing of t4, then successively those of t5, t6
and t7. FA concludes positively.

The BA is then performed from ω5. The observed vectors
from ω5 to ω0 correspond respectively to the firing of
t8, the simultaneous firings of t6 and t7, two successive
input changes without marking change and the firing of
t5. BA concludes positively; hence the knowledge model is
compatible with the observed sequence.

The identified model that is built during these analyses is
given at Fig. 8. It must be noted that the firing of some
transitions (t4, t5) with the same value of the input vector
(û0 = û11 = [0, 0, 0]T for instance for t4) has been observed
two times and that several different values of the input
vector that do not change a marking (û8, û9, û10 for M1,
for instance) have been observed, too.

4.2 Determination of the unobserved behavior

From the previous result and the knowledge of the Boolean
functions associated to the transitions of the SIPN, the
ARG of Fig. 9 can be obtained. In this model, the observed
behavior corresponds to the minterms which are circled
with a dotted line and the unobserved behavior to the
minterms which are circled with a solid line. Only two
markings will be somewhat detailed.

Two transitions are enabled for M0: Te = {t1, t2}. How-
ever, as Ft1 and Ft2 are exclusive, only one of them is
possible for a given combination of the input values. No

3 It is also possible to remark that none of the transitions that follow
P1 is firable for the current values of the inputs û1 = [0, 0, 1]T
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Fig. 8. Identified model
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Fig. 9. ARG with the observed (minterms circled with dot-
ted line) and unobserved behaviors (minterms circled
with continuous line)

firing of t1 has been observed; hence the behavior of the
system from M0 and for the input combinations that
correspond to the minterms 3 and 4 is unobserved. A
firing of t2 for the minterm 5 has been observed; this is
not the case for the minterm 6. The self-loop on M0 has
been partially observed (observed for the minterms 7 and
8, unobserved for the minterms 1 and 2). Two transitions
are also enabled for M3: Te = {t6, t7}. Given the Boolean
functions associated to these transitions, either only t6 is
fired, or both transitions are simultaneously fired. The two
firings have been partially observed. This is also the case
of the self-loop on M3.

Globally, the observed behavior is composed of 20 couples
(marking, minterm), for instance (M3, 2 ) or (M3, 7 ), and
the behavior which has not been observed with 28 such
couples, for instance (M3, 1 ) or (M3, 5 ). It may be noted
that only the self-loop on M1 has been fully observed.

5. CONCLUSION

This paper has presented a relative identification method
for closed-loop reactive systems. The development of the
Boolean functions on inputs which are associated to the
transitions of the knowledge model permits to point out
the behaviors which have been observed and unobserved.
These information can be the starting point of research
on active identication. In this approach indeed, the ex-
periments to obtain the I/O sequences from which the
identified model is to be built do not come from purely



passive observation of the evolutions of the closed-loop
system but require that some inputs of the controller are
to be forced. The forcing sequences must be constructed
to observe evolutions which have not been obtained by
passive observation; therefore, their construction relies
on the accurate knowledge of the unobserved behavior.
Construction of these sequences is the issue that will be
addressed in our future work.
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Appendix A

Algorithm 1 Identifed model construction

1: procedure ModelConstruction(KM, ω)
2: k = IS = 0
. Initial state detection (ISD)

3: M = M0

4: InitRG(M0) . Initializing the identified model
5: while ŷk 6= γ(M0) do
6: if k > |ω| return False . Not compatible
7: k = k + 1
8: end while
9: IS = k . Saving the initial state detected

10: k′ = k
. Forward analysis (FA)

11: while ŷk′ 6= ŷk do . Looking for an output vector
change

12: if k′ > |ω| then
13: k′ = k = IS . Returning to the initial state
14: M = M0 go to BA
15: end if
16: k′ = k′ + 1
17: end while
18: Ie = {ûk′}
19: if Tf = ∅ go to ISD . No transitions can be fired
20: Is = ∅
21: for k′′ From k To k′ do
22: if ∃tj ∈ Te(M), Fj(ûk′′) = 1 then
23: go to ISD . One transition is fired without

output change
24: end if
25: Is = Is ∪ {ûk′′}
26: end for
27: s(tj) = 1 for tj ∈ Tf
28: M = M + W.s . Computing next marking
29: AddingMarkingRG(M,Te(M), Tf , Ie, Is)
30: if ŷk′ = γ(M) go to FA
31: else go to ISD

. Backward analysis (BA)
32: while ŷk′ 6= ŷk do . Searching for an output

vector change
33: if k′ = 0 return RG . Compatible
34: k′ = k′ − 1
35: end while
36: if ∀tj ∈ T̃e(M), Fj(ûk′) = 0 then . T̃e(M) Set of

previous enabled transitions
37: k = IS . Returning to the initial state
38: go to ISD
39: end if
40: for k′′ From k′ To k do
41: if ∃tj ∈ T̃e(M), Fj(ûk′′) = 1 then
42: k = IS . Returning to the initial state
43: go to ISD
44: end if
45: end for
46: s(tj) = 1 for tj ∈ T̃f
47: M = M −W.s . Computing the previous marking
48: go to BA
49: end procedure



Appendix B

Algorithm 2 Unobserved behavior determination

1: procedure UnObsMinterms(v) . For one vertex v
of the RG

2: E = P(Te)
3: R = ∅
4: fE
5: for Tf in E do fe = 1
6: for tj in Te do
7: if tj in Tf : fe = fe ∧ Ftj
8: else fe = fe ∧ ¬Ftj
9: end for

10: if fe(Tf )! = 0 : fE = fE ∪ fe
11: end for
12: AddEdgeARG(RG, fE) . Add missing evolutions

to the ARG
13: Te = InputCollection(v,ARG) . Set of input

vectors leading to an evolution
14: Emin = ∅ . Set of minterms
15: Omin = ∅ . Set of observed minterms
16: for fe in fE do
17: min = Minterms(fe) . Set of minterms
18: for m in min do
19: E = E ∪m
20: for û in Is ∪ Ie do
21: if m(û) = True then
22: Omin = Omin ∪m . the minterm m

has been observed
23: end if
24: end for
25: end for
26: end for
27: Umin = Emin −Omin . Unobserved minterms
28: return (Umin, Omin)
29: end procedure


