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UMR216 MERIT, Mère et enfant face aux infections tropicales, Paris, 75006, France, 5 Faculté de
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Abstract

Recent studies have highlighted the importance of local environmental factors to determine

the fine-scale heterogeneity of malaria transmission and exposure to the vector. In this

work, we compare a classical GLM model with backward selection with different versions of

an automatic LASSO-based algorithm with 2-level cross-validation aiming to build a predic-

tive model of the space and time dependent individual exposure to the malaria vector, using

entomological and environmental data from a cohort study in Benin. Although the GLM can

outperform the LASSO model with appropriate engineering, the best model in terms of pre-

dictive power was found to be the LASSO-based model. Our approach can be adapted to

different topics and may therefore be helpful to address prediction issues in other health sci-

ences domains.

Introduction

Malaria is endemic and remains a major cause of mortality especially for children under the age

of five years in sub-Saharan Africa [1]. Assessment of malaria burden is critical for the evalua-

tion of control measures. The correct definition of “unexposed” individuals (not in contact with

the malaria vector and then also not with the parasite) is important for the interpretation of

results, since it may help in distinguishing protection (i.e immune individuals) from lack of

exposure [2]. A precise characterization of exposure could mitigate classification error and facil-

itate clinical trial and cohort study designs. The exposure to the malaria vector (the Anopheles

mosquito) is space and time dependent in endemic areas and highly related to the rainy Season.

Recent studies have highlighted the importance of local environmental factors to determine the
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local-scale heterogeneity of malaria transmission and exposure to the vector bite [3–6]. A classi-

cal entomological indicator used to characterize the human exposure to the malaria vector is

the human biting rate (hbr), which is the number of anopheles bites per man per time unit. In a

previous work, we have built a predictive model to estimate the individual hbr in a population

of Beninese children by using entomological and environmental data from a cohort study car-

ried out between 2007 and 2010. Variable selection in statistical models is a highly complex and

vast research area with a huge literature [7–15]. In health sciences, regression models are com-

monly used, but classical variable selection methods (backward, forward selection. . .) show lim-

its (non convergence, collinearity. . .) as the ratio variables/observations increases. In particular,

taking into account all the interactions terms in GLM with backward selection is often impossi-

ble in practice, although it can be useful to improve the prediction power. In our previous

work, the selection of the variables introduced in the General Linear Model regression (GLM)

was perfomed with a backward procedure and only few interactions terms could have been

entered in the model based on an empirical expertise [3]. Machine learning is a growing field of

research, particularly adapted for prediction problems in high dimension, and constitutes then

an appealing approach to overcome this issue. Several recent studies in biology, epidemiology

and medicine have actually shown that the predictive performance of classical methods can be

improved by implementing machine learning methods, for example [16], [17–19], [20–22].

The present work aims to revisit the empirical algorithm and to propose an automatic

machine learning method combining GLM-Lasso and a stratified two-levels cross validation

in order to select the best subset of predictors. The Lasso method proposed by Tibshirani [7] is

a regularized estimation approach for regression model using an L1-norm and constraining

the regression coefficients, which simultaneously performs selection and estimation, and is

robust for variables selection in high dimension [8, 23]. The algorithms implemented in our

work are based on [8, 23, 24]. The predictive performances of the automatic LASSO-based

method and the reference method are evaluated and compared to each other.

Materials and methods

Materials

In this section, we briefly recall the description of the study area, the mosquito collection and

related variables. For more details, see [3].

Study area. The study was conducted in the district of Tori-Bossito (Republic of Benin),

from July 2007 to July 2009. Tori-Bossito is on the coastal plain of Southern Benin, 40 kilome-

ters north-east of Cotonou. This area has a subtropical climate and during the study, the rainy

Season lasted from May to October. Average monthly temperatures varied between 27˚C and

31˚C. The original equatorial forest has been cleared and the vegetation is characterized by

bushes with sparse trees, a few oil palm plantations, and farms. The study area contained nine

villages (Avamé centre, Gbédjougo, Houngo, Anavié, Dohinoko, Gbétaga, Tori Cada Centre,

Zébè, and Zoungoudo). Tori Bossito was recently classified as mesoendemic with a clinical

malaria incidence of about 1.5 episodes per child per year [25]. Pyrethroid-resistant malaria

vectors are present [26].

Mosquito collection and identfication. Entomological surveys based on human landing

catches (HLC) were performed in the nine villages every six weeks for two years (July 2007 to

July 2009). Mosquitoes were collected at four catch houses in each village over three successive

nights (four indoors and four outdoors, i.e. a total of 216 nights every six weeks in the nine vil-

lages). Five catch sites had to be changed in the course of the study (2 in Gbedjougo, 1 in

Avamè, 1 in Cada, 1 in Dohinoko) and a total of 19 data collections was performed in the field

from July 2007 to July 2009. In total, data from 41 catch sites are available. Each collector
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caught of predictional mosquitoes landing on the lower legs and feet between 10 pm and 6 am.

All mosquitoes were held in bags labeled with the time of collection. The following morning,

mosquitoes were identified on the basis of morphological criteria [27, 28]. All Anopheles gam-
biae complex and Anopheles funestus mosquitoes were stored in individual tube with silica gel

and preserved at 220˚C. Plasmodium falciparum infection rates were then determined on the

head and thorax of individual anopheline specimens by CSP-ELISA [29].

Environnement and behavioral data. Original variables: Rainfall was recorded twice a

day with a pluviometer in each village. In and around each catch site, the following informa-

tion was systematically collected: (1) type of soil (dry lateritic or humid hydromorphic)-

assessed using a soil map of the area (map IGN Benin at 1/200 000 e, sheets NB-31-XIV and

NB-31-XV, 1968) that was georeferenced and input into a GIS; (2) presence of areas where

building constructions are ongoing with tools or holes representing potential breeding habitats

for anopheles; (3) presence of abandoned objects (or ustensils) susceptible to be used as ovipo-

sition sites for female mosquitoes; (4) a watercourse nearby; (5) number of windows and

doors; (6) type of roof (straw or metal); (7) number of inhabitants; (8) ownership of a bed-net

or (9) insect repellent; and (10) normalized difference vegetation index (NDVI) which was

estimated for 100 meters around the catch site with a SPOT 5 High Resolution (10 m colors)

satellite image (Image Spot5, CNES, 2003, distribution SpotImage S.A) with assessment of the

chlorophyll density of each pixel of the image S1 Database. Due to logistical problems, rainfall

measurements are only available after the second entomological survey. Consequently, we

excluded the first and second survey (performed in July and August 2007 respectively) from

the statistical analyses.

Recoded variables: Some pre-treatments based on the knowledge of experts in entomology

and medicine are operated on some original variables. These pre-treatments generate a second

type of covariables called recoded variables. The dependent variable was the number of

Anopheles collected in a house over the three nights of each catch and the explanatory vari-

ables were the environmental factors, i.e. the mean rainfall between two catches (classified

according to quartile), the number of rainy days in the ten days before the catch (3 classes [0–

1], [2–4], >4 days), the Season during which the catch was carried out (4 classes: end of the

dry Season from February to April; beginning of the rainy Season from May to July; end of the

rainy Season from August to October; beginning of the dry Season from November to Janu-

ary), the type of soil 100 meters around the house (dry or humid), the presence of construc-

tions within 100 meters of the house (yes/no), the presence of abandoned tools within 100

meters of the house (yes/no), the presence of a watercourse within 500 meters of the house

(yes/no), NDVI 100 meters around the house (classified according to quartile), the type of roof

(straw or Sheet metal), the number of windows (classified according to quartile), the owner-

ship of bed nets (yes/no), the use of insect repellent (yes/no), and the number of inhabitants in

the house (classified according to quartile).

The Original and the recoded variables are described in Tables 1 and 2. Two groups of cov-

ariables set are used: the first group (Group 1), the original covariables with all covariables

obtained by interactions, the second group (Group 2), the recoded covariables with all covari-

ables obtained by interactions.

Methods

Ethics. A written informed consent was obtained from all participants involved in the

study. The study protocol was approved by the Ethics Committee of the University of Abo-

mey-Calavi (Faculté des Sciences de la Santé; FSS) in Benin and the Consultative Committee

of Ethics of Institute of Development Research (IRD).

Predictive model of local malaria exposure
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Table 1. Description of original variables.

Variable Nature Number of modalities Modalities

Repellent Non-numeric 2 Yes/ No

Bed-net Non-numeric 2 Yes/ No

Type of roof Non-numeric 2 Sheet metal/ Straw

Ustensils Non-numeric 2 Yes/ No

Presence of constructions Non-numeric 2 Yes/ No

Type of soil Non-numeric 2 Humid/ Dry

Water course Non-numeric 2 Yes/ No

Season Non-numeric 4 1/2/3/4

Village Non-numeric 9

House Non-numeric 41

Rainy days before mission Numeric Discrete 0/2/� � �/9

Rainy days during mission Numeric Discrete 0/1/� � �/3

Fragmentation Index Numeric Discrete 26/� � �/71

Openings Numeric Discrete 1/� � �/5

Number of inhabitants Numeric Discrete 1/� � �/8

Mean rainfall Numeric Quantitative 0/� � �/82

Vegetation Numeric Quantitative 115.2/� � �/ 159.5

Total Mosquitoes Numeric Discrete 0/� � �/481

Total Anopheles Numeric Discrete 0/� � �/87

Anopheles infected Numeric Discrete 0/� � �/9

Season: 1, beginning of dry Season; 2, end of rainy Season; 3 beginning of rainy Season; 4, end of dry

Season.

https://doi.org/10.1371/journal.pone.0187234.t001

Table 2. Description of recoded variables. Variables with star are recoded.

Variable Nature Number of modalities Modalities

Repellent Non-numeric 2 Yes/ No

Bed-net Non-numeric 2 Yes/ No

Type of roof Non-numeric 2 Sheet metal/ Straw

Utensils Non-numeric 2 Yes/ No

Presence of constructions Non-numeric 2 Yes/ No

Type of soil Non-numeric 2 Humid/ Dry

Water course Non-numeric 2 Yes/ No

Season Non-numeric 4 1/2/3/4

Village* Non-numeric 9

House* Non-numeric 41

Rainy days before mission* Non-numeric 3 Quartile

Rainy days during mission Numeric Discrete 0/1/� � �/3

Fragmentation index* Non-numeric 4 Quartile

Openings* Non-numeric 4 Quartile

Nber of inhabitants* Non-numeric 3 Quartile

Mean rainfall* Non-numeric 4 Quartile

Vegetation* Non-numeric 4 Quartile

Total Mosquitoes Numeric Discrete 0/� � �/481

Total Anopheles Numeric Discrete 0/� � �/87

Anopheles infected Numeric Discrete 0/� � �/9

Season: 1, beginning of dry Season; 2, end of rainy Season; 3, beginning of rainy Season; 4, end of dry

Season.

https://doi.org/10.1371/journal.pone.0187234.t002
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Methods. The main objective is to predict the number of Anopheles Y using the environ-

mental factors X.

ln ½EðY jX; bÞ� ¼ Xb ð1Þ

For doing this, statistical analysis are conducted in three steps.

Step 1. First, the variables selection is performed using GLM-lasso method through a

cross validation. For this part, we have implemented an automatic algorithm Leave One Level

Out Double Cross-Validation (LOLO-DCV) 0.1. This algorithm developed in this work is a

stratified cross validation with two levels [30, 31].

Algorithm 0.1

1. The data are separatedin Nf-folds
2. At each firstlevelk

(a) The foldsare regroupedin two parts:Ak and Ek, Ak: the learningset con-
tainingthe observationsof (Nf − 1)-folds,Ek: the test set, containing
the observationsof the last fold.

(b) Holding-outEk

(c) The secondlevelof crossvalidation

i. A full crossvalidationis computedon Ak

ii. The two regularizingparametersλ.mink and λ.1sek are obtained.

iii. The coefficientsof activevariablesi.e variableswith non-zero
coefficientsassociatedto thesetwo parametersare debiased

iv. Predictionsare performedusinga GLM modelon Ek

v. The presencePðXiÞ of each variableis determinedusing λ.mink and
λ.1sek on Ak

3. The step 2c is repeateduntilpredictionsare performedfor all
observations.

The second level allows to avoid over-fitting in learning stage in the process of variables

selection because the number of observations is lower. Its aim is to compute a second cross val-

idation (CV2) for prediction at each step of learning of a first cross validation (CV1). The

GLMM-Lasso method of variables selection is based on the calculation of the coefficients of

the variables defined as:

b̂ðlÞ ¼ Arg max
b

LGLMðbj DÞ � l
X

j

jbjj

" #

ð2Þ

D ¼ fðY ¼ yi;X ¼ xiÞ; 1 � i � ng, X is the n×(p+1)-dimension matrix of covariables (envi-

ronmental variables), n is the number of observations, p is the number of covariables, β is a (p
+1)-vector of fixed parameters including the intercept, Y is the vector of the target variable,

LGLM the likelihood of the model, λ is the regularizing parameter, The choice of the regulariz-

ing parameter lambda is done by minimizing a score function based on the deviance. In prac-

tice, Eq (2) is solved using a combination of Laplace approximation, Newton-Raphson method

or Fisher scoring method. The deviance can be defined as:

DevianceðMðbÞÞ ¼ 2ðLðMðsatÞÞ � LðMðbÞÞÞ ð3Þ

where LðMðbÞÞ the log-likelihood of the model MðbÞ, MðsatÞ is the “saturated” model and

MðbÞ is the model of Poisson regression. The selection of the best subset of variables is done
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PLOS ONE | https://doi.org/10.1371/journal.pone.0187234 October 31, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0187234


according to two strategies, LDLM (Lolo Dcv Lambda Min) and LDLS (Lolo Dcv Lambda

1Se). The strategy LDLM is based on the regularizing parameter defined as:

l:min ¼ Arg min
lk
½DevianceðMððb̂ðlkÞÞÞ�: ð4Þ

The strategy LDLS is based on the value λ.1se defined by T. Hastie et al which minimizes the

deviance plus its standard deviation [23, 32, 33]:

l:1se ¼ Arg min
lk
½DevianceðMðb̂ðlkÞÞÞ þ StdðDevianceðMðb̂ðlkÞÞÞÞ�: ð5Þ

The best subset of variables is selected as follows. Let V ¼ fV1;V2; . . . ;VNvar
g be the set of all

variables including interactions, Nvar the number of variables. If Nf is the number of folds,

at each first level k, 1� k� Nf, the second level of cross validation provides two vectors

β(λ.mink) and β(λ.1sek) of coefficients of variables using λ.mink and λ.1sek Eqs (4) and (5)

respectively. Based on this, one can determine the presence or the absence of each covariable.

For any λ, let define the function “Presence” of variable like:

(PkðVrÞ ¼ 1 if brðlÞ 6¼ Y

PkðVrÞ ¼ 0 elsewhere

where βr(λ), 1� r� Nvar is a vector of coefficients of covariables Vr and Θ the null vector. For

a threshold s, 1� s� 100, the subset of selected variables (SV) is defined as:

SVðl; sÞ ¼ Vr;
100

Nf
�
XNf

k¼1

PkðVrÞ � s

( )

: ð6Þ

We also studied the influence of the variability of the threshold s on the quality of the predic-

tion. Then we compared the predictive performance of the model for s taken in {75, 80, 90, 95,

100}. At the end of this step the strategies LDLM and LDLS provides two optimal subset of var-

iables SVLDLM, and SVLDLS which are used to build a GLM predictive model.

Step 2. The predictive performance of the models described above are compared to each

other and to the reference B-GLM model The comparison criteria are:

1. The mean of predictions

2. The quadratic risk of predictions

3. The absolute risk of predictions

Results

Summary of results on prediction accuracy and quality criteria with

LOLO-DCV

The Tables 3 and 4 present the comparison of the performance of the three models B-GLM,

LDLM, and LDLS models in terms of quadratic and absolute risks. When selection and predic-

tion are performed using the recoded variables, the reference B-GLM model is the best regard-

ing the indicators of performance for any threshold. On the other hand, when selection and

prediction are performed using the original variables, LDLM and LDLS are superior to

B-GLM but only with a 100% threshold.

Predictive model of local malaria exposure
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Optimal subset of variables for prediction

Tables 5, 6, and 7 show that both of the strategies LDLM and LDLS provide a sparse optimal

subset for original variables.

The best subset of variables selected for each group of covariable is:

1. B-GLM

For B-GLM [3], the best subset of covariables is Season, Number of rainy during the mis-

sion, Mean rainfall, Rainy days before mission, Repellent, Vegetation, the interaction

between Season and Vegetation.

2. LOLO-DCV (LDLM and LDLS)

Based on the results of Fig 1 and the Tables 3, 4, and 5, the best covariables for the Group 1

and Group 2 is: Season; interaction between Mean rainfall and openings; interaction

between Rainy days before mission and Nbr of inhabitants; interaction between Rainy days

during the mission and Vegetation

Table 3. Summary of predictions for B-GLM, LDLM, and LDLS on original variables.

Threshold Strategy Mean Quadratic risk Absolute risk

- B-GLM 3.75 62.20 3.81

100 LDLM 3.74 44.26 3.30

LDLS 3.74 54.50 3.62

95 LDLM 3.74 72.01 4.42

LDLS 3.74 72.03 4.40

90 LDLM 3.74 72.00 4.47

LDLS 3.75 72.01 4.42

80 LDLM 3.75 74.00 4.71

LDLS 3.72 73.02 4.52

75 LDLM 3.74 71.84 4.41

LDLS 3.74 72.00 4.31

https://doi.org/10.1371/journal.pone.0187234.t003

Table 4. Summary of predictions for B-GLM, LDLM, and LDLS on recoded variables.

Threshold Strategy Mean Quadratic risk Absolute risk

B-GLM 3.75 62.29 3.88

100 LDLM 3.85 82.06 4.67

LDLS 3.76 74.08 4.76

95 LDLM 3.84 81.06 4.61

LDLS 3.76 74.08 4.76

90 LDLM 3.87 83.06 4.72

LDLS 3.75 75.07 4.86

80 LDLM 3.87 84.06 4.81

LDLS 3.75 75.07 4.86

75 LDLM 3.89 84.05 4.79

LDLS 3.77 75.56 4.85

https://doi.org/10.1371/journal.pone.0187234.t004
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Figs 1 and 2, show how the number of selected variables is reduced as the threshold

increases. The fact that the best model is obtained for a threshold equal to 100% (LDLM strat-

egy) shows that the best prediction power is reached when unstable variables are removed

from the final subset. Fig 3, show the number of mosquitoes collected at every mosquito collec-

tion mission at 4 collection sites (given as example of the 41 collection sites) predicted by the

B-GLM model, predicted by the LDLS model, and the observations (the number of mosquitoes

actually caught). The LDLS model predictions were better than the B-GLM model ones, and

the predictive curve from LDLS is often able to mimic the observations curves in a very satis-

factory way. This has been found for the highest majority of the 41 collection sites.

Discussion and conclusion

The main objective of this work was to propose an automatic algorithm (LOLO-DCV) based

on a machine learning approach for variables selection and prediction of the malaria exposure

Table 6. Number of original stable covariables for the strategies LDLM and LDLS.

Threshold (%) Number for LDLM Number for LDLS

100 4 1

95 8 2

90 9 2

80 10 3

75 12 3

https://doi.org/10.1371/journal.pone.0187234.t006

Table 7. Number of recoded stable covariables for the strategies LDLM and LDLS.

Threshold (%) Number for LDLM Number for LDLS

100 31 11

95 39 11

90 44 16

80 50 22

75 52 29

https://doi.org/10.1371/journal.pone.0187234.t007

Table 5. Frequency of original stable covariables.

Variable Frequency for LDLM (%) Frequency for LDLS (%)

Season 100 100

Mean rainfall: Openings 100 80

Rainy days before mission: Nbr of inhabitants 100 -

Rainy days during mission: Vegatation 100 95

Season: water course 95 -

Season: Type of Soil 95 -

Season: Village 95 -

Mean rainfall: Vegetation 95 -

Rainy days durin mission: Village 90 -

Season:Rainy days durin mission 80 -

Season: Repellent 75 -

Season: Presence of construction 75 -

https://doi.org/10.1371/journal.pone.0187234.t005
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from data of a cohort study carried out in Benin. This algorithm has been performed using

both the original variables and then the variables recoded based on the expert knowledge of

the topic, and its prediction power has been compared to an empirical algorithm previously

used on the same data [3]. This automatic algorithm has shown a substantial improvement in

terms of predictive power compared to the empirical algorithm.

Our LOLO-DCV algorithm has several advantages on the reference empirical variable

selection method (B-GLM). First, being based on the LASSO method, the high ratio variables/

observations is no longer an issue and all the variables can be entered together in the model,

including all their second order interactions (automatically generated). This avoids the subjec-

tive part of the empirical analysis where a pre-selection based on the field expertise is needed

to limit the variables/observations ratio. Second, the algorithm is automatically performed in a

reasonable CPU-time (on our data), while the empirical algorithm would require much more

time manually. Third, the second level of cross-validation makes this method more robust

(and then more generalizable) than the empirical algorithm. Fourth, and most important,

LOLO-DCV succeeded to improve the prediction performance of the empirical model, which

Fig 1. Frequent variables. The x-axis shows the variables including the interactions, and the y-axis shows

the percentage of presence of the variables. The left figure corresponds to the LDLM strategy and the right

figure corresponds to LDLS strategy. Each vertical band represents one variable.

https://doi.org/10.1371/journal.pone.0187234.g001
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is of course the ultimate goal. We observe that the global performance criteria as well as the

local predictive power at the house (collection site) level are substantially improved compared

to the empirical algorithm. In particular, LOLO-DCV algorithm was able to improve two

important drawbacks that were observed for prediction at the house level by the reference

method: (i) the extreme values were hardly reached by the B-GLM predictions and are much

better predicted by LOLO-DCV and (ii) LOLO-DCV succeeded for most of the houses to

mimic the exact shape of the observations curves, whereas the B-GLM only succeeded to

approximate this shape. Overall, all these improvement make LOLO-DCV algorithm a supe-

rior alternative to the B-GLM method. Many other machine learning methods exist, for exam-

ple random forest, boosting regression etc, [34][35–38]. But a drawback of these alternative

methods is that they do not lead to easily interpretable results [16, 37, 38], [39]. The interpreta-

tion of the results given by the LOLO-DCV method is the same as those from a classical regres-

sion model, thereby much easier to understand by the malaria experts than the results from

other methods. In particular, the subset of variables and interactions selected by LOLO-DCV

is consistent. As expected the rainfall and Season variables are of highest importance, which is

relevant.

Fig 2. Frequent variables. The x-axis shows the variables including the interactions, and the y-axis shows

the percentage of presence of the variables. The left figure corresponds to the LDLM strategy and the right

figure corresponds to LDLS strategy. Each vertical band represents one variable.

https://doi.org/10.1371/journal.pone.0187234.g002
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However, we cannot ensure that our LOLO-DCV algorithm guaranties the best predictive

performance, and maybe other approaches would even give better results. This is a limitation

of our work and other experiments may be condutcted to explore this matter.

In our work, original variables have shown better results than recoded variables. It may be

due to the fact that in our case, recoding was to categorize quantitative variables, which allows

Fig 3. Comparison between observed and predicted number of anopheles in eight houses. The line with “?” is for observed values, the line with “o”

is for B-GLM and the line with “+” is for LOLO-DCV.

https://doi.org/10.1371/journal.pone.0187234.g003
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to interpret the results more easily, but is known to reduce the variability (and then the infor-

mation) of the variables. However, it may not be a general result, and we do not recommend

avoiding systematically recoded variables.

In conclusion, this work has confirmed the value of using a machine learning approach to

address the important health science problem of predicting the individual malaria exposure in

a cohort study. Such approach can be helpful to improve the predictive performance of the

classical methods and to overcome their limits. Our Lasso-based LOLO-DCV algorithm has

clearly shown a substantial improvement compared to the reference method, giving robust

and easy-to-interpret results by non-statisticians or machine learning specialists. We think

LOLO-DCV can then be recommended to predict any count outcome from a dataset of several

dozen of variables and hundreds of observations, which is an average dataset dimension in this

study area. For all these reasons the authors plan to build an easy-to-use R package and recom-

mend the use of LOLO-DCV in prediction problem in health science.

Supporting information

S1 Database. S1_Database.xls. This database contains all original environnement and behav-

ioral variables used in this work.
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Chair in Mathmatical Physics and Applications (ICMPA—UNESCO-Chair), who helped us in

the proofreading of this paper.

Author Contributions

Conceptualization: Bienvenue Kouwaye, Fabrice Rossi, Gilles Cottrell.

Data curation: Bienvenue Kouwaye, Fabrice Rossi.

Formal analysis: Bienvenue Kouwaye, Fabrice Rossi, Mahouton Norbert Hounkonnou, Gilles

Cottrell.

Funding acquisition: André Garcia.
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