Clement Galetta

Jean-Marc Roussel

Jean-Marc Faure

A relative identification method for reactive systems

Keywords: System identification, Signal Interpreted Petri Nets, Boolean functions, Reachability graph, Programmable Logic Controller

This paper proposes a method to build an identified model from an observed sequence of input/output vectors and a model of knowledge on the system to identify. This method comprises two steps. The first one starts by checking whether the knowledge model is compatible with the observed sequence; when this is the case, the identified model is built automatically. From this result, the observed and unobserved behaviors of the knowledge model are then explicitly determined, in a second step.

INTRODUCTION

The overall objective of identification methods is to build a behavioral model of a system from results of experiments on the real system. This work considers reactive systems where a Programmable Logic Controller (PLC) controls a plant; this class of system can be modeled as a closedloop Discrete Event System (DES) where the inputs and outputs of the controller are logic variables.

The first results in the domain of identification of DES [START_REF] Gold | Language identification in the limit[END_REF], [START_REF] Angluin | Learning regular sets from queries and counterexamples[END_REF]) were mainly related to language identication. More recently, construction by identification of models in the form of automata or Petri nets (PN) has been addressed by several authors. [START_REF] Roth | Black-box identification of discrete event systems with optimal partitioning of concurrent subsystems[END_REF] and [START_REF] Schneider | Determination of timed transitions in identified discrete-event models for fault detection[END_REF], for instance, propose methods to build automata that are used later on for diagnosis purposes. [START_REF] Meda-Campaña | Identification of concurrent discrete event systems using Petri nets[END_REF], [START_REF] Giua | Identification of freelabeled Petri nets via integer programming[END_REF], [START_REF] Dotoli | Identification of the unobservable behaviour of industrial automation systems by Petri nets[END_REF], [START_REF] Estrada-Vargas | A Black-Box Identification Method for Automated Discrete-Event Systems[END_REF], [START_REF] Saives | Identification of discrete event systems unobservable behaviour by petri nets using language projections[END_REF], to name a few, focus on identification based on Petri nets. The latter two references place their works in the context of reverse engineering, i.e. construction of a model that is understandable by experts to revamp an existing machine; this is also the applicative context of this work. A good survey on DES identication can be found in [START_REF] Estrada-Vargas | A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems[END_REF]. This survey underlines in particular that an identification method may be absolute (or black-box), when no a priori knowledge about the system behavior is available before identification, or relative otherwise.

Absolute identification is surely more attractive because it is only based on observations of the evolutions of the real system. Nevertheless, it must be noted that the quality of the identified model depends on the observation duration. A good identified model may require a long observation time; this may hinder the application of the method and explains why some researchers have considered a relative identification approach. When the identified model is represented by a PN, [START_REF] Giua | Identification of freelabeled Petri nets via integer programming[END_REF], for instance, proposes an algorithm for identication of freelabeled PN that assumes that the number of places is known and the observed language is complete. This latter assumption is not made in [START_REF] Dotoli | Identification of the unobservable behaviour of industrial automation systems by Petri nets[END_REF], where unobservable transitions are added to a labeled PN whose observable behavior is known. Nevertheless, the knowledge models that are proposed in these valuable works are not completely suitable for the class of reactive systems that we focus on because the inputs and outputs of the controller are not explicitly considered.

Hence, this paper proposes a relative identification method (Fig. 1) which starts from both a knowledge model generated by an expert and observed input/output sequences. The knowledge model is represented in the form of a Signal Interpreted Petri Net (SIPN), an appropriate formalism for the class of reactive systems that is considered in this work, and the I/O sequences have been obtained experimentally previously. From these data, the method determines first whether the knowledge model is compatible with the observations, i.e., for every observed sequence, there exists in the model a firing sequence which can generate the same output vectors from the input vectors. When this is the case, the identified model is provided in the form of an augmented reachability graph, a model where input and output combinations are associated to the transitions and markings firings. Moreover, it is possible to derive from this graph the unobserved part of the knowledge model; these information can be the starting point for further active identification, an identification approach where input values are to be forced during the experiments. The formalism that was selected in this work to describe the knowledge model is presented in the next section.

The proposed relative identification method is detailed and illustrated on the basis of small examples at Section 3. Section 4 is dedicated to an example and concluding remarks as well as perspectives for further work are given in section 5.

FORMALISM

SIPN have been introduced in [START_REF] Minas | Visual PLC-programming using signal interpreted Petri nets[END_REF]. This formalism is particularly appropriate to describe the evolutions of an interpreted PN according to those of input and output signals. The notations and assumptions that are used in this work are presented below. post ij = P ost(p i , t j) are the pre-incidence and postincidence matrices respectively. A Petri net (PN) with the given initial marking is denoted by is the pair N = (G, M 0), where G is a PN structure and M 0 an initial marking. More details on the basics of Petri nets can be found in (Murata, 1989). In the case of this study where a control model is considered, every PN will be safe.

Basics of Petri Nets

SIPN

A Boolean algebra is defined on B = {0, 1} with (∧, ∨, ¬) the operators of conjunction, disjunction and negation respectively.

1 The cardinality of a set A is noted |A| A Boolean function F is defined as:

F : B n -→ B X -→ F (X)
B n is the set of the n Boolean variables; if X ∈ B n , X = (x 1 , ..., x k , ..., x n). F n is the set of Boolean functions that can be defined on B n . The cardinality of this set is equal to 2 2 n . Definition 1. A Signal Interpreted Petri Net system (SIPN) is a 6-uplet KM= (G, M 0 , U, Y, λ, µ) with (G, M 0) a Petri net to which are added:

• U the set of Boolean input variables.

• Y the set of Boolean output variables. Two transitions of the net are in structural conflict when they share the same upstream place. As we are considering a control model, effective conflicts must not be possible to avoid non-determinism, however. This implies that the functions associated to transitions in structural conflict must be exclusive. This can be formalized as follows. Definition 2. A structural conflict for a given place

• λ : T -→ F |U| t j -→ F tj
p i exists if |D(p i)| > 1
where D(p i) is the function which returns the set of downstream transitions of a given place p i :

D(p i) = {t j |P re(p i , t j) = 1} (1)
Definition 3. A SIPN is deterministic iff:

∀p i ∈ P such that |D(p i)| > 1, ∀X ∈ B |U| , ∀(t j , t j) ∈ D 2 (p i) F tj (X) ∧ F t j (X) = 0 (2)
The SIPN of the example of Fig. 2 is deterministic: t 1 and t 2 are in structural conflict but their associated functions are exclusive. Only deterministic SIPN will be considered in what follows.

The evolution rules of a SIPN are the following ones:

• A transition t j is enabled at marking M g if and only if all its upstream places are marked, i.e ∀p i ∈ P, M g (p i) ≥ P re(p i , t j). The set of enabled transitions for a given marking M g is noted T e (M g). • A transition t j is fired immediately when its associated function is True: F tj (X) = 1. The firing of t j leads to a new marking M g+1 , written M g tj -→ M g+1 . The new marking is computed as M g+1 = M g +W.s g where s g (j) = 1; s g (i) = 0 with i = j.

• All transitions that are simultaneously firable are fired simultaneously:

M g T f -→ M g+1
, where T f is the set of the simultaneously firable transitions.

To illustrate the last point, in Fig. 2, if P 5 and P 6 are both marked with b = 1, then a = 1 leads to the simultaneous firing of the transitions t 7 and t 6 .

Hence, a firing sequence σ = t 1 (t 2 , t 3)t 4 ...t j that leads from M 0 to M g , i.e M 0 σ -→ M g , may include firings of only one transition (t 1 , t 4 in σ) as well as simultaneous firings of several transitions (t 2 and t 3 in σ).

Last, the value of an output y l for a marking M g is :

y l [M g] = 1 if ∃p i ∈ P |[M g (p i) = 1] ∧ [y l ∈ µ(p i)] 0 else
For a given marking M g , the set of the output values is given by the function gamma:

γ : B |P | -→ B |Y| M g -→ γ(M g)
where:

γ(M g) = (y 1 [M g], ..., y l [M g],, y |Y| [M g]) (3)
The following two properties can then be stated. Property 1. There exists a unique set of output values γ(M g) associated to a given marking M g .

All the output values of the SIPN of Fig. 2 are equal to 0 for the initial marking, for instance. Property 2. Several markings can be associated to a given set of output values.

Either P 1 or P 4 is the only marked place when all the output values are equal to 0, for instance. The current marking cannot be identified unambiguously from the observation of the outputs. The relative identification method that is proposed (Fig. 3) starts from a knowledge model designed by an expert and modelled by a SIPN, noted KM, and a sequence ω of observed I/O vectors. When several sequences have been observed on-line, the method must be applied to every sequence. Every vector ω k of ω includes an input vector ûk and an output vector ŷk such as:

PROPOSED METHOD

Principle

ω k = [ûk , ŷk] T . The length of ω is noted |ω|.
The aim is to determine:

(1) whether KM is compatible with ω;

(2) the identified model, in the form of an augmented reachability graph; (3) the part of the knowledge model which has not been observed, from the previous result.

The first two results are obtained at the end of the first phase; the third one at the end of the second phase of the method.

Construction of the identified model

The model proposed by the expert must be obviously compatible with the observed I/O sequence, i.e. there must exist in this model a firing sequence which can generate the same output vectors sequence from the observed input vectors sequence. Moreover, when this firing sequence exists, the evolutions of the system can be represented by a formal model which is derived from both KM and ω. The final aim of the algorithm which is detailed at Appendix A and sketched at Fig. 4 is to build this model. When this aim cannot be reached, KM is declared inconsistent with the observed I/O sequence. This algorithm comprises three steps:

(1) Initial State Detection (ISD): the first output vector ŷ0 of ω does not correspond necessarily to the output values for the initial marking2 . The aim of this step is therefore to find an observed vector ŷIS that matches with these values; KM and ω are not compatible when ŷIS does not exist. However, according to property 2, a given set of output values does not define necessarily a unique marking. This explains why the following two analyses are to be performed.

(2) Forward Analysis (FA): its objective is to check that every I/O change, from ω IS to ω n , can be explained from the SIPN:

• When only the input vector changes, either no transition which is enabled for the current marking must be firable for the observed values of the inputs, or a transition (or a set of simultaneously firable transitions) which is firable for these values is fired and the output values associated to the source and destination markings are the same.

• When both the input and output vectors change, at least one transition must be fired for the observed values of the inputs and the observed values of the outputs must correspond to those of the marking which is reached by firing this (these) transition(s). When the result of this analysis is negative a new ŷIS is searched in ω.

(3) Backward Analysis (BA): this analysis is similar to the FA but the exploration of ω is made from ω IS to ω 0 . 2011) and used to represent formally the behavior of a Grafcet model. An ARG is a pair ARG = (RM, E) with RM the set of vertices and E the set of edges. A vertex v is a 4-tuple v = (M g , γ(M g), T e (M g), I s) with M g a marking of the SIPN, γ(M g) the output values for this marking, T e (M g) the set of transitions which are enabled for this marking and I s the set of input vectors which have been observed and did not provoke a marking change. An edge e ∈ E with e = (M g , M g , T f , I f) represents M g T f -→ M g where T f is the set of simultaneously fired transitions and I f the set of input vectors which provoke these firings. It must be underlined that, even if some elements of an ARG (M g , γ(M g), T e (M g)) are obtained only from the SIPN, T f , I s and I f are yielded by the exploration of ω. ISD starts from ω 0 = [û0 , ŷ0] T . The output vector ŷ0 = [0, 0] T does not match with the output vector associated to the initial marking γ(M 0) = [1, 0] T . Hence, ω 1 is then analyzed. The output vector corresponds in this case to that of the initial marking; the input vector û1 = [1, 1] T is stored in the set I s for the initial marking and ISD stops.

P1 t1 P2 {A} t3 P3 {B} t2 t4 (a) a b - A - ω =     0 0 - 0 0     ω 0     1 1 - 1 0     ω 1     0 1 - 1 0     ω 2     0 0 - 0 0     ω 3     0 1 - 0 1    
FA starts with ω 2 = [û2 , ŷ2] T whose output vector is identical to that of ω 1 . This means that the only enabled transition from M 0 (t 1) cannot be fired for the observed input combination û2 , what is consistent with the knowledge model. The input vector û2 = [0, 1] T is stored in the set I s for the initial marking then ω 3 = [û3 , ŷ3] T is analyzed. The observed output vector ŷ3 = [0, 0]

T means that a new marking M 1 has been reached; û3 = [0, 0] T is stored in the set I f for the edge from M 0 to M 1 , as well as in the set I s for M 1 . ω 4 = [û4 , ŷ4] T is at last analyzed. This I/O vector corresponds to a marking change from M 1 to M 2 ; the appropriate sets I f and I s are updated.

As the forward analysis is positive, backward analysis is performed from ω 1 . The marking that corresponds to this observation (M 0) can be reached only by firing from M 1 the transition t 3 whose associated function is a ∧ b. The observed output vector ŷ0 = [0, 0] T and input vector û1 = [1, 1] T show that KM is compatible with the observations. BA is positive.

Determination of the unobserved behavior

As it is based on observations, the ARG which has been built by the previous algorithm does not include necessarily every marking and marking change; the change from M 2 to M 1 has not been observed, for instance in the example 2. In a similar way, all the input vectors which provoke/do not provoke a marking change have not been necessarily observed. The aim of this section is to show how these missing information can be explicitly expressed. Yes Fig. 6. Finding the unobserved behavior

The behavior of the knowledge model that has not been observed can be found by the algorithm that is detailed at Appendix B and sketched at Fig. 6. This algorithm relies on the development of Boolean functions in the form of disjunction of minterms. It is first reminded that a minterm is a logical expression of n Boolean variables that uses only the negation and conjunction operators.

If b = (b 1 , ..., b n) is an element of B n , a minterm defined from b is min(b) = u 1 ∧ u 2 ∧ ... ∧ u n , where u i = u i if b i = 1, u i = ¬u i if b i = 0.
The graph of reachable markings, starting point of the algorithm, must be constructed by considering that:

• Several enabled transitions of the SIPN may be simultaneously fired • Functions on the inputs are associated to transitions.

If the set of enabled transitions for a marking M g is noted T e (M g), the set of possible firings from this marking, noted E, is indeed the power set of T e (M g): E = P(T e (M g)). The number of firings in this set is

|E| = 2 |Te(Mg)| . Example 3. If T e (M g) = {t 1 , t 2 , t 3 } then E = {∅, {t 1 }, {t 2 }, {t 3 }, {t 1 , t 2 }, {t 2 , t 3 }, {t 1 , t 3 }, {t 1 , t 2 , t 3 }} and |E| = 8 be- cause n = 3.
In the graph of reachable markings, the edges that start from M g correspond to the elements of E. A Boolean function f e , firing condition of a set of transitions, is associated to each edge e, with:

∀T f E, f e = tj ∈T f F tj tj / ∈T f ¬F tj (4)
This Boolean function may be sometimes equal to zero.

If T e (M g) = {t 1 , t 2 } with F t1 = a and F t2 = a ∧ b, the boolean function f e associated to the firing of only t 2 is : f e = F t2 ∧¬F t1 = (a∧b)∧¬a = 0. In the reachability graph of the SIPN as well as in the ARG, the corresponding edge is not represented because this element of E is not feasible.

However, a self-loop on M g must be introduced in the ARG for the empty set of transitions ∅, to model that the marking remains the same for this element of E. The following boolean function f e is associated to this selfloop:

f e = tj / ∈T f ¬F tj
In the ARG that is provided by the algorithm, the observed behavior corresponds to the minterms such as the corresponding inputs combination has been observed, the unobserved behavior to the other minterms.

An edge e is completely observed if all minterms in the expression of f e have been observed. A marking is completely observed if all edges starting from this marking, including the self-loop, have been completely observed. 7c; it may be noted that the eight minterms which can be defined on the set of the three inputs are present in the disjunction of the four functions. If, for instance, the only observed vector is ω 0 = [0, 0, 0|0, 0, 0] T , the observed behavior corresponds to the self-loop on M 0 with the only minterm of f 0 that is circled with dotted line (¬a ∧ ¬b ∧ ¬c); the unobserved behavior to the other minterms.

EXAMPLE

This example is based on the knowledge model that is represented at Fig. 2 and the following observed I/O sequence:

a b c A B C D - ω =        0 0 0 0 0 0 0        ω 0        0 0 1 1 0 1 0        ω 1        0 0 0 1 0 1 0        ω 2        0 1 0 1 0 1 0        ω 3        1 1 0 0 0 1 1        ω 4        0 0 0 0 0 0 0        ω 5        0 0 1 0 0 0 0        ω 6        0 1 1 0 1 0 0        ω 7        1 1 1 0 1 0 0        ω 8        1 1 0 0 1 0 0        ω 9        0 1 0 0 1 0 0        ω 10        0 0 0 0 0 0 0        ω 11        0 0 1 1 0 1 0        ω 12        1 0 1 0 0 1 0        ω 13        1 1 1 0 0 1 1        ω 14
4.1 Construction of the identified model ISD starts from ω 0 . The observed output vector ŷ0 = [0, 0, 0, 0] T matches with γ(M 0), the output set associated to the initial marking of the SIPN. Therefore, ISD stops and FA starts from ω 1 . However, the observed output vector ŷ1 = [1, 0, 1, 0] T means that either both P 2 and P 7 are or that P 5 is marked. As it not possible to fire transitions that lead from the initial marking to one of these markings 3 , FA is stopped and ISD is relaunched.

ISD starts this time from ω 1 but the observed output vector does not match with γ(M 0), from this observation to ω 4 . The initial state is only detected for ω 5 . Hence, ISD stops and FA starts from ω 6 . This analysis shows easily that the observed vectors ω 6 to ω 14 correspond respectively to an input change without marking change, the firing of t 2 , three consecutive input changes without marking change, the firing of t 4 , then successively those of t 5 , t 6 and t 7 . FA concludes positively.

The BA is then performed from ω 5 . The observed vectors from ω 5 to ω 0 correspond respectively to the firing of t 8 , the simultaneous firings of t 6 and t 7 , two successive input changes without marking change and the firing of t 5 . BA concludes positively; hence the knowledge model is compatible with the observed sequence.

The identified model that is built during these analyses is given at Fig. 8. It must be noted that the firing of some transitions (t 4 , t 5) with the same value of the input vector (û 0 = û11 = [0, 0, 0] T for instance for t 4) has been observed two times and that several different values of the input vector that do not change a marking (û 8 , û9 , û10 for M 1 , for instance) have been observed, too.

Determination of the unobserved behavior

From the previous result and the knowledge of the Boolean functions associated to the transitions of the SIPN, the ARG of Fig. 9 can be obtained. In this model, the observed behavior corresponds to the minterms which are circled with a dotted line and the unobserved behavior to the minterms which are circled with a solid line. Only two markings will be somewhat detailed.

Two transitions are enabled for M 0 : T e = {t1, t2}. However, as F t1 and F t2 are exclusive, only one of them is possible for a given combination of the input values. No firing of t 1 has been observed; hence the behavior of the from M 0 and for the input combinations that correspond to the minterms 3 and 4 is unobserved. A firing of t 2 for the minterm 5 has been observed; this is not the case for the minterm 6. The self-loop on M 0 has been partially observed (observed for the minterms 7 and 8, unobserved for the minterms 1 and 2). Two transitions are also enabled for M 3 : T e = {t 6 , t 7 }. Given the Boolean functions associated to these transitions, either only t 6 is fired, or both transitions are simultaneously fired. The two firings have been partially observed. This is also the case of the self-loop on M 3 . Globally, the observed behavior is composed of 20 couples (marking, minterm), for instance (M 3 , 2) or (M 3 , 7), and the behavior which has not been observed with 28 such couples, for instance (M 3 , 1) or (M 3 , 5). It may be noted that only the self-loop on M 1 has been fully observed.

CONCLUSION

This paper has presented a relative identification method for closed-loop reactive systems. The development of the Boolean functions on inputs which are associated to the transitions of the knowledge model permits to point out the behaviors which have been observed and unobserved. These information can be the starting point of research on active identication. In this approach indeed, the experiments to obtain the I/O sequences from which the identified model is to be built do not come from purely passive observation of the evolutions of the closed-loop system but require that some inputs of the controller are to be forced. The forcing sequences must be constructed to observe evolutions which have not been obtained by passive observation; therefore, their construction relies on the accurate knowledge of the unobserved behavior. Construction of these sequences is the issue that will be addressed in our future work.

Fig. 1 .

 1 Fig. 1. Objective of the work

 Fig. 2. Example of SIPN

Fig. 3 .

 3 Fig. 3. Overview of the proposed method

Fig. 4 .

 4 Fig. 4. Identified model construction An Augmented Reachability Graph (ARG) is constructed during the exploration of the I/O sequence. This kind of graph is similar to the Stable Location Automaton introduced in Provost et al. (2011) and used to represent formally the behavior of a Grafcet model. An ARG is a pair ARG = (RM, E) with RM the set of vertices and E the set of edges. A vertex v is a 4-tuple v = (M g , γ(M g), T e (M g), I s) with M g a marking of the SIPN, γ(M g) the output values for this marking, T e (M g) the set of transitions which are enabled for this marking and I s the set of input vectors which have been observed and did not provoke a marking change. An edge e ∈ E with

Fig. 5 .

 5 Fig. 5. of the example 2: SIPN (a), observed I/O sequence (b), ARG built (c) Example 2. This algorithm is exemplified on the model of Fig. 5a where the SIPN owns 2 inputs U = {a, b} and 2 outputs Y = {A, B}. The obtained ARG is depicted at Fig. 5c. As the PN is safe and the outputs are Boolean variables, M g and γ(M g) are represented in this figure as sets of marked places and True variables, instead of vectors, in the sake of brevity.

Fig. 7 .

 7 Fig. 7. KM SIPN (a), reachability graph of the SIPN (b), ARG with the observed (minterms circled with dotted line) and unobserved behaviors (minterms not circled) (c) Example 4. The graph of reachable markings of the SIPN of Fig. 7a is given at Fig. 7b. Three transitions are enabled for M 0 but only four firings are possible because the functions associated to {t 2 }, {t 3 }, {t 2 , t 3 } are equal to zero (whenT f = {t 2 , t 3 }, f e = (a ∧ b) ∧ (a ∧ c) ∧ ¬a = 0 for instance).The Boolean functions associated to the four marking changes as well as the absence of marking change (self-loop on M 0) are shown on Fig.7c; it may be noted that the eight minterms which can be defined on the set of the three inputs are present in the disjunction of the four functions. If, for instance, the only observed vector is ω 0 = [0, 0, 0|0, 0, 0] T , the observed behavior corresponds to the self-loop on M 0 with the only minterm of f 0 that is circled with dotted line (¬a ∧ ¬b ∧ ¬c); the unobserved behavior to the other minterms.

3Fig. 9 .

 9 Fig. 8. Identified model

 The incidence matrix of G is W = Post -Pre, where Pre = [pre ij]; pre ij = P re(p i , t j); and Post = [post ij];

	An ordinary Petri net structure G is a bipartite digraph
	represented by the 4-tuple G = (P, T, P re, P ost) where:
	P = {p 1 , p 2 , ..., p |P | } 1 and T = {t 1 , t 2 , ..., t |T | } are finite
	sets of vertices named places and transitions respectively;
	P re(P ost) : P × T (T × P) → {0, 1} is a function
	representing the edges going from places to transitions
	(from transitions to places).
	A marking function M g : P → N represents the number
	of tokens residing inside each place where N is the set
	of positive integers; it is usually expressed as a |P |-entry
	vector. The net is said 1-bounded (or safe) when N is
	replaced by {0, 1}, i.e there is at most one token residing
	in every place.

The reasoning assumes that the initial marking has been observed. If this is not the case, the algorithm can be applied by starting from a different marking.

if T f = ∅ go to ISD No transitions can be fired 20: for T f in E do f e = 1 6:

for t j in T e do 7:

else f e = f e ∧ ¬F tj 9:

end for 10:

end for 12:

AddEdgeARG(RG, f E) Add missing evolutions to the ARG 13:

Set of input vectors leading to an evolution